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Low levels of small HDL particles predict 
but do not influence risk of sepsis
Fergus Hamilton1,2*, Kasper Mønsted Pedersen3,4, Peter Ghazal5, Børge Grønne Nordestgaard3,4 and 
George Davey Smith1 

Abstract 

Background Low levels of high-density lipoprotein (HDL) cholesterol have been associated with higher rates 
and severity of infection. Alterations in inflammatory mediators and infection are associated with alterations in HDL 
cholesterol. It is unknown whether the association between HDL and infection is present for all particle sizes, 
and whether the observed associations are confounded by IL-6 signalling.

Methods In the UK Biobank, ~ 270,000 individuals have data on HDL subclasses derived from nuclear magnetic 
resonance analysis. We estimated the association of particle count of total HDL and HDL subclasses (small, medium, 
large, and extra-large HDL) with sepsis, sepsis-related death, and critical care admission in a Cox regression model. We 
subsequently utilised genetic data from UK Biobank and FinnGen to perform Mendelian randomisation (MR) of each 
HDL subclass and sepsis to test for a causal relationship. Finally, we explored the role of IL-6 signalling as a potential 
causal driver of changes in HDL subclasses.

Results In observational analyses, higher particle count of small HDL was associated with protection from sep-
sis (Hazard ratio, HR 0.80; 95% CI 0.74–0.86, p = 4 ×  10–9 comparing Quartile 4, highest quartile of HDL to Quartile 
1, lowest quartile of HDL), sepsis-related death (HR 0.80; 95% CI 0.74–0.86, p = 2 ×  10–4), and critical care admission 
with sepsis (HR 0.72 95% CI 0.60–0.85, p = 2 ×  10–4). Parallel associations with other HDL subclasses were likely driven 
by changes in the small HDL compartment. MR analyses did not strongly support causality of small HDL parti-
cle count on sepsis incidence (Odds ratio, OR 0.98; 95% CI 0.89–1.07, p = 0.6) or death (OR 0.94, 95% CI 0.75–1.17, 
p = 0.56), although the estimate on critical care admission with sepsis supported protection (OR 0.73, 95% CI 0.57–
0.95, p = 0.02). Bidirectional MR analyses suggested that increased IL-6 signalling was associated with reductions 
in both small (beta on small HDL particle count − 0.16, 95% CI − 0.10 to − 0.21 per natural log change in SD-scaled 
CRP, p = 9 ×  10–8).and total HDL particle count (beta − 0.13, 95% CI − 0.09 to − 0.17, p = 7 ×  10–10), but that the reverse 
effect of HDL on IL-6 signalling was largely null.

Conclusions Low number of small HDL particles are associated with increased hazard of sepsis, sepsis-related death, 
and sepsis-related critical care admission. However, genetic analyses did not strongly support this as causal. Instead, 
we demonstrate that increased IL-6 signalling, which is known to alter infection risk, could confound associations 
with reduced HDL particle count, and suggest this may explain part of the observed association between (small) HDL 
particle count and sepsis.
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Introduction
Lipid and lipoprotein pathways are increasingly recog-
nised as an integral part of immunity and infection [1]. 
These connections studied in animal models include 
bidirectional mechanistic links in immunometabolism, 
of which functional alterations in the metabolic devel-
opment of high-density lipoprotein (HDL) by the acute 
phase response are important [1–3]. In humans, multi-
ple observational studies have identified changes in lipids 
and lipoproteins in patients with sepsis [2], while popula-
tion-based epidemiological studies have identified asso-
ciations between certain lipid and lipoprotein classes and 
the risk of severe infection [2, 4–6].

The most compelling data sit with HDL [3, 7, 8]. This 
lipoprotein class has a long history in epidemiological 
research, as original observations finding an inverse asso-
ciation of HDL cholesterol concentrations in blood and 
cardiovascular disease (earning it the unfortunate moni-
ker “good cholesterol”), with subsequent randomised trial 
and genetic evidence compellingly suggesting no fun-
damental role in circulating HDL cholesterol in athero-
thrombotic cardiovascular disease [3, 9, 10].

However, in the acute phase response HDL particle 
concentration, function, and structure change [2]. Mul-
tiple lines of evidence point to a potential biological role 
of these altered HDL particles in infection and inflam-
mation. Firstly, HDL is conserved across many biologi-
cal species despite no clear biological role; however, HDL 
has been described to be involved in bacterial lipopoly-
saccharide binding, clot formation, and wound healing 
[3, 4, 11]. Secondly, multiple studies have identified rapid 
reductions in HDL cholesterol (tracking HDL particle 
count) and other changes in HDL particle character dur-
ing sepsis episodes, with the extent of reductions being 
linked to increased mortality [2, 7, 12–14]. Thirdly, a 
single placebo-controlled randomised trial of extended 
release niacin unexpectedly showed an increase in infec-
tion in those assigned to niacin, which was also shown 
to increase HDL cholesterol [15]. Fourthly, experimen-
tal data support HDL administration being protective 
in animal models of sepsis, with human trials to alter 
lipid biology in sepsis ongoing [16–19]. Finally, a recent 
study using single-nucleotide polymorphisms (SNPs) 
that are associated with HDL levels found that geneti-
cally predicted higher HDL concentration was associated 
with lower odds of sepsis [20]. In more targeted analysis, 
SNPs in CETP that lead to higher HDL cholesterol lev-
els appear to decrease the odds of sepsis [21]. However, 
placebo-controlled randomised trials of CETP inhibitors 
did not show clear differences in infection rates between 
arms, despite increases in HDL in the treatment arm 
[22–24]; that said, these studies were not powered at or 
aimed to examine risk infection.

Recently, nuclear magnetic resonance (NMR) spectros-
copy has allowed more detailed exploration of lipopro-
tein subclasses in large population studies [25–27]. With 
these techniques, reliable measures of HDL subclasses 
(defined by particle size and lipid content) have become 
available [28]. This finer resolution is critical for under-
standing the underlying biology and whether all or just 
particular types or particle sizes of HDL are relevant for 
sepsis, which can then be used to prioritise further analy-
ses (e.g. randomised trials and genetic analyses).

Recent NMR-based lipoprotein data from the Copen-
hagen General Population Study were used to identify 
protective  association with sepsis with increased num-
bers of  small and medium sized HDL particles, with no 
association identified  with larger HDL particles [29]. 
However, this finding has not yet been replicated. In 
the present study in UK Biobank, a large, prospective 
collected volunteer cohort aimed to test the associa-
tion between lipoprotein particle count of specific HDL 
subclasses and severe infection (sepsis), using both an 
observational approach (NMR-based HDL subclass data, 
n ~ 270,000) and a genetic approach (Mendelian ran-
domisation [MR], n ~ 450,000).

