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Abstract 

Background Prognostication is very important to clinicians and families during the early management of severe 
traumatic brain injury (sTBI), however, there are no gold standard biomarkers to determine prognosis in sTBI. As 
has been demonstrated in several diseases, early measurement of serum metabolomic profiles can be used as sensi-
tive and specific biomarkers to predict outcomes.

Methods We prospectively enrolled 59 adults with sTBI (Glasgow coma scale, GCS ≤ 8) in a multicenter Canadian TBI 
(CanTBI) study. Serum samples were drawn for metabolomic profiling on the 1st and 4th days following injury. The 
Glasgow outcome scale extended (GOSE) was collected at 3- and 12-months post-injury. Targeted direct infusion liq-
uid chromatography-tandem mass spectrometry (DI/LC–MS/MS) and untargeted proton nuclear magnetic resonance 
spectroscopy (1H-NMR) were used to profile serum metabolites. Multivariate analysis was used to determine the asso-
ciation between serum metabolomics and GOSE, dichotomized into favorable (GOSE 5–8) and unfavorable (GOSE 
1–4), outcomes.

Results Serum metabolic profiles on days 1 and 4 post-injury were highly predictive  (Q2 > 0.4–0.5) and highly accu-
rate (AUC > 0.99) to predict GOSE outcome at 3- and 12-months post-injury and mortality at 3 months. The metabolic 
profiles on day 4 were more predictive  (Q2 > 0.55) than those measured on day 1 post-injury. Unfavorable outcomes 
were associated with considerable metabolite changes from day 1 to day 4 compared to favorable outcomes. 
Increased lysophosphatidylcholines, acylcarnitines, energy-related metabolites (glucose, lactate), aromatic amino 
acids, and glutamate were associated with poor outcomes and mortality.

Discussion Metabolomic profiles were strongly associated with the prognosis of GOSE outcome at 3 and 12 months 
and mortality following sTBI in adults. The metabolic phenotypes on day 4 post-injury were more predictive and sig-
nificant for predicting the sTBI outcome compared to the day 1 sample. This may reflect the larger contribution 
of secondary brain injury (day 4) to sTBI outcome. Patients with unfavorable outcomes demonstrated more metabo-
lite changes from day 1 to day 4 post-injury. These findings highlighted increased concentration of neurobiomarkers 
such as N-acetylaspartate (NAA) and tyrosine, decreased concentrations of ketone bodies, and decreased urea cycle 
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metabolites on day 4 presenting potential metabolites to predict the outcome. The current findings strongly support 
the use of serum metabolomics, that are shown to be better than clinical data, in determining prognosis in adults 
with sTBI in the early days post-injury. Our findings, however, require validation in a larger cohort of adults with sTBI 
to be used for clinical practice.

Keywords Severe TBI, Metabolomics, Outcome prediction, Prediction modelling

Introduction
Traumatic brain injury (TBI) is a neurologic injury result-
ing from an external mechanical force and is one of the 
most common causes of long-term neurological disabil-
ity and death [1]. Worldwide, approximately 69 million 
people suffer TBI annually [2]. There are 5.3 and 7.7 mil-
lion individuals living with TBI-related disability in the 
USA and European countries [1], respectively. Severe 
TBI has a mortality of 30–50% and 30% of survivors 
have severe neurologic sequelae [3–7]. The prognosis 
of TBI outcomes in the first days post-injury is difficult 
because of the high variability in the mechanisms of TBI, 
types of brain injury and multiple outcomes [8]. Assess-
ing the severity and prognosis of brain injury, especially 
in the context of severe traumatic brain injury (sTBI), 
is an important concern in the field of medicine. Early 
prediction of outcomes is critical in guiding treatment 
decisions, providing appropriate care, and providing sup-
port to patients and their families. Clinical factors, neu-
roimaging findings and electrophysiological events (e.g., 
EEG) are associated with a large degree of uncertainty 
to predict TBI outcomes [9, 10]. Blood biomarkers (pro-
teins and metabolites) have gained significant interest in 
sTBI investigations in recent years. They have the poten-
tial to improve diagnosis, help with prognosis, and aid in 
the management of sTBI with or without physiological 
parameters.

Prognostic models play an important role in helping 
clinicians make treatment decisions for patients with 
sTBI. These models can provide valuable information for 
predicting outcomes, which can help with critical care 
needs, rehabilitation plans, and support services for sur-
vivors and their caregivers.

