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Abstract  
Approximately 20% of patients with acute brain injury (ABI) also experience acute kidney injury (AKI), which worsens 
their outcomes. The metabolic and inflammatory changes associated with AKI likely contribute to prolonged brain 
injury and edema. As a result, recognizing its presence is important for effectively managing ABI and its sequelae. This 
review discusses the occurrence and effects of AKI in critically ill adults with neurological conditions, outlines potential 
mechanisms connecting AKI and ABI progression, and highlights AKI management principles. Tailored approaches 
include optimizing blood pressure, managing intracranial pressure, adjusting medication dosages, and assessing 
the type of administered fluids. Preventive measures include avoiding nephrotoxic drugs, improving hemodynamic 
and fluid balance, and addressing coexisting AKI syndromes. ABI patients undergoing renal replacement therapy 
(RRT) are more susceptible to neurological complications. RRT can negatively impact cerebral blood flow, intracranial 
pressure, and brain tissue oxygenation, with effects tied to specific RRT methods. Continuous RRT is favored for bet‑
ter hemodynamic stability and lower risk of dialysis disequilibrium syndrome. Potential RRT modifications for ABI 
patients include adjusted dialysate and blood flow rates, osmotherapy, and alternate anticoagulation methods. Future 
research should explore whether these strategies enhance outcomes and if using novel AKI biomarkers can mitigate 
AKI‑related complications in ABI patients.
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Background
Acute kidney injury (AKI) in intensive care units (ICUs) 
is an independent risk factor for death. Reported mortal-
ity rates from AKI with renal replacement therapy (RRT; 
40–55%) are higher than the mortality rates due to ICU-
related myocardial infarction (20%), sepsis without AKI 
(15–25%), or acute respiratory distress syndrome requir-
ing mechanical ventilation (30–40%) [1]. This high mor-
tality rate is attributed to the systemic impact of AKI on 
the brain, heart, lungs, liver, and gastrointestinal tract, 
linking AKI to various syndromes (Additional file 1) [2]. 
Beyond the acute phase, AKI increases the likelihood of 
chronic kidney disease (CKD), cardiovascular complica-
tions, recurrent AKI, and functional impairment [3].

In the context of neurocritical care, AKI diagnosis 
holds significance for acute brain injury (ABI) manage-
ment. This article summarizes the epidemiology and out-
comes of AKI in neurocritically ill adults admitted to the 
ICU, focusing on prevalent ABI conditions like traumatic 

brain injury (TBI), aneurysmal subarachnoid hemor-
rhage (SAH), intracerebral hemorrhage (ICH), and acute 
stroke. The review explores potential AKI mechanisms 
and their involvement in reciprocal ABI progression, 
while also highlighting essential principles in AKI man-
agement. Additionally, considerations for managing RRT 
in the context of ABI are discussed. Our literature search 
strategy is provided in Additional file 2.

AKI epidemiology and outcomes in neurocritical 
care
Studies on AKI prevalence in neurocritical care are few, 
and their results vary with AKI definition [4–6] (Addi-
tional file  3). Current AKI diagnosis and classification 
are based on the 2012 KDIGO (Kidney Disease: Improv-
ing Global Outcomes) consensus criteria [6] (Additional 
file  4; left panel). This three-stage severity classification 
system is based on changes in serum creatinine (SCr) 
concentration and urine output (UOP). However, most 
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neurocritical care studies only used SCr-based definitions 
because SCr data are readily available in electronic health 
records, missing a substantial proportion of patients with 
AKI [7].

In a multinational study spanning 97 ICUs and encom-
passing more than 1800 patients, with 25.9% primarily 
diagnosed with neurological symptoms, 57% of the entire 
cohort developed AKI by KDIGO criteria within the 
initial week of admission [8]. Among these, 39% experi-
enced stages 2–3 AKI, and 13.5% required RRT, account-
ing for 23.5% of AKI cases [8]. While insights into AKI 
incidence among neurocritical patients mainly stem from 
retrospective studies in single centers and exclude cases 
diagnosed with AKI upon admission, a recent study in 
a mixed neurological/neurosurgical ICU reported an 
overall AKI occurrence of 23.5% utilizing the SCr/UOP 
KDIGO criteria [9]. Interestingly, similar AKI rates were 
noted among specific brain pathologies, including TBI, 
11.9–26.7% (KDIGO, SCr only) [10–14] and 17.7% (SCr/
UOP KDIGO) [15]; acute stroke, 20.9–43.3% (KDIGO, 
SCr only) [16, 17]; non-traumatic aneurysmal SAH, 16.7–
23.7% (KDIGO, SCr only) [18, 19], and ICH, 20.0–29.9% 
[18, 20–22]. The few studies assessing RRT in patients 
with ABI reported overall rates of 0.3–5.6% among neu-
rocritical patients [17, 23]. Irrespective of the criteria 
employed and the specific brain condition under consid-
eration, AKI severity is associated with increased mortal-
ity, obstacles to rehabilitation care, increased likelihood 
of disability at discharge, and potential downstream 
effects on healthcare services [8, 10, 24–27].

Data on renal recovery after AKI post-ABI are scarce 
[18], and long-term renal outcomes after AKI in ABI 
patients remain unknown.