Subsequently, we examined whether IL-6 signal-
ling could confound observational estimates  between 
HDL subclass particle counts and infection [30, 31]. We 
chose to focus on IL-6 signalling as the bidirectional link 
between inflammation and cholesterol metabolism is 
well established, and IL-6 is a key and highly pleiotropic 
cytokine in the innate immune response. Additionally, 
reduced IL-6 signalling  in both randomised trials and 
genetic studies) alters both HDL levels [32–34] and infec-
tion risk [30, 35, 36].

Methods
We provide an overview of our analytic approach in 
Fig. 1.

Data sources
This analysis was performed in UK Biobank, a large vol-
unteer cohort of around 500,000 individuals [37]. Par-
ticipants were recruited between 2006 and 2012 across 
21 UK sites and had blood samples taken on recruitment 
[37]. Participants were then followed up using linked, 
national electronic health records for subsequent health-
care events (e.g. hospitalisations), and likewise linked 
to national mortality data. For this study, the observa-
tional analyses were performed on the random subset 
of the cohort that had NMR spectroscopy performed on 
the baseline plasma sample (n ~ 270,000), and genetic 
analyses were conducted on those of European ancestry 
(defined below) with linked genetic data (n ~ 450,000). 
For specific analyses on critical care admission, the 
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Fig. 1 An overview of the overarching question and the three analyses performed
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sample was limited to those recruited in England 
(approximately 70% of the sample size), as linked critical 
care data are only available in England.

Around 20,000 UK Biobank participants were invited 
back for a repeat assessment centre visit around 5 years 
after the initial assessment (between 2012 and 2013). 
Around 17,000 of these had NMR-based lipoprotein data 
from samples collected at this time.

Additional sepsis outcomes were recorded in FinnGen, 
a contemporary Finnish Biobank that includes around 
330,000 Finnish residents with linked electronic health 
record data [38].

NMR lipoprotein data
Lipoprotein subclass data were measured using an estab-
lished NMR platform developed by Nightingale Health 
Plc (Helsinki, Finland) [28, 39, 40]. The measurements 
took place between 2019 and 2022 using eight spectrom-
eters at Nightingale Health Plc. For the present analysis, 
we focussed on the particle count of HDL subclasses and 
total HDL. In line with recent literature and the Night-
ingale Health NMR platform description, we categorised 
particles as small HDL particles (< 9.8  nm), medium 
HDL particles (9.8–11.5 nm), large HDL particles (11.6–
13.2 nm), and extra-large HDL particles (13.3–16.5 nm) 
[29, 39, 41]. For this analysis, we primarily focused on 
the 270,000 initial samples taken on recruitment to UK 
Biobank, although we performed a secondary analysis 
on the repeat samples, in which around 15,000 partici-
pants had initial and repeat HDL measures. Fifty-seven 
separate HDL cholesterol measurements were measured 
across four sizes (S, M, L, XL), alongside global measure-
ments (e.g. total HDL). Complete data were available for 
nearly all participants, with less than 1% of results miss-
ing across each HDL measure. Additional file 1: Table S1 
reports the measurements in more detail.

Definitions of outcomes and covariates
Sepsis outcomes were defined using hospital coding 
in line with recent work [30]. We extracted all ICD-10 
codes for sepsis (A39, A40, A41) from linked hospitalisa-
tion (HES) data in England (and similar datasets in the 
devolved nations) from after recruitment to UK Biobank 
[37].

Linked critical care data were available for all partici-
pants in England. Critical care admission was defined as 
any admission to a critical care unit (for level 2 or level 
3 care) during the index admission for sepsis. All-cause 
mortality was extracted from linked national mortal-
ity data, and deaths from sepsis were considered as any 
death within 28 days of an admission with sepsis.

We extracted data on relevant covariates from UK 
Biobank, from samples or examinations taken on 

recruitment. We extracted data on renal function (serum 
creatinine), body mass index, inflammation (C-reactive 
protein), age, sex, UK Biobank recruitment centre, dia-
betes, liver disease, cancer, smoking, alcohol history, 
and usage of statins. We extracted an individual meas-
ure of socio-economic deprivation on recruitment, 
the Townsend deprivation index [42]. As the sample 
was taken at recruitment, we utilised self-reported sta-
tin usage on recruitment (the same day as sampling) to 
define statin users. Statin codes were identified from a 
recent publication [43]. Follow-up was performed until 
March 2021.

Observational analysis (analysis 1)
Observational analyses were focussed on the association 
between measured particle count of HDL subclasses on 
recruitment to UK Biobank and the risk of (a) hospitali-
sation with sepsis; (b) critical care admission with sepsis, 
and (c) death within 28 days of sepsis. Our primary statis-
tical analysis was the association between particle count 
of HDL subclasses and the incidence of sepsis using time 
to event analyses, using Cox regression. For the linear 
models, given the large differences in absolute particle 
counts, we scaled each particle to have a mean of zero 
and standard deviation (SD) of 1, so estimates should be 
interpreted per one SD change in the exposure. Nonlin-
earity was explored using restricted cubic spline models 
and via splitting the exposure into quartiles. Analyses 
were adjusted for age, sex, body mass index, C-reactive 
protein level, renal function, history of diabetes, history 
of liver disease, history of cancer, a composite measure 
of socio-economic state (Townsend deprivation index), 
statin usage, and smoking and alcohol usage. These were 
included as potential confounders or proxies for unmeas-
ured confounders.

Missing data were imputed using multiple imputation 
via the mice package in R, and we report our primary 
analyses on the imputed data, although results without 
imputation were similar. Analyses were conducted in R 
4.0.4 using the packages survival, rms and mice [44–46].

Sensitivity and secondary analyses
IL-6 is a cytokine known to regulate CRP expression 
levels, a commonly measured acute phase reactant [47]. 
Higher levels of IL-6 have been associated with lower 
levels of HDL [48] and specifically small HDL [49]. Fur-
ther, reducing IL-6 signalling is associated with a mod-
erately increased risk of infection in randomised trials of 
IL-6 antagonists [35], although this association is com-
plicated by the apparent benefits of reduced IL-6 activity 
in (some) severe infection [30, 36, 50–52]. IL-6 has two 
major forms of signalling, “classical” signalling, which is 
mediated by IL-6 binding to a membrane bound receptor 
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(IL6R), and “trans” signalling, where IL-6 binds to the sol-
uble form of the IL-6 receptor. The relative contribution 
of these to disease states is still an unresolved question, 
with drugs available that target all forms of IL-6 signalling 
(e.g. IL-6 receptor antagonists), and specific receptors for 
trans signalling [53]. We test the role of IL-6 signalling 
on HDL measures extensively in our subsequent genetic 
analysis (Analysis 3), but we also tested whether asso-
ciations with HDL subclasses observationally changed in 
models without adjustment for CRP, as the best available 
measure of IL-6 signalling in this dataset.

Statin usage is known to substantially alter lipid values 
although this is largely related to lipoprotein classes out-
side HDL [54]. However to identify if there was evidence 
of any effect  modification of the effect of HDL lipopro-
tein particle counts on sepsis with statin usage, we per-
formed analyses in all participants (with statins usage as 
a covariate) and performed sensitivity analyses stratified 
by statin use.