Several studies have investigated the role of protein 
[11] and metabolite biomarkers in the prognosis of sTBI 
to predict the likelihood of an unfavorable and favora-
ble outcome. The most studied protein biomarkers in all 
types of TBI include neurofilament light/or heavy (NFL/
NFH), S100B, glial fibrillary acidic protein (GFAP), tau 
protein, neuron-specific enolase (NSE) and myelin basic 
protein (MBP) [11]. The serum and CSF levels of these 
biomarkers were used to predict the TBI outcome based 
on the Glasgow Outcome Scale (GOS) or Glasgow Out-
come Scale Extended (GOSE) at different time points 

(3-, 6- and 12-months post-injury) [11]. Serial sampling 
has offered valuable insights to understand the kinetic 
profile of protein biomarkers and evaluate their tra-
jectories that could help to increase biomarkers’ clini-
cal prognostic value [11]. Metabolomics studies have 
shown potential insights into mechanisms of injury and 
may allow the development of sensitive and specific bio-
markers for prognostic models [12]. However, few stud-
ies have investigated the potential use of metabolites in 
the prognosis of TBI, or in predicting the severity and 
stratification of all types of TBI. Of note, phospholipids, 
energy-related metabolites (lactate, glucose, and TCA 
cycle compounds), NAA and aromatic amino acids have 
been shown to correlate with TBI outcomes.[13–20].

In this study, we hypothesized that serum metabo-
lites could predict the severe TBI outcome at 3- and 
12 months post-injury. We aimed to determine the prog-
nostic threshold and compare prognostic models using 
metabolomic biomarkers with those using clinical pre-
dictors. Therefore, we measured the concentration levels 
of metabolites in serum samples collected at 1 and 4 days 
after severe TBI.

Materials and methods
Patients’ characteristics and primary clinical information
Patients ≥ 18  years old with severe TBI (Glasgow coma 
scale ≤ 8) were enrolled prospectively at 3 hospitals in 
Vancouver, Calgary and Halifax, Canada. Serum samples 
were collected on days 1 (within the first 24 h after injury) 
and 4 post-injury using specific standard operating pro-
cedures (SOPs). Demographics, injury characteristics, 
neuroimaging (CT scan) and physiologic clinical vari-
ables were collected electronically as well as global neu-
rological function at 3- and 12-months following injury 
using the Glasgow Outcome Scale-Extended (GOSE) 
and mortality at 3  months. All data were collected and 
cleaned by trained research coordinators and database 
engineers. The GOSE was dichotomized into favorable 
(GOSE 5–8) and unfavorable (GOSE 1–4) outcomes as a 
commonly used approach [21–24]. In this study, we also 
used the ordinal GOSE values in the prediction mod-
els, but this approach was less predictive and was more 
difficult to interpret than using a dichotomized GOSE 
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approach, likely because of the relatively small sample 
size. The collected clinical variables included gender, age, 
GCS, ISS (injury severity score), intubation, hypoxemia, 
hypotension, loss of consciousness and Marshall CT scan 
classification that were used for the prediction of GOSE 
outcome at 3 and 12 months and mortality at 3 months.

Metabolomics methods and quantification
Untargeted proton nuclear magnetic resonance (1H-
NMR) spectroscopy and targeted direct injection, liq-
uid chromatography-tandem mass spectrometry (DI/
LC–MS/MS) were applied to identify and quantify serum 
metabolites on days 1 and 4 post sTBI. These two tech-
niques were used to quantify a broad list of metabo-
lites with few overlapping metabolites. We carried out a 
comprehensive targeted analysis of 130 and 58 metabo-
lites using DI/LC–MS/MS and 1H-NMR, respectively, 
to measure serum metabolite concentrations on days 1 
and 4 post-injury. More details about these methods are 
available in the Additional file 1.