AKI causes and pathophysiological mechanisms
Clinicians must consider various AKI causes specific to 
both neurocritical and non-neurological ICU patients 
(Additional file  1). The Graphical Abstract summa-
rizes key brain-kidney interaction pathways in neuro-
critical care that could lead to reciprocal ABI and AKI 
progression.

CKD plays a significant role as a risk factor for AKI in 
neurocritical patients, with those having CKD displaying 
a fivefold higher prevalence of cerebrovascular disease 
compared to those without CKD [10, 26, 28]. These data 
are unsurprising, given that the kidneys and brain share 
common vascular risk factors, including hypertension, 
diabetes, and hyperlipidemia. Notably, proteinuria of ≥ 30 
mg/dL and CKD stages 3–4 are established risk factors 
for cerebrovascular disease, which, in turn, increases the 
likelihood of AKI [29, 30]. A study on patients with spon-
taneous ICH found that individuals with CKD experience 
worse functional outcomes (OR 1.91; 95% CI 1.04–3.52) 

and higher mortality (OR 3.33; 95% CI 1.76–6.27) at 
12  months post-ICH compared to those without CKD 
[31]. While TBI patients tend to be younger and possess 
normal pre-existing renal function, patients with acute 
stroke, aneurysmal SAH, and ICH are generally older and 
more likely to have underlying CKD.

ABI can be complicated by neurogenic stunned myo-
cardium [32], which is a transient and diffuse form of 
left ventricular cardiomyopathy, likely triggered by auto-
nomic nervous system activation with excess catechola-
mine release, impaired myocardial glucose metabolism 
secondary to neurocardiogenic injury, and coronary 
microvascular dysfunction [33, 34]. Patients with this 
condition exhibit a wide range of cardiac abnormalities 
including arrhythmias and ventricular dysfunction [33, 
34], increasing the risk of AKI due to reduced cardiac 
output, pulmonary edema, and prolonged vasopressor 
support [35]. However, the prevalence of AKI in such 
patients has not been described. Autonomic nervous sys-
tem imbalance also contributes to sympatho-adrenergic 
drive and renin–angiotensin–aldosterone system activa-
tion and vasopressin release, resulting in renal vasocon-
striction, enhanced sodium and water reabsorption, and 
decreased renal blood flow and glomerular filtration rate 
(GFR) [36]. Neurogenic stunned myocardium prevalence 
in patients with SAH is high and estimated at ~ 30% [32].

The 2020 Neurocritical Care Society (NCS) guidelines 
suggest, with low evidence, using hyperosmolar therapy 
for initial management of cerebral edema in neurocritical 
patients with SAH, TBI, acute ischemic stroke, and ICH 
[37]. While mannitol is the most frequently administered 
hyperosmolar solution, its use, particularly at high doses, 
has been associated with an increased risk of AKI in such 
patients [38–40]. Risk factors for mannitol-associated 
AKI include higher illness severity, heart failure, diabe-
tes, use of diuretics, and lower baseline GFR [38, 41]. The 
precise mechanism for mannitol-associated AKI is not 
well defined but may be related to increased serum osmo-
lality [42] and appears to be dose-related [11]. The 2020 
NCS guidelines recommend hypertonic sodium solution 
over mannitol as it might be more effective in reduc-
ing ICP or cerebral edema ABI [37]; however, its usage 
can lead to hypernatremia and hyperchloremia, both of 
which have been associated with an increased AKI risk 
[19, 43, 44]. However, the effects of high chloride con-
tent on the kidneys have been debated [45, 46]. While 
experimental studies suggest it causes renal vasoconstric-
tion and decreased GFR [47–49], a post-hoc analyses of 
the EPO-TBI and COBI trials demonstrated no associa-
tion between hypertonic sodium solution and AKI [11, 
14]. Notably, randomized controlled studies specifically 
focusing on AKI and acid–base balance outcomes related 
to hyperosmolar therapy in neurocritical care are lacking.
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Intravenous contrast might be a concern in patients 
with ABI due to increased AKI risk, particularly in 
patients with SAH who might receive substantial 
amounts of contrast due to repeated computed tomogra-
phy angiography scans for the diagnosis and/or manage-
ment of cerebral vasospasm/delayed cerebral ischemia. 
However, existing evidence suggests that the risks asso-
ciated with low- or iso-osmolar intravenous contrast 
agents are minimal, and AKI is infrequent in patients 
with eGFR of ≥ 30 mL/min/1.73   m2 [50, 51]. Intraarte-
rial contrast administration poses a greater risk for AKI 
because such procedures often require larger doses that 
reach the renal arteries at high concentrations and poten-
tially lead to atheroembolic complications [52].

Sepsis and nosocomial infections, especially ventila-
tor-associated pneumonia, are common in neurocritical 
patients. A retrospective single-center study reported 
sepsis (75%) and respiratory infections (68%) as the main 
non-neurological complications in patients with TBI [53]. 
Although data on patients with ABI are limited, infec-
tious complications are considered the main AKI disease 
modifiers during ICU stay [16, 26], in line with general 
ICU populations [8].