Genetic analyses (Analyses 2 and 3)
To perform genetic analysis, we used Mendelian ran-
domisation (MR) [55]. This is an approach whereby 
genetic variants that are robustly associated with the 
exposure of interest (e.g. small HDL levels) are used as 
instrumental variables to attempt to identify a causal esti-
mate of the effect of this exposure on an outcome (e.g. 
sepsis). There are three fundamental assumptions of 
MR that are required for a causal interpretation: (1) The 
variant(s) are associated with the exposure (relevance); 
(2) There are no confounders of the variant and the out-
come (3) The variant (s) do not affect the outcome other 
than through the exposure (exclusion restriction).This 
approach has been widely used in the genetic epidemi-
ology of lipoproteins, with MR analysis on HDL levels 
consistently identifying no causal effect on cardiovascu-
lar outcomes, a finding also identified in multiple ran-
domised trials [9, 56]. Our specific analytic approach is 
described below.

Analysis 2: Is small and/or total HDL causally associated 
with sepsis‑related outcomes?
Firstly, we aimed to test whether HDL or small HDL 
was causally associated with sepsis and sepsis-related 
mortality and critical care admission. We therefore per-
formed two-sample MR using genetic variants associ-
ated with small HDL and total HDL particle number as 
instruments in an instrumental variable analysis [55, 
57]. To identify variants for HDL subclasses, we gener-
ated GWAS for total HDL particle count and each HDL 
subclass measure in UK Biobank using quality-controlled 
genetic data. Details on GWAS methodology are avail-
able in the Additional file 2.

Subsequently, we measured sepsis outcomes by uti-
lising our previously performed GWAS of sepsis in UK 
Biobank [30], with additional sepsis outcomes replicated 
in FinnGen, a large prospective cohort in Finland [58]. In 
both of these studies, ICD-10 coding was used to define 
sepsis cases (UK Biobank; A39, A40, A41; FinnGen: 
A40, 41). In UK Biobank, we also utilised GWAS for 
sepsis-related critical care admission, and GWAS for 
sepsis-related mortality. Both of these were derived 
from nationally linked electronic data records. Details of 
GWAS methodology for the outcome data are available 
with the relevant publications. [58, 59]

For each exposure GWAS, instruments were identified 
identically. Variants that were associated with the expo-
sure (p < 5 ×  10–8) and independent (R2 =  < 0.001 in Euro-
pean ancestry participants of the 1000 Genomes Project) 
were identified and taken forward. Effect estimates for 
each SNP were then extracted and harmonised from the 
outcome dataset. Where SNPs were not available, LD 
proxies were identified (min R2 0.8 in 1000 Genomes Pro-
ject, European ancestry participants).

Our primary analytical method was to combine all 
SNP-exposure and SNP-outcome associations with fixed 
effect inverse variance weighting (IVW-MR), but we also 
report MR Egger, weighted median  and MR-PRESSO, 
all approaches that aim to alleviate the effect of horizon-
tal pleiotropy on estimates [60, 61]. Analyses were per-
formed using the TwoSampleMR package in R 4.0.4 [62].

Additionally, to explore the effect of the small HDL 
genetic associations on phenotype and to visualised plei-
otropy, we generated a polygenic risk score (PRS) for each 
participant using the same genetic variants used in our 
two-sample MR. This was fitted using PLINK 2.0.4 [63].

Analysis 3: Is IL‑6 signalling activity a potential risk factor 
for HDL particle counts?
To further explore IL-6 signalling and the effect on HDL 
particle counts, we performed bidirectional MR. Firstly, 
we utilised variants cis to IL6R as instruments to proxy 
IL-6 signalling and to explore the effect of IL-6 signal-
ling on HDL and HDL subclasses. Using variants cis to 
IL6R to proxy IL-6 signalling is a common MR approach, 
and is used widely and is recognised to phenocopy IL-6 
receptor inhibition with drugs such as IL-6 receptor 
antagonists [30, 34, 36, 64].

We used 26 variants within 300 kb of IL6R and all asso-
ciated (at genome wide significance, p < 5 ×  10–8) with 
CRP. These variants come from a recent meta-analysis 
between UK Biobank and CHARGE [65]. CRP is a widely 
used read-out of classical IL-6 activity and reflects the 
effect of cis IL-6 signalling on hepatocytes [53]. However, 
it is important to recognise that although we describe 
this as “reduced IL-6 signalling”, and the genetic literature 



Page 6 of 19Hamilton et al. Critical Care          (2023) 27:389 

supports similar effects to IL-6 blockade in trials, the 
effect on trans signalling with these genetic variants 
remains incompletely understood at present. We then 
performed a complementary analysis of the effect of CRP 
on HDL subclasses using 4 well-characterised variants cis 
to CRP, from our  recent study [30], to see whether any 
effect was driven by changes in CRP itself.

Subsequently, we then performed MR of the effect 
of HDL subclasses on IL-6 and CRP levels, i.e. in the 
“reverse” direction. This approach allows us to identify if 
the causal effect is in the other direction, i.e. changes in 
HDL levels lead to changes in CRP and/or IL-6. We used 
the same approach to identifying variants associated with 
HDL subclasses as in our analysis on sepsis outcomes. 
Our outcome GWAS for CRP was from a recent meta-
analysis (n ~ 500,000) [65], while our outcome GWAS 
for IL-6 comes from the European ancestry subset of 
UK Biobank Pharma Proteomic Project (n ~ 37,000) [66]. 
We performed two-sample MR and applied a Steiger fil-
ter [67]. This filters all variants that explain more of the 
variance in the outcome than the exposure, and can pro-
vide reassurance that the variants are in the appropriate 
causal direction.

Statin usage and its effect on lipoprotein subclasses
As statin usage is known to distort genotype–metabolite 
relationships [54, 68], we performed additional analyses 
to explore whether the association between small HDL 
measures and genotype was altered and how this could 
affect results. For this, we performed a GWAS in statin 
users (defined as per the observational analyses), and 
non-statin users, and calculated the genetic correlation 
using LD score regression [69]. As this approach is likely 
to lead to a collider bias due to the association between 
statin use and cholesterol measures, we also performed 
a GWAS of small HDL in those under 50, where statin 
use was expected to be rare (n =  994/23,532, 4%)  and 
we would avoid the collider bias issue (at the expense of 
statistical power), and assessed the genetic correlation 
between this GWAS and the GWAS in statin users and 
non-users.

Sample overlap and its effect on estimates
Although summary statistics from GWAS of both sep-
sis [24] and HDL subclass measures [70] are available 
already, the largest samples (by an order of magnitude) 
are in UK Biobank, leading to sample overlap in the 
exposure and outcome datasets, which leads to “winners 
curse”, biasing estimates [55, 71]. In order to maximise 
sample size while reducing overfitting, we performed a 
sensitivity analysis using block jacknife resampling [72]. 
We split UK Biobank into multiple blocks using a block 
jacknife approach. Firstly, we performed a GWAS on 

all ~ 260,000 participants with small HDL particle count 
numbers and genetic data on recruitment to UK Biobank 
and used this to generate instruments for small HDL. 
We then measured outcomes (by performing a GWAS 
for each outcome) in the ~ 210,000 participants who had 
no small HDL measures. As there is no sample overlap 
between these groups, this represents traditional two-
sample MR.