Statistical analysis
Multivariate analysis and machine learning meth-
ods were used to build prediction models using serum 
metabolites and clinical parameters for the prognosis of 
GOSE-based favorable versus unfavorable outcomes. For 
multivariate analysis (PCA and PLS-DA) and machine 
learning analysis (SIMPLS), we normalized (median fold 
normalization) and transformed (log transformation) the 
metabolomics data because they were not normally dis-
tributed and since different metabolites with large differ-
ences in concentration were used together [25]. We also 
used non-normalized and non-transformed data (raw 
data) for univariate analysis such as the Student’s t-test. 
The Shapiro–Wilk test confirmed that the majority of 
the raw data did not follow a normal distribution. Thus, 
the data was normalized and transformed for analysis. 
Principal component analysis (PCA) was applied as a 
multi-variable analysis method to examine the variabil-
ity and trends of metabolic profiles and to detect outli-
ers. Partial least squares discriminant analysis (PLS-DA), 
a type of machine learning, was used to build prognostic 
models. PLS-DA-based prognostic models were created 
based on the most differentiating metabolites with a vari-
able important of the projection (VIP) value >|1.0| using 
SIMCA-P v15.0.2 (Sartorius Stedim Biotech, Umea, 
Sweden). We further analyzed whether clinical predic-
tors or combining clinical predictors with metabolomics 
data can enhance the prognosis of outcomes. Statisti-
cally inspired modification of partial least squares (SIM-
PLS), an algorithm of the PLS method suitable for both 
nominal or continuous variables, was used to develop 

prediction models using only clinical predictors or com-
bined clinical with metabolite variables for outcomes at 
3 months, 12 months, and mortality at 3 months. Devel-
oped prognostication models were characterized by 
the metrics  R2 (goodness of model fit),  Q2 (goodness of 
prediction showing the predictability of the statistical 
model) [26], cross-validation p-value was determined 
and permutation testing (200 times) was used to check 
the  R2 and  Q2 values to prevent overfitting. Artificial neu-
ral network analysis (ANN), a machine learning method, 
was performed to predict one response variable (unfa-
vorable and/or favorable separately) using a flexible func-
tion of input variables. JMP Pro 14.3.0 (SAS Institute Inc. 
USA) was used for SIMPLS and ANN analysis. Metabo-
Analyst 4.0 (available at www. metab oanal yst. ca) was used 
for multivariate and univariate analysis. The area under 
the receiver operating curve (AUC), sensitivity, and spec-
ificity was obtained using a multivariate approach.

To build prognostic models of outcome using clinical 
factors, we first used univariate analysis followed by mul-
tivariable analysis and generated AUC information. Clin-
ical factors with a p < 0.05 from the univariate analysis 
were included in the multi-variable models. More details 
regarding our methods of data and statistical analysis are 
available in the Additional file 1. In general, our approach 
is to remove any extreme outliers identified using PCA 
analysis. However, in this study, there were no extreme 
outliers among datasets to remove. Also, we excluded 
the metabolites that were below the limit of detection 
and metabolites with a lot of missing values. The terms 
“increased” and “decreased” values of the metabolites 
imply the relative changes in concentrations of metabo-
lites between the unfavorable and favorable outcomes.

Results
Patient characteristics
A total of 8239 patients were screened in the CanTBI 
study (Fig.  1); 3465 patients screened positive for TBI 
(42%). After informed consent, 466 adult and pediat-
ric patients with mild, moderate, and severe TBI were 
enrolled into the prospective CanTBI biobank and data-
base for the TBI study. There were 300 adult patients 
with TBI and 59 of these patients (19.6%) were diagnosed 
with severe TBI (sTBI) and were included in this study. 
These 59 patients had a mean age of 50 years ± 20.6 (SD). 
For detailed patient and injury characteristics see Table 1. 
Figure  1 shows the patient flow chart with the num-
bers of patients recruited and follow-up data at 3- and 
12-months post-injury (n = 51). Table 2 shows the differ-
ences in clinical variables between favorable and unfa-
vorable outcomes at 3- and 12  months post-injury. Age 
and injury severity score (ISS) were significantly (p < 0.05) 
associated with unfavorable outcomes at 3  months, but 

http://www.metaboanalyst.ca
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not significant at 12 months. There was a significant dif-
ference in age and ISS between patients who died (n = 21) 
and those who survived (n = 23) at 3  months (Addi-
tional file 1: Table S1), which suggests that older age and 
higher ISS are associated with unfavorable outcomes. 
We then determined the cut points of ISS and age at ≥ 75 
and ≥ 49, respectively, to separate non-survivors from 
survivors at 3  months. Also, the cut points were calcu-
lated for Marshall classification = 4 and GCS = 6 between 
non-survivors and survivors. These two variables were 
not statistically significantly different between the two 
cohorts but had a higher impact using multivariate data 
analysis.

Identified, quantified metabolites
130 and 58 metabolites from different metabolite classes 
were identified and quantified using targeted DI/LC–MS/
MS and untargeted 1H-NMR, respectively (Table S2-S3). 
Twenty-four of the 30 common metabolites measured by 
each technique had a similar trend of change, showing 
the accuracy of both techniques. See Additional file 1 for 
more details.