Myoglobin-associated rhabdomyolysis and renal toxic-
ity should be considered in patients with TBI. A recent 
multicenter registry study found rhabdomyolysis pre-
sent in 3.8% of patients with TBI and independently 
associated with AKI occurrence [54]. Moreover, while 
rhabdomyolysis and elevated serum/urinary myoglobin 
correlate with AKI occurrence, they also correlate with 
trauma severity and other renal insults. Hence, the direct 
contribution of rhabdomyolysis to kidney injury is often 
uncertain. The causative role of myoglobin toxicity in 
AKI is more certain in cases with severe rhabdomyolysis 
(creatinine kinase > 15,000  IU/L), which rarely occurs in 
patients with TBI.

Brain injury progression following AKI
Experimental evidence suggests that while AKI is an 
indicator of illness severity, it can cause further organ 
dysfunction and damage. Despite limitations due to 
interspecies differences, animal kidney injury models 
have been used extensively to elucidate the mechanisms 
leading to remote organ dysfunction after AKI (Table 1).

AKI causes systemic inflammation by generating pro-
inflammatory cytokines and reducing cytokine clear-
ance [63, 64]. These inflammatory processes contribute 
to AKI initiation and likely perpetuate and extend brain 
injury. Consequently, the brain and kidneys might inter-
act during AKI by amplifying cytokine-induced damage 
and oxidative stress, extravasating leukocytes, and dys-
regulating cerebral aquaporin channels [65]. The various 
proinflammatory and metabolic changes observed in AKI 

(e.g., waste solute retention, disturbances of inorganic 
solute metabolism, and reduced drug clearance) can dis-
rupt the blood–brain barrier. This disruption may lead to 
an influx of water and the accumulation of inflammatory 
cells, cytokines, and neurotoxic substances in the central 
nervous system. This accumulation can result in cerebral 
edema, inflammation, hemorrhage, and even death [66]. 
Animal models have supported this mechanism, dem-
onstrating blood–brain barrier disruption [59], micro-
vascular protein leakage, microglial cell activation [59], 
hippocampal injury, inflammation characterized by neu-
ronal pyknosis [62], and increased soluble inflammatory 
proteins in the cerebral cortex and hippocampus [59] 
following renal ischemia–reperfusion injury-induced 
AKI. Importantly, neuronal pyknosis did not increase in 
corresponding animal models of acute liver injury, sug-
gesting that some observed effects are relatively specific 
to AKI and not associated with generalized inflamma-
tion following acute organ injury [59]. Functionally, mice 
with AKI showed impaired locomotor function that cor-
related with renal ischemia duration [59]. Alterations in 
neurotransmitter secretion and uptake during AKI might 
worsen brain injury and dysfunction [66]. Furthermore, 
sepsis and liver failure, which are frequently observed in 
critical illness, can exacerbate brain injury and/or AKI 
and contribute to multiple organ dysfunction [67].

AKI management
The underlying cause of AKI should be identified 
promptly, paying special attention to reversible causes. 
AKI-related syndromes (Additional file  1) pose a major 
challenge to AKI management, so regular re-evaluation 
is required for adaptive management. Since current evi-
dence does not suggest that AKI in neurocritical patients 
should be managed differently from AKI in other criti-
cally ill populations, KDIGO-bundle recommendations 
(i.e., reduce nephrotoxic agents, monitor SCr/UOP, dis-
continue renin-angiotensin-system blockers, optimize 
fluid status) are considered appropriate [68]. No exter-
nally-validated scoring system is available to evaluate 
AKI risk in neurocritical patients.

Hemodynamic management
Blood pressure (BP) targets should consider premor-
bid BP. The potential benefits of increased renal perfu-
sion must be weighed against potentially deleterious 
effects on cerebral perfusion. Cerebral autoregulation 
is impaired in approximately one-third of patients 
with TBI [69], in whom a rise in mean arterial pres-
sure (MAP) might increase the ICP due to hyperemia, 
while a drop in MAP might lead to cerebral hypoper-
fusion. Although targeting high MAP (≥ 80 mmHg) in 
patients with sepsis and chronic hypertension could 
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Table 1 Experimental studies on brain‑kidney cross‑talk

Study Model Method Findings

Arieff et al. [55] Dog Bilateral urethral ligation; analyses 72 h later Increased calcium content in the gray and white matter of the brain 
after AKI, which was prevented by TPTX; administration of parathyroid 
extract to normal and post‑TPTX dogs associated with an increase 
in brain calcium; hemodialysis significantly reduced brain calcium 
content but values remained significantly above normal

Jeppsson et al. [56] Rat AKI model: unilateral nephrectomy and renal artery 
occlusion of the remaining kidney for 70 min; 
CKD model: unilateral nephrectomy and 70–80% 
devascularization of the remaining kidney; analyses 
2 weeks later

Reduced plasma valine and threonine and increased brain phenylala‑
nine, tyrosine, and histidine

Trachtman et al. [57] Rat Bilateral urethral ligation; analyses 8 h and 48 h 
later

Decreased brain water at 8 h and increased organic osmolyte 
in the brain at 48 h