To measure outcomes in the remaining ~ 260,000 par-
ticipants, we used a block resampling approach [72]. To 
do this we split this group into ten further samples, each 
with around 26,000 participants. We measured the out-
come in each block independently and used a GWAS for 
the exposure performed in the other blocks to generate 
instruments without sample overlap. For example, we 
combined groups 1–9 and performed a GWAS of small 
HDL measures (n ~ 234,000). We then generated instru-
ments (as described above) in this block and used these 
instruments on outcomes we had measured in block 10 
(n ~ 26,000). We then repeated this for all other blocks. In 
this way, ten estimates are generated (one for each block). 
These estimates were then combined, along with the esti-
mate in the 210,000 UK Biobank participants without 
small HDL measures, to generate a summary MR esti-
mate, using fixed effects meta-analysis. This approach 
has been shown to effectively reduce bias from sample 
overlap [72]. As these results were similar to the main 
analyses, these are presented entirely in a supplement 
(Additional file 1).

Reporting guidelines
This study was performed in line with the STROBE-MR 
reporting guidelines. A checklist is attached as an Addi-
tional file 3.

Results
Demographics and study cohort
Our observational dataset with NMR measures 
included 259,908 participants, of an average age of 59 
on recruitment, with 54% of the cohort being female. 
Details on demographics, age, sex, and comorbidi-
ties are presented in Table  1, stratified by quartiles of 
small HDL cholesterol. As NMR measures were per-
formed at random on the cohort, there were limited 
differences between the full UKB cohort and the sam-
pled cohort (Additional file  1: Table  S2). There were 
differences between small HDL quartiles across both 
demographic and clinical strata. The most marked dif-
ference was for sex (48% female lowest quartile, 60% 
highest quartile). Across the cohort, there were 5961 
cases of sepsis requiring hospital admission, occur-
ring a median of 2956 days (~ 8 years, IQR 1980–3536) 
days after study entry. The median total follow-up time 
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was 4089  days (~ 11.2  years), leading to a total study 
period of 5,167,580 person-years. A total of 1118 par-
ticipants died within 28  days of a sepsis admission, a 
28-day mortality of 15.7%. Most participants resided 

in England (n = 234,983), where data on critical care 
admission were available. Of those admitted to hos-
pital in England with sepsis, 769 out of 5859 (13%) 

Table 1 Demographics of the observational cohort, stratified by number of small HDL particles

a Median (IQR); n (%); Range
b Kruskal–Wallis rank sum test; Pearson’s Chi-squared test

Characteristic Quartile 1, N = 64,752a Quartile 2, N = 64,752a Quartile 3, N = 64,752a Quartile 4, N = 64,752a p  valueb

Age on recruitment 59 (50, 64) 59 (51, 64) 59 (51, 64) 59 (52, 64) < 0.001

Sex < 0.001

 Female 31,126 (48%) 33,606 (52%) 36,008 (56%) 39,152 (60%)

 Male 33,626 (52%) 31,146 (48%) 28,744 (44%) 25,600 (40%)

Body mass index (kg/m2) 26.4 (23.7, 29.8) 26.7 (24.1, 29.9) 26.8 (24.3, 29.9) 27.0 (24.5, 30.0) < 0.001

Diabetes < 0.001

 No 59,672 (92%) 61,399 (95%) 62,043 (96%) 62,421 (96%)

 Yes 4,849 (7.5%) 3,185 (4.9%) 2,557 (4.0%) 2,157 (3.3%)

 Do not know 174 (0.3%) 117 (0.2%) 111 (0.2%) 135 (0.2%)

 Unknown 37 29 25 20

History of liver disease 2,147 (3.3%) 1,620 (2.5%) 1,594 (2.5%) 1,651 (2.5%) < 0.001

History of cancer 5,986 (9.2%) 5,914 (9.1%) 6,039 (9.3%) 6,151 (9.5%) 0.14

C-reactive protein level (mg/dl) 1.32 (0.61, 3.01) 1.30 (0.64, 2.68) 1.30 (0.66, 2.63) 1.40 (0.72, 2.74)  < 0.001

 Unknown 3,269 2,844 2,786 2,756

Creatinine (umol/L) 72 (63, 83) 71 (62, 82) 70 (61, 80) 68 (60, 78) < 0.001

 Unknown 3,082 2,754 2,716 2,701

Statin user 13,357 (21%) 11,703 (18%) 11,188 (17%) 11,556 (18%) < 0.001

Alcohol intake frequency < 0.001

 Daily or almost daily 9,173 (14%) 11,379 (18%) 13,928 (22%) 19,183 (30%)

 Never 6,126 (9.5%) 4,742 (7.3%) 3,766 (5.8%) 2,912 (4.5%)

 Once or twice a week 18,175 (28%) 18,191 (28%) 17,331 (27%) 14,955 (23%)

 One to three times a month 9,112 (14%) 7,932 (12%) 6,784 (10%) 5,150 (8.0%)

 Prefer not to answer 65 (0.1%) 54 (< 0.1%) 38 (< 0.1%) 58 (< 0.1%)

 Special occasions only 9,083 (14%) 7,459 (12%) 6,459 (10.0%) 5,026 (7.8%)

 Three or four times a week 12,981 (20%) 14,967 (23%) 16,422 (25%) 17,448 (27%)

 Unknown 37 28 24 20

Smoking status < 0.001

 Current 7,503 (12%) 6,762 (10%) 6,377 (9.9%) 6,477 (10%)

 Never 35,589 (55%) 35,806 (55%) 35,000 (54%) 32,541 (50%)

 Prefer not to answer 235 (0.4%) 231 (0.4%) 213 (0.3%) 273 (0.4%)

 Previous 21,388 (33%) 21,925 (34%) 23,138 (36%) 25,442 (39%)

 Unknown 37 28 24 19

Townsend deprivation index 
(lower is more deprived)

− 2.25 (− 3.69, 0.36) − 2.32 (− 3.74, 0.18) − 2.34 (− 3.73, 0.11) − 2.28 (− 3.70, 0.21) < 0.001

Unknown 78 75 68 77

Total cholesterol (mmol/L) 3.94 (3.41, 4.48) 4.45 (3.96, 4.95) 4.80 (4.29, 5.31) 5.31 (4.76, 5.89) < 0.001

HDL cholesterol (mmol/L) 1.09 (0.92, 1.35) 1.20 (1.05, 1.43) 1.30 (1.15, 1.52) 1.47 (1.30, 1.70) < 0.001

LDL cholesterol (mmol/L) 1.42 (1.19, 1.67) 1.66 (1.43, 1.91) 1.82 (1.58, 2.08) 2.04 (1.77, 2.33) < 0.001

Total triglycerides (mmol/L) 1.08 (0.79, 1.48) 1.19 (0.88, 1.62) 1.25 (0.92, 1.69) 1.33 (0.98, 1.80) < 0.001

Sepsis 1,921 (3.0%) 1,440 (2.2%) 1,347 (2.1%) 1,253 (1.9%) < 0.001

Sepsis death 387 (0.6%) 262 (0.4%) 259 (0.4%) 210 (0.3%) < 0.001

Sepsis critical care admission 273 (0.4%) 183 (0.3%) 155 (0.2%) 162 (0.3%) < 0.001
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participants had a critical care admission in their index 
hospital admission for sepsis.