Metabolomics for the prognosis of 3‑ and 12‑month 
outcomes of sTBI
Prediction models show that a serum metabolic biosig-
nature can be used to prognosticate GOSE outcome at 3 
and 12 months and the mortality outcome at 3 months.

Unsupervised PCA showed a relatively good grouping 
between cohorts with unfavorable and favorable out-
comes using all metabolites detected in serum samples 
collected on days 1 and 4. PCA revealed a high level of 
variability  (R2X > 0.5) of metabolites suggesting a differ-
ential biosignature between the two cohorts (Additional 
file  1: Fig S1–S3). Metabolic biosignatures obtained by 
DI/LC–MS/MS using samples on day 4 presented clearer 
groupings between unfavorable and favorable cohorts 
compared with 1H-NMR and samples on day 1. The 
PLS-DA-based analysis demonstrated a good predic-
tive  (Q2 > 0.5), highly significant (p < 0.001) and highly 
sensitive and specific (> 99%) prediction model to dis-
criminate between patients with unfavorable and favora-
ble outcomes using a serum metabolic biosignature on 
day 4 obtained by DI/LC–MS/MS (Table  3 and Fig.  2). 
Nonetheless, day 1 metabolic biosignatures were also 

Fig. 1 The patient flow chart reflects patients screened, enrolled in the CanTBI tissue bank and database and patients with measured GOSE 
outcomes at 3 and 12 months
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significant predictors for GOSE outcomes (Additional 
file 1: Fig. S4). The permutation analysis (200 times per-
muted, not shown) verified that the models are valid and 
unlikely to be overfit. ANN indicated the higher predict-
ability (AUC > 0.90) for the prognosis of GOSE outcome 
among patients with unfavorable outcomes compared 
to favorable outcomes at 3 months (Tables S4-S5). Also, 
ANN showed higher predictability (AUC > 0.90) for the 
prognosis of GOSE outcome among patients with favora-
ble outcomes compared to unfavorable outcomes at 
12-months. This was based primarily on DI/LC–MS/MS 
data on day 4. See Additional file 1 for more details.

Further analyses were performed to investigate the rel-
ative correlation of the most differentiating metabolites 
between unfavorable and favorable outcomes for each 
prediction model. Different prediction models consisted 
of 9 to 26 metabolites that differentially contributed to 
the models (Additional file  1: Figs. S5–S16). A predic-
tive metabolic biosignature to predict GOSE outcome at 
3  months was characterized by an increase in lysoPCs, 
propionic acid (C3:1), stearic acid (C18), oleic acid 
(C18:1), linoleic acid (C18:2), and myristic acid (C14) on 
the 1st-day post-injury yielding an unfavorable outcome 
(Additional file  1: Figs. S5A and B). Also, a decrease in 
methionine-sulfoxide, glutamate, histidine, citrulline, 
isoleucine, glutamine, phenylalanine, and asparagine 
were associated with an unfavorable outcome on the 
1st-day post-injury (Additional file  1: Figs. S5A & B). 
Interestingly, a predictive metabolic biosignature on day 
4 (Additional file  1: Figs. S6 and S8) showed increased 
glutamate (excitotoxicity), propionic acid, linoleic acid, 
valeric acid (C5), indole acetic acid, ɑ-ketoglutaric acid, 
ɑ-aminoadipic acid, alanine, lysoPCs (18:2, 18:0 & 17:0), 
tyrosine, NAA, aspartate, and valine in those with an 
unfavorable outcome, while these metabolites were 
decreased on day 1 post-injury. For prognosis of GOSE 
at 12-months, patients with unfavorable outcome were 
characterized by increased lysoPCs (14:0, 20:3 & 28:1), 
short chain ACs (C5OH, C3, C0, C4), ornithine, sphin-
gomyelin (16:1), valine, serine, leucine, lactate, and a 
decrease in trans-hydroxyproline, serine, serotonin, 
citrulline, spermine, methionine-sulfoxide, acetylorni-
thine and medium-chain acylcarnitines on day 1 post-
injury (Additional file  1: Figs. S9 and S11). In addition, 
a 12-month unfavorable outcome was associated with 
increased lysoPCs (28:1, 14:0), tryptophan, caproic acid 
(C6), oleic acid, tyrosine, creatinine, alanine, histidine, 
valine, and leucine on day 4 post-injury (Additional 
file 1: Figs. S10 and S12). To predict 3-month mortality, 
metabolomic analysis showed increased glucose, PCs 
(38:0aa, 40:6 ae), acylcarnitines (C3:1, C10:1, C14:1 C14, 
C10, C16:2 C8), betaine, 3-hydroxy isovalerate, citrate, 
O-phosphocholine, formate, fumarate, and pyruvate on 