Silver et al. [58] Rat Bilateral urethral ligation; analyses 42 h later Increased brain water content in dialyzed over non‑dialyzed AKI rats; 
no significant change in brain organic osmolytes

Adachi et al. [55] Rat Bilateral renal artery occlusion vs. sham‑operation; 
analyses 48 h later

Decreased dopamine turnover in striatum, mesencephalon, 
and hypothalamus, which correlated with impaired motor activity; 
unchanged cerebral norepinephrine and serotonin turnover and brain 
water content

Liu et al. [59] Mouse Bilateral renal IRI for 60 min vs. sham‑operation; 
analyses 24 h later

In mice with AKI: disrupted blood–brain barrier, increased neuronal 
pyknosis and microgliosis, increased keratinocyte‑derived chem‑
oattractant and G‑CSF in the cerebral cortex and hippocampus, 
and elevated expression of glial fibrillary acidic protein in astrocytes 
in the cortex and corpus callosum

Palkovits et al. [60] Rat Bilateral renal IRI, bilateral urethral ligation, 
and drug‑induced AKI vs. sham; analyses 24 h later

Moderate increase in neuronal activation in the biogenic amine 
expressing cell group

Salama et al. [61] Rat Bilateral renal IRI Increased TLR‑4 expression within the hippocampus and striatum

Chou et al. [62] Mouse Bilateral renal IRI for 60 min vs. sham‑operation; 
analyses 2 h and 24 h later

In mice with AKI: higher serum and brain levels of KS, G‑CSF, and MCP‑
1, increased brain vascular permeability, and altered genes expression 
in the hippocampus 2 h after reperfusion before changes in SCr

Arieff et al. [55] Dog Bilateral urethral ligation; analyses 72 h later Increased calcium content in the gray and white matter of the brain 
after AKI, which was prevented by TPTX; administration of parathyroid 
extract to normal and post‑TPTX dogs associated with an increase 
in brain calcium; hemodialysis significantly reduced brain calcium 
content but values remained significantly above normal

Jeppsson et al. [56] Rat AKI model: unilateral nephrectomy and renal artery 
occlusion of the remaining kidney for 70 min; CKD 
model: unilateral nephrectomy and 70%–80% 
devascularization of the remaining kidney; analyses 
2 weeks later

Reduced plasma valine and threonine and increased brain phenylala‑
nine, tyrosine, and histidine

Trachtman et al. [57] Rat Bilateral urethral ligation; analyses 8 h and 48 h 
later

Decreased brain water at 8 h and increased organic osmolyte 
in the brain at 48 h

Silver et al. [58] Rat Bilateral urethral ligation; analyses 42 h later Increased brain water content in dialyzed over non‑dialyzed AKI rats; 
no significant change in brain organic osmolytes

Adachi et al. [55] Rat Bilateral renal artery occlusion vs. sham‑operation; 
analyses 48 h later

Decreased dopamine turnover in striatum, mesencephalon, 
and hypothalamus, which correlated with impaired motor activity; 
unchanged cerebral norepinephrine and serotonin turnover and brain 
water content

Liu et al. [59] Mouse Bilateral renal IRI for 60 min vs. sham‑operation; 
analyses 24 h later

In mice with AKI: disrupted blood–brain barrier, increased neuronal 
pyknosis and microgliosis, increased keratinocyte‑derived chem‑
oattractant and G‑CSF in the cerebral cortex and hippocampus, 
and elevated expression of glial fibrillary acidic protein in astrocytes 
in the cortex and corpus callosum

Palkovits et al. [60] Rat Bilateral renal IRI, bilateral urethral ligation, 
and drug‑induced AKI vs. sham; analyses 24 h later

Moderate increase in neuronal activation in the biogenic amine 
expressing cell group

Salama et al. [61] Rat Bilateral renal IRI Increased TLR‑4 expression within the hippocampus and striatum

Chou et al. [62] Mouse Bilateral renal IRI for 60 min vs. sham‑operation; 
analyses 2 h and 24 h later

In mice with AKI: higher serum and brain levels of KS, G‑CSF, and MCP‑
1, increased brain vascular permeability, and altered genes expression 
in the hippocampus 2 h after reperfusion before changes in SCr

AKI acute kidney injury, CKD chronic kidney disease, G-CSF granulocyte‑colony stimulating factor, IRI ischemia–reperfusion injury, KS keratinocyte‑derived chemokine, 
MCP-1 monocyte chemoattractant protein‑1, SCr serum creatinine, TLR-4 toll‑like receptor‑4, TPTX thyroparathyroidectomy
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benefit renal outcomes [70], careful evaluation of its 
effects on ICP and, consequently, on cerebral perfusion 
pressure (CPP) is required. As disease-specific data are 
lacking, CPP targets for ABI are usually derived from 
TBI guidelines, which recommend maintaining CPP at 
60–70 mmHg and assessing cerebral autoregulation to 
individualized CPP targets [71, 72].

Norepinephrine is the first-line vasopressor used in 
sepsis with organ dysfunction and ABI [73, 74]. Data 
suggest that vasopressin could benefit some sepsis-
associated AKI subtypes, but its role in patients with 
ABI and AKI is not fully known [75, 76]. Notably, vaso-
pressin should be used cautiously as it might increase 
the risk of hyponatremia (and subsequent cerebral 
edema).