Due to the extreme collinearity of HDL lipoprotein 
lipid measures, we performed initial analyses to iden-
tify clusters of correlated HDL measures. Figure  2 
shows the dendrogram of these analyses, which show 
that correlation between HDL markers is largely driven 
by size, rather than content for lipid species outside tri-
glycerides. This confirms the separation between small, 
medium, large and extra-large HDL clusters. Using 
a correlation cut of 0.2, seven separate clusters were 
identified, with small HDL markers clustering sepa-
rately from other HDL subclasses. In line with this, the 
correlation between all lipid species measures of small 
HDL was very high (Pearson’s R > 0.7 for all, Fig.  3A) 
except small HDL TG, while the correlation between 
number of small HDL particles and particle counts for 
other HDL subclasses was low (Fig.  3B). Accordingly, 
we performed all subsequent analyses on the num-
ber of particles for each HDL subclass, as these results 
strongly correlated with other measures of particle con-
tent (e.g. concentration, number of cholesterol esters). 
[72]

Repeat analyses
A total of 14,598 participants had HDL NMR metabo-
lomic data measured at two time points (initial assess-
ment, 2006–2008, second assessment 2012–2013). 
The median time between initial sample and repeat 
sample was 1574  days (~ 4.3  years; interquartile range 
1353–1791  days). There was moderate stability of both 
small HDL and total HDL over this time point (Addi-
tional file  4: Figure S1), with the Pearson’s correlation 
between initial and repeat sample being 0.46 and 0.50, 
respectively.

Observational analyses (analysis 1)
For each HDL subclass, we performed Cox regression for 
the number of particles and sepsis in turn, adjusted for 
age, sex, body mass index, C-reactive protein level, renal 
function, history of diabetes, history of liver disease, his-
tory of cancer, Townsend deprivation index, statin usage, 
smoking, and alcohol intake. For the linear models, HDL 
measures were scaled to have a mean of 0 and an SD of 
1, to directly compare changes in exposure. When fit-
ting each particle size individually, there was clear evi-
dence that 1 SD higher levels of small HDL particles were 
associated with lower hazard of sepsis (HR 0.91; 95% CI 
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Fig. 2 Dendrogram of correlation across all HDL measures in UK Biobank. Measures are grouped by their correlation, with branches lower 
showing increasing correlation. Abbreviations: HDL_C = HDL Cholesterol, HDL_TG = Triglycerides in HDL, HDL_PL = Phospholipids in HDL, 
HDL_CE = Cholesteryl Esters in HDL, HDL_FC = Free Cholesterol in HDL, HDL_L = Total Lipids in HDL, HDL_P = Concentration of HDL Particles, 
XL_HDL_P = Concentration of Very Large HDL Particles, XL_HDL_L = Total Lipids in Very Large HDL, XL_HDL_PL = Phospholipids in Very Large 
HDL, XL_HDL_C = Cholesterol in Very Large HDL, XL_HDL_CE = Cholesteryl Esters in Very Large HDL, XL_HDL_FC = Free Cholesterol in Very Large 
HDL, XL_HDL_TG = Triglycerides in Very Large HDL, L_HDL_P = Concentration of Large HDL Particles, L_HDL_L = Total Lipids in Large HDL, L_HDL_
PL = Phospholipids in Large HDL, L_HDL_C = Cholesterol in Large HDL, L_HDL_CE = Cholesteryl Esters in Large HDL, L_HDL_FC = Free Cholesterol 
in Large HDL, L_HDL_TG = Triglycerides in Large HDL, M_HDL_P = Concentration of Medium HDL Particles, M_HDL_L = Total Lipids in Medium HDL, 
M_HDL_PL = Phospholipids in Medium HDL, M_HDL_C = Cholesterol in Medium HDL, M_HDL_CE = Cholesteryl Esters in Medium HDL, M_HDL_
FC = Free Cholesterol in Medium HDL, M_HDL_TG = Triglycerides in Medium HDL, S_HDL_P = Concentration of Small HDL Particles, S_HDL_L = Total 
Lipids in Small HDL, S_HDL_PL = Phospholipids in Small HDL, S_HDL_C = Cholesterol in Small HDL, S_HDL_CE = Cholesteryl Esters in Small HDL, 
S_HDL_FC = Free Cholesterol in Small HDL, S_HDL_TG = Triglycerides in Small HDL
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0.89–0.94, p = 2 ×  10–11); whereas there was much weaker 
evidence for other particle sizes (all estimates in Addi-
tional file 1: Table S3).

The total particle count in all HDL particles per 1 SD 
higher values was also associated with lower hazard of 
sepsis (HR 0.93, 95% CI 0.90–0.96, p = 2 ×  10–6), although 
this was weaker and more imprecise than the association 
with particle count in small HDL alone. To confirm that 
particle count in small HDL was driving the inverse asso-
ciation identified with particle count in total HDL, we ran 
analyses including particle count in small HDL and par-
ticle count in total HDL together in the same regression 
model. In these analyses, the inverse association with 
particle count in small HDL remained robust  (HR 0.88; 
95% CI 0.84–0.92, p = 9 ×  10–9), while we identified no 
meaningful association with particle count in total HDL 
levels (HR 1.04; 95% CI 0.99–1.09, p = 0.12). For particle 
count in medium HDL, there was weak evidence of an 
inverse association in a linear model (HR 0.96; 95% CI 
0.93–0.99, p = 0.01), but there was no evidence for parti-
cle count in other HDL particle size classes.

When comparing quartiles, there was a monotonic 
decreasing hazard of sepsis with higher particle count 
in small HDL particles (Fig.  4A) but there appeared to 
be non-monotonicity in the association between the 
medium HDL particle count and the hazard of sepsis, 
with the strongest inverse association identified in Quar-
tile 3 (HR 0.85; 95% CI 0.79–0.92; p = 4 ×  10–5). When 
adding small HDL particle count to our models of other 
particle counts to explore whether small HDL particle 

count was driving associations identified in the particle 
count of other HDL particle sizes, given the correlation 
between particle counts across HDL subclass sizes. In 
these models, the association between particle counts 
and sepsis attenuated largely to the null, suggesting that 
other associations may reflect correlation with particle 
count in small HDL (Fig. 4B).

We then performed nonlinear modelling using 
restricted cubic splines. (Fig.  5, Additional file  4: Figure 
S2). In these spline models, the hazard ratio for incidence 
of sepsis was substantially higher at the extreme lower 
end of small HDL particles (Fig.  5A). The hazard ratio 
for being in the bottom 5% of small HDL particles vs. all 
other participants was 1.47 (95% CI 1.34–1.62), while for 
being in the bottom 1%, the hazard ratio was 1.72 (95% 
CI 1.45–2.04). There was clear visual evidence of nonlin-
earity, but no evidence of higher risk with higher parti-
cle numbers (e.g. a U-shaped relationship). For medium 
HDL particle number, there was more clear visual evi-
dence of a U-shaped relationship in the association 
between medium HDL particle number, although the 
bulk of the hazard was still in those with lower medium 
HDL particle numbers (Fig. 5B). Evidence of non-mono-
tonicity with other particle sizes was also somewhat evi-
dent in large HDL particle counts, but this was muted 
and much weaker than (Additional file  4: Figure S2) in 
the small and medium HDL particle counts.

In analyses adjusting for total triglycerides and LDL 
cholesterol, associations were less precisely estimated 
and slightly weaker, although the inverse association with 

Fig. 3 Correlation plots between A all small HDL lipid measures; showing high correlation between all measures, and B correlation of HDL particle 
count across different HDL sizes, showing the separation between small HDL cholesterol and other types of HDL cholesterol. Abbreviations: 
S_HDL_P = Concentration (particle count) of Small HDL particles; S_HDL_L = Total Lipids in small HDL; S_HDL_C = Cholesterol in Small HDL; 
S_HDL_PL = Phospholipids in Small HDL; S_HDL_TG = Triglycerides in Small HDL; XL_HDL_P = Concentration of Very Large HDL Particles; L_
HDL_P = Concentration of Large HDL Particles; M_HDL_P = Concentration of Medium HDL Particles
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increased particle count in small HDL remained (HR for 
lowest quartile of small HDL of 0.86; 95% CI 0.78–0.95, 
p = 0.001, Additional file 1: Table S4). The U-shaped asso-
ciation remained with particle count in medium HDL, 
with the lowest hazard in the middle two quartiles.

Association between HDL particle size and sepsis‑related 
mortality and critical care admission
In adjusted Cox regression models, a similar inverse asso-
ciation between higher levels of small HDL and lower 
sepsis-related death was identified (Fig.  6A). Given the 
smaller number of cases (1118 deaths), associations were 
less precise (HR 0.71; 95% CI 0.59–0.84, p = 0.0001, com-
paring Quartile 4; highest small HDL levels and Quartile 
1; lowest small HDL levels). As with sepsis incidence, in 
restricted cubic spline models, the strongest evidence of 
increased hazard was in those with the lowest number 
of small HDL particles with a hazard ratio of 1.63 (95% 
CI 1.17–2.28) in the bottom 5%, and a HR of 2.50 (95% 
CI 1.46–4.28) in the bottom 1% (Fig. 6A). Particle count 

in Medium HDL again had a U-shaped association with 
sepsis-related death (Fig. 6B).

The evidence for a linear inverse association against 
critical care admission with sepsis was weaker (p for lin-
ear trend 0.06), although estimates were imprecise due to 
the small sample size. However, there was clear U-shaped 
relationship in both small and medium HDL particle 
counts and sepsis-related critical care admission when 
fitting restricted cubic spline models (Fig. 7).

Again, results for other HDL particle counts were 
attenuated to the null in models including small HDL 
particle count as a linear covariate (Additional file  1: 
Table S5).

Does adjusting for CRP levels alter observed effect 
estimates?
As CRP—as marker of inflammation and IL-6 activity—is 
a potential confounder, and inclusion of CRP in models 
could lead to collider bias [73], we re-ran our primary 
analyses (on sepsis incidence, sepsis-related mortality, 
and sepsis-related death) with and without adjusting for 

Fig. 4 Associations between particle count of each HDL subclass size and the hazard of sepsis. All hazard ratios are compared with the reference 
(lower 25% of HDL particle counts, Quartile 1). Hazard ratios from adjusted Cox regression. Panel A shows these unadjusted for small HDL particle 
count; Panel B shows these adjusted for small HDL particle count. HDL-P = HDL particle count; XL-HDL-P = extra large HDL particle count; L-HDL-P = 
large HDL particle count; M-HDL-P = medium HDL particle count; S-HDL-P = small HDL particle count
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CRP. We identified similar estimates for the association 
between small HDL and sepsis incidence and outcomes 
in the unadjusted models, with slightly larger effect sizes 
and narrower confidence intervals (e.g. OR for sepsis 
incidence in Quartile 4 of small HDL particle count 0.78 
(95% CI, 0.72–0.84, p = 1.8 ×  10–11) in models unadjusted 
for CRP, and 0.80 (95% CI 0.74–0.86, p = 4.9 ×  10–9) in 
adjusted models. These results are fully reported in Addi-
tional file 1: Table S6.

Is HDL causally associated with increased risk of sepsis? 
(Analysis 2)
Given the inverse linear association we identified was 
only observed for small HDL particle count, and there 
are no reliable nonlinear methods for MR available cur-
rently, we performed MR analyses on small HDL particle 
counts only. In the full UK Biobank cohort (n ~ 260,000) 
with small HDL measures, we performed a GWAS and 
identified 104 independent exposures. Variant details 
are reported in Additional file 1: Table S7. The median F 
statistic (a measure of the strength of the SNP-exposure 
association) was 2197 (lowest value 540). In sum, the var-
iants explained 5.2% of the variation in small HDL levels.

Outcomes were measured in UK Biobank (sepsis inci-
dence, sepsis death, and sepsis critical care admission) 
and FinnGen (sepsis incidence only). In inverse variance 
weighted meta-analysis, we identified no consistent pre-
dicted causal effect of particle count in small HDL on 

sepsis incidence, with a summary odds ratio of 1.00 (95% 
CI 0.95–1.10) when meta-analysing across UK Biobank 
and FinnGen. Results were similar in other meta-analyt-
ical approaches (weighted median, MR Egger, and when 
using MR-PRESSO, Additional file 1: Table S8).

We identified a modest predicted causal effect of small 
HDL particle count on sepsis-related critical care admis-
sion (OR 0.73; 95% CI 0.57–0.94). This effect should be 
taken with some degree of scepticism, given the number 
of outcomes tested, the weak and nonlinear observational 
association, and the play of chance. We report the other 
HDL subclass associations with each outcome in Addi-
tional file 1: Table S9. There was no consistent predicted 
causal effect of any other HDL particle count subclass on 
any sepsis outcome, in line with the observational data.

Finally, to explore the phenotypic effects of the genetic 
variation associated with small HDL particle count, 
we generated a PRS for small HDL particle count  and 
whether this associated with counfounders. We then 
split participants based on their quartile of polygenic 
risk score and explored the demographics, which showed 
some evidence that those with different levels of the 
PRS had different levels of covariates (Additional file  1: 
Table S10).