The magnitude of acute systolic blood pressure (SBP) 
reduction in patients with ICH, aimed at limiting hema-
toma growth, requires careful monitoring. According to 
the 2022 guidelines from the American Heart Associa-
tion/American Stroke Association, reducing acute SBP 
to 140 mmHg and maintaining it within the range of 
130–150 mmHg is regarded as safe and potentially ben-
eficial for enhancing functional outcomes in patients 
with mild-to-moderate ICH who initially present with 
an SBP between 150–220 mmHg [77]. Because chronic 
hypertension shifts the plateau of the renal autoregula-
tory curve to higher levels [78], a sudden decrease in 
blood pressure (BP) could lead to significantly compro-
mised tissue perfusion. A targeted stepwise BP reduc-
tion rather than absolute targeted value could optimize 
renal perfusion and mitigate AKI. In a post-hoc analysis 
of ATACH-II, which included patients with initial sys-
tolic blood pressure (SBP) of ≥ 220 mmHg (22.8% of the 
group), a significant reduction in SBP (110–139 mmHg) 
resulted in a higher rate of neurological dysfunction at 
24 h and more renal complications by the seventh day 
of discharge [79]. This was compared to standard SBP 
lowering (140–179  mmHg), without any benefits in 
reducing hematoma growth at 24 h or rates of death or 
severe disability at 90 days [79]. This suggests that cau-
tious lowering of blood pressure might be necessary for 
this specific subgroup. Subsequent analysis of ATACH-
II indicated that a baseline SCr ≥ 1.25  mg/dL and 
higher intravenous nicardipine doses were associated 
with increased risk for AKI [80]. Accordingly, another 
study on patients with ICH indicated that an intensive 
SBP reduction to > 90 mmHg in the first 12 h increases 
the risk of AKI regardless of preexisting CKD [21].

Fluid management
Much of the evidence on fluid management in ABI is 
derived from TBI guidelines. A negative fluid balance 
has been associated with adverse outcomes in patients 

with TBI [81], whereas fluid overload can cause systemic 
complications or cerebral edema and increased ICP [81, 
82]. A multicenter study evaluating variable fluid man-
agement in patients with TBI found that incrementally 
positive fluid balance was associated with increased 
ICU mortality (OR, 1.10 per 0.1 L increase; 95% CI 
1.07–1.12) and poor functional outcomes (OR, 1.04 per 
0.1 L increase; 95% CI 1.02–1.05) [83]. Notably, these 
data likely represent confounding by indication, as sicker 
patients are more likely to receive additional volume. 
While the study did not assess renal outcomes, patients 
receiving a mean daily fluid balance of ≥ 0.37 L were more 
likely to undergo RRT than those with < 0.37 L (4% vs. 2%; 
P = 0.021) [83]. Reports on the association between fluid 
balance and renal outcomes in ABI are scarce. However, 
in non-neurological critically ill patients, the relationship 
between fluid overload and AKI is well-established due 
to factors like venous congestion, increased renal inter-
stitial pressure, and decreased renal blood flow and GFR 
as observed in patients with cardiorenal syndrome [84].

The 2018 ESICM (European Society of Intensive Care 
Medicine) consensus statement recommends using MAP, 
fluid balance, and multimodal monitoring (e.g., ICP, brain 
tissue oxygen tension, autoregulatory status) to optimize 
fluid therapy in neurocritically ill patients [85]. Point-
of-care focused ultrasonography is increasingly used to 
determine fluid status rapidly, facilitating personalized 
fluid management when appropriate [86]; however, their 
role in the neurocritical care setting has not been defined.

Several studies have focused on the administered fluid 
type. Current data do not conclusively support routine 
use of balanced crystalloid solutions over 0.9% saline to 
reduce the risk of AKI and RRT in critically ill patients. A 
recent meta-analysis showed that the risk ratios of devel-
oping AKI and of being treated with RRT with balanced 
crystalloids compared with 0.9% saline were 0.96 (95% 
CI 0.89–1.02) and 0.95 (95% CI 0.81–1.11), respectively 
[87]. However, the 2018 ESICM consensus statement 
recommends crystalloids as maintenance and resuscita-
tion fluids in neurocritical care patients while not recom-
mending albumin and hypotonic solutions [85]. Small 
single-center randomized trials in patients with SAH [88] 
and TBI [89] found that balanced crystalloids reduced 
the hyperchloremia rate compared to 0.9% saline. Syn-
thetic colloids (e.g., starch, gelatin) should be avoided in 
patients with ABI as they increase the risk of AKI and 
death [85, 90].

Hyperosmolar therapy
Hypernatremia and hyperchloremia are common com-
plications in patients with ABI and risk factors for AKI 
and excess mortality [18, 19]. Consequently, fluid choice 
should be informed by the need to correct the specific 



Page 7 of 14Husain‑Syed et al. Critical Care          (2023) 27:341  

electrolyte and acid–base imbalances. SCr and UOP 
should be closely monitored in patients receiving hyper-
osmolar therapy due to its strong association with AKI 
occurrence [6, 37]. The 2020 NCS guidelines recommend 
an upper serum sodium range of 150–155  mmol/L and 
chloride range of 110–115  mmol/L to decrease the risk 
of AKI In patients receiving hypertonic sodium solu-
tions [37]. Bolus administration could be considered 
over continuous hypertonic sodium solution infusion 
as it could lead to fewer chloride values aberrations [20, 
91]. An osmolality threshold of ≥ 320 mOsm/L has been 
suggested to increase the risk of AKI in patients receiv-
ing mannitol infusion [42]; however, this threshold has 
recently been questioned [41].