Fig. 5 Restricted cubic spline modelling of the association between the hazard of sepsis and the number of small HDL particles (A) and medium 
HDL particles (B). Data from a model adjusted for all covariates listed in the methods. X-axis scale is per mmol/L. Data centred to remove points 
below the 0.1th centile and greater than the 99.9th centile
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The bidirectional association between IL‑6 and CRP 
signalling and the effect on HDL subclasses (analysis 3)
To explore potential reasons for the strong observational 
association and (largely) null genetic association, we per-
formed further MR analyses to explore whether IL-6 sig-
nalling (which is known to alter the risk of infection [73]) 
could alter particle count of small HDL leading to our 
observed results. To do this, we performed bidirectional 
MR, first looking at whether IL-6 levels (modelled using 
cis IL6R variants) and CRP levels (modelled using cis 
CRP variants) are causally associated with HDL subclass 
particle counts. We then subsequently performed the 
“reverse” analysis, identifying whether changes in HDL 
subclasses altered IL-6 and CRP levels (Fig. 8).

In our analysis on the effect of IL-6 and CRP signal-
ling on HDL subclasses, we saw a large predicted causal 
effect of increased IL-6 signalling and reduced particle 
count in small HDL (Fig. 9A), beta on small HDL par-
ticle count − 0.16, 95% CI − 0.10 to − 0.21 per natu-
ral log change in SD-scaled CRP, p = 9 ×  10–8). We saw 

a similar effect on particle count in total HDL, with 
increased IL-6 signalling predicted to reduce the par-
ticle count in total HDL (beta − 0.13, 95% CI − 0.09 to 
0.17, p = 7 ×  10–10), and with medium HDL (beta − 0.11, 
95% CI − 0.14 to − 0.07, p = 2 ×  10–8). We saw no effect 
on larger HDL particle sizes. Using our cis CRP vari-
ants—that represent the effect driven by alterations in 
CRP protein levels—we saw no predicted causal effect 
on any HDL subclass.

We then analysed the effect of increasing HDL sub-
classes on IL-6 and CRP levels (Fig.  9B). We identi-
fied no strong evidence of a causal effect of increased 
HDL on IL-6 levels, although confidence intervals did 
not preclude a biologically relevant effect size, and all 
estimates were below zero. We identified a possible 
positive effect of small and medium HDL on CRP levels 
although estimates were imprecise, beta for small HDL 
0.08 (95% CI 0.003–0.16, p = 0.04; beta for medium 
HDL 0.1; 95% CI 0.05–0.15, p = 0.001).

Fig. 6 Associations between particle count of each HDL subclass size and the hazard of sepsis death (A) and sepsis critical care admission (B). All 
hazard ratios are compared with the reference (lower 25% of HDL particle counts, Quartile 1). Hazard ratios from adjusted Cox regression
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To summarise, we identified robust evidence that 
increased IL-6 pathway activity is predicted to decrease 
levels of total, medium, and small HDL particle counts. 
In contrast, increased levels of CRP itself appeared 
to have no predicted effect. In the other direction, 
increased levels of medium HDL and possibly small 
HDL particle count increased CRP levels but had no 
effect on IL-6 levels.

Effect of statin usage on small HDL exposures
Due to the potential effect of statins on HDL measures, 
we performed GWAS of small HDL measures in statin 
users and non-statin users in order to compare estimates. 
As stratifying on statin use might generate a collider bias 
(as statin use is driven by cholesterol measurements), 
we additionally performed a GWAS of small HDL in 
UK Biobank participants under 50 at the time of sam-
pling (n = 23,532, where statin use was rare (4%, n = 994). 

We then performed LD score regression on these three 
datasets. As would be expected given the minimal effect 
of statin usage on small HDL (Additional file  4: Fig-
ure S3), the genetic correlation between all three small 
HDL GWAS was very high: (rg between statin users and 
non-statin users 1.00, rg between non-statin users and 
participants under 50 0.99; rg between statin users and 
participants under 50 0.92), suggesting limited bias due 
to statin usage.

Block jacknife resampling
As biased estimates can potentially be produced with 
overlapping exposure and outcome GWAS, we per-
formed block jacknife resampling [72] to estimate the 
effect of small HDL particle count on sepsis incidence. 
This had little effect on estimates, so we did not perform 
this for other analyses. These results are reported in an 
Additional file 5.

Fig. 7 Hazard ratio of death and from sepsis with increasing number of small HDL particles (A) and medium HDL particles (B), and critical care 
admission with sepsis with small HDL (C) and medium HDL (D) particle counts. Estimates on the scale of hazard ratio, from adjusted Cox regression. 
Scale is per mmol/L. Graphs cut at the 0.1th centile and 99.9th centile to visualise the majority of the distribution
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Discussion
In this study, we used a large (n ~ 260,000) cohort of par-
ticipants with NMR-based data on HDL subclasses and 
identified a robust observational association between 
low number of small HDL particles and increased hazard 
of sepsis, sepsis-related death, and sepsis-related criti-
cal care admission. MR data did not generally support a 
causal effect of small HDL particle count per se on sep-
sis. However, we did identify a robust causal association 
between increased IL-6 pathway activity and reduced 
(small) HDL particle count. We did not identify strong 
evidence of a reverse effect, that is increased (small) HDL 
levels leading to reduced IL-6  signalling (in contrast to 
some experimental data [74]). In fact, there was weak 
evidence of a CRP increasing effect  on small HDL par-
ticle count, although the magnitude of this was smaller 
than the IL-6 signalling to HDL association and there was 
imprecision around estimates. In concert with trial, reg-
istry, and MR data supporting the causal effect of altering 
IL-6 pathway activity on infection [75], these data sup-
port the view that observed HDL associations with sepsis 
are—in part—downstream of IL-6 signalling.

Indeed right at the start of clinical trials of interferon 
treatment, a persistent drop in HDL levels during treat-
ment was repeatedly reported and Cantell in 1980 was 

the first to suggest that infections elicit a drop in HDL 
via the induction of an inflammatory interferon response 
[75]. In this regard, we note a wide range of infections 
cause a drop in HDL and thus the response is not patho-
gen specific and suggestive for a common host-derived 
mediator. Interferons amongst other pro-inflammatory 
cytokines, such as Interleukin-1 beta (IL-1b) and IL-6, 
activate the acute phase response in the liver with IL-6 
exhibiting the strongest effect. The acute phase response 
is by definition those serum proteins that increase or 
decrease their circulatory concentrations by 25% or 
more, representing positive and negative reactants, 
respectively, a response that may occur not only acutely 
but also chronically [76]. This raises the notion for shifts 
in the baseline immune inflammatory balance affecting 
acute phase reactants and the metabolic development of 
HDL particles. Supporting, this, serum amyloid A (SAA), 
an acute phase protein whose production is controlled by 
IL-6 is known to modulate HDL function and to displace 
apolipoprotein-A from HDL molecules [77].