Nephrotoxic exposure and drug dosing
Medications should be closely reviewed for potentially 
nephrotoxic agents, which should be discontinued or 
substituted with less nephrotoxic drugs. However, poten-
tially nephrotoxic agents, e.g., intravenous contrast, 
should still be used in patients with ABI if the information 
gained could have important therapeutic implications. 
The 2020 American College of Radiology and National 
Kidney Foundation guidelines recommend prophylac-
tic 0.9% saline before and after intravenous contrast 
exposure in patients with eGFR < 30 mL/min/1.73   m2 or 
recent AKI to reduce the risk of AKI [50]. Drug-induced 
acute interstitial nephritis (e.g., due to anticonvulsants or 
antibiotics) must also be considered [92, 93].

Augmented renal clearance of > 130 mL/min/1.73  m2 is 
common in patients with ABI. The 74% (95% CI 55–87) 
pooled prevalence of augmented renal clearance in neu-
rocritical care patients reported in a recent meta-analysis 
is higher than in any other critical care population [94]. 
Postulated mechanisms that promote an augmented 
renal clearance in ABI patients include increased car-
diac output, high serum atrial natriuretic peptides, and 
increased hypothalamus–pituitary–adrenal axis activity 
with elevated levels of cortisol and catecholamines [94, 
95]. Augmented renal clearance has important implica-
tions for drug dosing in patients with ABI and may lead 
to underdosing of levetiracetam and vancomycin [96, 
97]; therefore, clinicians should monitor renal-eliminated 
medications to achieve target trough concentrations.

Biomarkers for AKI risk assessment
Factors contributing to AKI development and progres-
sion could be modified by incorporating novel bio-
markers of early tubular stress or damage when clinical 
interventions or exposures increase the risk of AKI pro-
gression. Whether early identification of these patients 
could help reduce ABI-associated morbidity remains to 
be determined. A recent Acute Dialysis Quality Initiative 

consensus statement suggested that the AKI definition 
should be augmented by integrating novel AKI biomark-
ers into its risk-classification (Additional file  4; right 
panel) [98]. Although many candidate biomarkers exist 
(Additional file 5), prospective validation and implemen-
tation are needed. Among the few biomarkers studied in 
neurocritical care, cystatin C, neutrophil gelatinase-asso-
ciated lipocalin, and liver-type fatty acid-binding protein 
at admission have been associated with increased risk of 
AKI in patients with TBI or stroke [99–102].

Renal replacement therapy
Patients with ABI may require RRT to manage the conse-
quences of impaired renal function, including electrolyte 
imbalances, metabolic acidosis, and fluid overload. How-
ever, the use of RRT can impact cerebral blood flow, CPP, 
ICP, and brain tissue oxygenation, potentially leading to 
neurological complications. The effect on these factors 
depends on the specific type of RRT and its outcomes, 
which calls for special consideration in ABI patients 
[103].

Effects of RRT on the brain
RRT might lead to exacerbation of cerebral edema 
through the “reverse urea effect” or dialysis disequilib-
rium syndrome (DDS). During the initial stages of RRT, 
effective osmolytes such as urea are rapidly removed 
from the blood, creating an osmotic gradient between 
the blood and brain tissue. As brain cells have a relatively 
slow transport rate through cell membranes, this gradi-
ent causes water to move into the brain tissue, resulting 
in cerebral edema [104]. Additionally, elevated bicarbo-
nate levels in dialysate and rapid rise in pH may induce 
paradoxical intracellular acidosis. This phenomenon 
occurs when bicarbonate-derived carbon dioxide crosses 
the cell membrane, leading to neuronal swelling and cer-
ebral edema [105]. DDS and cerebral edema could lead to 
brain herniation or decreased CPP in patients with ABI.

Intradialytic hypotension, defined as a decrease 
in SBP by ≥ 20 mmHg or a reduction in MAP by ≥ 10 
mmHg with associated symptoms [106], might occur 
during RRT and affect CPP because BP is its key deter-
minant. It occurs when the body’s hemodynamic com-
pensation mechanisms fail to respond adequately to 
the decrease in plasma volume caused by ultrafiltra-
tion. This leads to reduced cardiac output, impaired 
peripheral vasoconstriction and refilling capacity, and 
decreased MAP [107]. If cerebral autoregulation is 
impaired, excessive ultrafiltration with decreased MAP 
might lead to reduced cerebral perfusion and CPP, 
potentially resulting in decreased ICP.

RRT has the potential to reduce brain tissue oxy-
genation through multiple pathways. One mechanism 
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involves dialysis-related brain edema, which can 
impede oxygen diffusion. Additionally, increased ICP 
associated with a hypermetabolic state in the brain may 
increase oxygen consumption [108]. Dialysis-induced 
inflammation could result in pulmonary leukoseques-
tration, leading to reduced arterial oxygen levels. This 
can impact the brain’s respiratory center perfusion and 
metabolism, ultimately decreasing cerebral oxygenation 
and causing intermittent short apneic episodes [109]. In 
a recent study involving 17 adult hemodialysis patients, 
magnetic resonance imaging, diffusion tensor imaging, 
and proton magnetic resonance spectroscopy demon-
strated that a single hemodialysis session could lead to 
an increase in brain tissue volume during the session 
[110]. This change was accompanied by alterations in 
white matter diffusion metrics and brain metabolite 
concentrations consistent with ischemic injury [110].

RRT timing
RRT is generally advised for critically ill patients when 
absolute solute/volume criteria are met and medical 
treatment proves insufficient [111]. However, RRT ini-
tiation should not be delayed in patients with ABI since 
rapid changes in osmolality could create an osmotic 
gradient with adverse neurologic consequences. 
Despite the association between pre-RRT BUN level 
and subsequent ICP elevation [112], there is no conclu-
sive evidence on the optimal timing of RRT initiation in 
patients with ABI. Clinical practice suggests that main-
taining pre-dialysis BUN under 30–35 mg/dL with opti-
mized RRT could decrease the risk of increasing ICP 
during treatment [103].

RRT modalities
The RRT modalities commonly used in critically ill 
patients include intermittent hemodialysis (IHD), con-
tinuous RRT (CRRT), and prolonged intermittent RRT 
(PIRRT); (Table  2). IHD is typically used three times 
weekly for 3–4 h per session and allows for rapid solute 
control and fluid removal. CRRT encompasses various 

modalities developed specifically for critically ill patients 
to provide slower solute and fluid removal than IHD and 
maintain better hemodynamic stability. PIRRT combines 
the advantages of both, using conventional hemodialysis 
machines with blood-pump speeds and dialysate flow 
rates between IHD and CRRT. PIRRT improves hemo-
dynamic stability through slow solute and fluid removal 
while avoiding the need for 24-h therapy (Table 3).

CRRT is less likely to cause DDS and intradialytic 
hypotension than IHD [112, 115] as its slower blood and 
dialysate/replacement fluid flow rates and smaller dia-
lyzer surface area result in decreased urea clearance from 
the plasma (Table 3). Brain computed tomography stud-
ies showed increased brain water content after IHD but 
not after CRRT [116]. Moreover, CRRT slower net ultra-
filtration rate facilitates hemodynamic stability, prevents 
intradialytic hypotension, and maintains CPP and brain 
tissue oxygenation. Although IHD remains an option in 
patients with mild brain injury and stable conditions, the 
2012 KDIGO guidelines recommend CRRT for patients 
with ABI requiring RRT [6].

There are several strategies to prevent intradialytic 
hypotension. Common ones include establishing and 
adjusting the patient’s dry (target) weight; more frequent 
and longer RRT sessions to be able to decrease ultrafiltra-
tion rates; the avoidance of meals during RRT to mitigate 
the postprandial drop in blood pressure; the preemptive 
pharmacological use of midodrine, droxidopa, or sertra-
line; the use of cool dialysate; sodium profiling; and the 
use of a high calcium bath [117–119].

Conclusive evidence comparing the clinical outcomes 
after CRRT versus PIRRT in patients with ABI is lacking. 
A study in patients with brain hemorrhage found similar 
effects on hemodynamics and ICP [120]. PIRRT is poten-
tially more efficient in resource utilization and offers 
greater patient care flexibility since it requires a standard 
IHD device and its administration time is shorter [121]. 
While the PIRRT effect is intermediate between IHD and 
CRRT, it could be an alternative to CRRT in patients who 
might not necessarily require CRRT or with concerns 
regarding IHD use in ABI and in centers without CRRT 
availability [68].

Table 2 RRT modalities and parameters

CRRT  continuous renal replacement therapy, IHD intermittent hemodialysis, PIRRT  prolonged renal replacement therapy, RRT  renal replacement therapy

Modality Duration (h) Frequency Replacement (mL/
min)

Blood (mL/min) Dialysate (mL/min) Net 
ultrafiltration 
(mL/kg/h)

IHD 3–4 3–4 × /week – 300–400 600–800 0–10

PIRRT 6–12 3–6 × /week – 200–300 200–300 0–8

CRRT 24 Daily None or
16–50

100–300 None or
16–50

0–2
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Sodium regulation with RRT 
Sodium-based osmotherapy is crucial in managing cer-
ebral edema and preventing ICP increase in patients 
with ABI. However, the standard sodium concentration 
in CRRT solutions is 140  mmol/L, lower than the rec-
ommended serum sodium concentration to maintain 
the osmotic pressure between the brain and the plasma 
(145–155 mmol/L). Sodium concentration in CRRT can 
be adjusted by adding hypertonic saline (NaCl 23.4%) to 
the CRRT solution bags or by administering hypertonic 
saline (NaCl 3%) as CRRT post-filter replacement fluid 
or as a separate infusion (Table 4). In IHD, a 145 mmol/L 
sodium bath and a separate hypertonic saline infu-
sion could help achieve the desired serum sodium 
concentration.