It is important to note that IL-6 signalling did not 
account for all of the observed risk of sepsis with 
reduced small HDL particle count in either our obser-
vational analysis (adjusting for CRP) or our genetic 
analyses. As HDL particle count does not appear to be 

Fig. 8 Inverse variance weighted meta-analytic MR results of the effect of each HDL particle count and subclass on the odds of various sepsis 
outcomes. Scale is per one SD increase in small HDL particle counts. The top three outcomes were measured in UK Biobank and the bottom 
outcome (labelled FinnGen) was measured in FinnGen
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causal for sepsis, this suggests other unmeasured causal 
confounder(s) are present. These confounders may even 
be other aspects of small HDL biology that are co-inci-
dent with particle count. NMR measures only reflect 
particle count, and may well not reflect other character-
istics or functional aspects of HDL metabolism that are 
relevant for protection from infection [78, 79]. These data 
should not, therefore, be interpreted as suggesting (small) 
HDL has no relevant role in infection, but simply that 
small HDL particle count, as determined by NMR, is not 
causal for sepsis.

It is also important to understand the relative com-
plexity of interpreting an instrument for a (small) life-
time change in an exposure and sepsis which represents 
a severe phenotype of infection. Sepsis is a life-threat-
ening organ dysfunction caused by a dysregulated host 
response to infection, and so associations with sepsis 
can represent either an increased risk of susceptibility 
to symptomatic presentation through reduced defensive 
mechanisms (for example, in those with immunosup-
pression), or increased rate of sepsis development within 

infection by unbalanced host–pathogen interactions (e.g. 
strains of Streptococcus pyogenes that carry toxins) [80]. 
It is possible, and perhaps likely, that exposures may have 
differing effects on each of these stages, making interpre-
tation of genetic estimates complex. Additionally, obser-
vational data suggest higher rates of infection in patients 
with organ transplant, but lower rates of severe infection 
[81–83].

In summary, this study confirms recent data that sug-
gest that the longstanding relationship between HDL 
[82] and sepsis is likely limited to the small (and per-
haps medium) HDL component of HDL. Particle counts 
of small HDL appear to be largely downstream of IL-6 
signalling, which likely confound observed estimates 
between HDL measures and infection. There is weak evi-
dence of an effect of small HDL on critical care admission 
with sepsis, which should be explored in other cohorts.

Strengths and limitations
The major strength of this study is the scale and quality 
of the dataset, with high quality, prospectively collected, 

Fig. 9 The effect of IL-6 and CRP pathway activity on HDL subclass particle counts (A), and the effect of HDL particle counts on IL-6 and CRP 
levels (B) Estimates were generated using cisIL6R variants to proxy the effect of increased IL-6 pathway activity and using cisCRP variants to proxy 
the effect of increased CRP protein. Estimates are on the scale of 1 SD change in each exposure
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linked electronic health record data, genetic data, medi-
cation data, and detailed lipoprotein subclasses data 
based on NMR spectroscopy available for a large number 
of participants. However, like all epidemiological studies, 
it has a number of limitations.

Firstly, UK Biobank is not a representative cohort, with 
multiple studies identifying the population to be health-
ier than the UK population on many metrics [84]. The 
bias induced on selection of this cohort therefore has the 
potential to affect estimates, although our results were 
reassuringly similar to estimates generated from an inde-
pendent cohort [84].

Secondly, the ascertainment of sepsis cases remains 
limited to hospital records. Although these are widely 
used for epidemiological studies, coding is recognised 
to be imperfect and there is limited information on, e.g. 
type of pathogen. Although our  MR data did not show 
a causal effect of (small) HDL on sepsis, the presence 
of > 100 genome wide significant “independent” SNPs 
for small HDL particle count underscore the polygenic-
ity and multiple metabolic pathways in play.  Further, the 
effect of IL-6 signalling on HDL suggests that HDL is 
involved in the innate immune response. Future research 
focussed on dissection these pathways and functional 
forms of HDL will be helpful for further understand-
ing whether any of these identified observational asso-
ciations are causal, or whether drugs targeting specific 
HDL-pathway biology (e.g. CETP inhibitors) may have a 
protective role [41, 85, 86].

We also have to be conscious that our NMR measures 
were taken in a healthy cohort at steady state. Although 
MR estimates generated from steady state have been 
shown to be relevant in acute infection (e.g. the success-
ful randomised trials of baricitinib for critical COVID-19 
were based on MR evidence generated from cis variants 
known to alter  TYK2 expression in patients at steady 
state [85, 86]), we should expect the levels of these parti-
cles and subsequent genetic associations are likely to dif-
fer in acute infection.

Finally, although the Nightingale platform used in this 
study has been widely used, some groups have raised 
concerns about the accuracy and comparison with other 
methodologies (particularly around LDL measures) [87]. 
These criticisms have in turn been questioned, and the 
platform has shown strong predictive ability for multiple 
diseases in multiple cohorts [41, 88, 89]. Additionally, we 
present data provided by Nightingale health comparing 
HPLC measures with that measured by the Nightingale 
platform (Additional file  4: Figure S4). These data show 
good correlation (Pearson’s R 0.82–0.97) for each HDL 
subclass.

Comparison with previous literature
To our knowledge, only one previous study has examined 
the associations between HDL subclasses and subsequent 
infectious disease outcomes [29]. That study, performed 
in 30,195 participants of the Copenhagen General Popu-
lation Study, focussed on all infectious disease outcomes, 
not only sepsis. In that study, small and medium HDL 
particles were combined. In line with our study, they 
identified an association with increased numbers of small 
and medium HDL particles and protection from sepsis, 
with effect sizes in line with our data. However, we add 
to this finding, (a) by identifying the nearly linear asso-
ciation with particle concentration of small HDL, but 
nonlinear association with particle concentration of 
medium/large HDL, (b) providing more precision around 
estimates, (c) using genetic data, which did not support a 
causal relationship between total HDL and small HDL on 
risk of sepsis, and (d) adding further analyses on causal 
relationship with IL-6 signalling explaining the relation-
ship between low number of small HDL particles and 
increased risk of sepsis.

One previous MR analysis identified a modest protec-
tive effect of total HDL cholesterol (not particle count) 
on infection outcomes in an analysis in UK Biobank, 
although estimates were imprecise [20]. The difference 
between our results may reflect the differing traits meas-
ured, which are incompletely correlated, and may repre-
sent differing biology. Additionally, as follow-up periods 
have increased (their follow-up ended 2016; ours 2021) 
our precision for outcome measures is greater, and the 
closer to null result may better reflect the true estimate 
[90].

Conclusions
In a large, prospective cohort study, lower particle counts 
of small HDL, but not other HDL sizes, were robustly 
associated with increased hazard of sepsis hospitalisa-
tion, sepsis-related mortality, and sepsis-related critical 
care admission. However, genetic analyses did not reveal 
strong evidence for causation for small HDL per se, and 
suggested inflammation via IL-6 signalling as a potential 
explanatory variable.
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