Anticoagulation for RRT 
Systemic anticoagulation for RRT should be avoided in 
patients with ABI. While most intermittent IHD sessions 
can be conducted without anticoagulation, regional cit-
rate anticoagulation (RCA) is recommended for CRRT 
[68]. However, some considerations are important. The 
use of citrate can lead to either metabolic acidosis or alka-
losis, depending on the ability of the liver to metabolize 
citrate. Additionally, due to its calcium-chelating effect, 
careful calcium replacement is necessary to prevent neu-
rotoxicity stemming from low ionized calcium levels in 
the patient. RCA should not be used in cases of shock 
liver or lactic acidosis exceeding 4 mmol/L due to citrate 
accumulation. Therefore, careful monitoring of acid–
base status, calcium, and lactic acid is recommended. 

Table 3 Modifications to intermittent dialytic techniques (IHD and PIRRT) to prevent further ABI

The table summarizes possible modifications to RRT prescription parameters in patients with ABI [113, 114]

ABI acute brain injury, BUN blood urea nitrogen, CPP cerebral perfusion pressure, CRRT  continuous renal replacement therapy, IHD intermittent hemodialysis, MAP 
mean arterial pressure, PIRRT  prolonged intermittent renal replacement therapy

Modification item Recommendation

Dialyzer Use membranes with small surface area

blood flow If using IHD or PIRRT, consider using lower blood flows of < 300 mL/min

Dialysate flow Consider using lower dialysate flow rates for IHD/PIRRT (< 600 mL/min) and lower 
effluent rates for CRRT (20 mL/kg/h)

Ultrafiltration Rate Avoid high net ultrafiltration rates (< 10 mL/kg/h for IHD and < 2 mL/kg/h for CRRT)

Vasopressor Consider using vasopressors to keep MAP and CPP goals

Dialysate temperature Cool dialysate to 35 °C

Electrolytes Use higher dialysate sodium concentration
Use lower dialysate bicarbonate concentration
Use higher dialysate calcium concentration

Frequency Daily dialysis to minimize peaks and troughs in serum BUN levels

Table 4 Pros and cons of adjusting sodium concentration by methods

Adapted from Yessayan et al. [122]

BUN blood urea nitrogen, CPP cerebral perfusion pressure, CRRT  continuous renal replacement therapy, IHD intermittent hemodialysis, MAP mean arterial pressure, 
PIRRT  prolonged intermittent renal replacement therapy

Method Pros Cons Example calculation

Adding sodium to CRRT solution 
bags

No extra solutions needed
No extra volume added 
to the patient

Once added, cannot change 
the sodium concentration 
of the bag
Requires pharmacy services 
for compounding of solutions

Adding 10 mL/20 mL of 23.4% 
sodium solution to a 5 L CRRT 
bag with sodium concentration 
of 140 mmol/L raises the sodium 
level to 148/156 mmol/L, respectively

Delivering hypertonic sodium 
solution through the CRRT machine 
as post‑filter replacement fluid

Volume of the solution accounted 
by CRRT device
Easy to adjust the rate of adminis‑
tering hypertonic sodium solution

Requires a CRRT device and a CRRT 
modality that allows for post‑filter 
replacement fluid

3% infusion rate = [(target Na – 
140 mmol/L)/(513 mmol/L – target 
Na)] × effluent rate in mL/h

Delivering hypertonic sodium 
solution as a separate infusion 
through central venous catheter

Easy to adjust the rate of adminis‑
tering hypertonic sodium solution
It can be stopped independently 
of CRRT at any time

Rapid change in serum sodium 
concentration may occur (e.g., 
when CRRT is unexpectedly discon‑
tinued)
Additional volume of hypertonic 
sodium solution is administered 
to the patient

3% infusion rate = [(target Na – 
140 mmol/L)/(513 mmol/L – target 
Na)] × effluent rate in mL/h



Page 10 of 14Husain‑Syed et al. Critical Care          (2023) 27:341 

If RCA is unavailable or contraindicated, CRRT can be 
performed without anticoagulation. Although nafamo-
stat could be an alternative anticoagulant [123–126], its 
efficacy in multiple CRRT clinical settings, including ABI, 
requires further evaluation.

Conclusions
AKI, common in neurocritical patients, is associated with 
increased morbidity and mortality and has significant 
implications for managing ABI and its sequelae. Prompt 
identification of the cause of AKI, with a focus on revers-
ible factors, and the adoption of preventive measures 
are crucial. The use of RRT in ABI patients is challeng-
ing due to potential negative impacts on ICP, CPP, brain 
oxygenation, and more. CRRT is preferred in ABI cases 
for gradual solute, electrolyte, and volume adjustments. 
Unless contraindicated, RCA should be considered for 
anticoagulation during CRRT. When CRRT is unavail-
able, intermittent dialysis methods with careful adjust-
ments might be used to minimize complications. Given 
the magnitude of the problem, future research should 
focus on better understanding the mechanisms leading 
to AKI during ABI, and optimizing AKI management in 
neurocritical care.
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