Table 1 Patients’ characteristics, clinical information, GCS at 
admission, GOSE outcome distribution, CT findings, and Marshall 
CT Classification

*Shows the number of patients with the clinical information and the percentage 
of total patients, others included without clinical information and missing 
information. ** The number of patients (percentage of total) were included in 
the same GCS categorized level. ŧ the number of patients with GOSE data at the 
same time. ŧ ŧ the number of patients that had the same CT findings; the rest 
may include patients without CT findings or findings missing in the study
* Shows the number of patients that had intubation and mentioned 
physiological conditions. ** shows the number of patients in each categorized 
GCS group among all patients(n = 59). ŧ shows the number patients for 
unfavorable and favorable outcome at different time, ŧ ŧ shows the number of 
patients that had each brain damage captured on CT

Patients characteristics Subcategory/unit n = 59 severe TBI

Sex Male/Female 48/11

Age Mean (± SD) 50 ± 20.6

Weight Mean (± SD) 82 ± 19.0

Admission type
  ER
  ICU

n (%) 19 (32.3)
40 (67.7)

Severity (ISS) Mean (± SD) 43.3 ± 19

Intubated Yes (%)* 40 (67.7)

Hypoxia Yes (%)* 8 (13.5)

Hypotension Yes (%)* 9 (15.2)

Paralytic agent Yes (%)* 30 (50.8)

Loss of consciousness Yes (%)* 40 (67.7)

 GCS (total)
 GCS-Motor
 GCS-Eye
 GCS-Verbal

Mean (± SD) 5.46 ± 2.27
2.87 ± 2.07
1.54 ± 1.02
0.98 ± 0.71

GCS (categorized)
 GCS 3–4
 GCS 5–6
 GCS 7–8

n (%)** 26 (44)
6 (6.7)
26 (44)

GOSE
  3-month
   Poor
 Good
 6-month
 Poor
   Good
  12-month
   Poor
   Good

n (%)ŧ 44 (74.5)
35 (59.3)
9 (15.2)
22 (37.2)
9 (15.2)
13 (22)
29 (49.7)
14 (23.7)
15 (25.4)

GOSE 1 & 2 (3 month) n (%) 21 (35.5)

 CT findings
 Diffuse Axonal Injury
 Mild Shift
 Skull Fracture
 Cerebral edema
 Contusion
 Intracranial hemorrhage
 Epidural hemorrhage
 Subdural hemorrhage
 Arachnoid hemorrhage

(Yes/No) ŧ ŧ 35/7
14/26
28/14
10/32
18/24
26/16
5/37
30/12
32/10

Marshall score
 I
 II
 III
 IV
 V

n (%) 1(2.3)
23 (54.7)
6 (14.2)
5 (11.9)
7 (16.6)
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day 1 in patients predicted to die by 3  months (Addi-
tional file 1: Figs S13 and S14). Those patients predicted 
to die showed decreased glutamine, and branched-chain 
amino acids, citrulline and histidine on day 1 (Additional 
file  1: Fig. S13 and S15). Increased ɑ-ketoglutaric acid, 
hippuric acid, indole acetic acid, ornithine tryptophan, 
ɑ-aminoadipic acid, PCs (38:0aa, 36:0aa), branched-chain 
amino acids, creatine, creatinine, tyrosine and threonine 
were found in those patients predicted to die based on 
the day 4 metabolic profile (Figs S14 and S16). Univariate 

T-test analysis showed remarkable similarities to PLS-
based prediction models to identify predictive biomark-
ers (Additional file 1: Figs. S5–S16). See Additional file 1 
for more details.

Metabolite heatmap plots (Figs.  3, Additional file  1: 
Figs. S17–S18) directly visualized the metabolite altera-
tions on the same days and from day 1 to day 4 for both 
cohorts with unfavorable and favorable outcomes. These 
results show a higher level of metabolite alterations from 
day 1 to day 4, particularly for predicting unfavorable 

Table 2 Patient demographics and clinical characteristics for unfavorable (GOSE 1–4) and favorable (GOSE 5–8) outcome groups at 3 
and 12 months

*The variables are based on the number of patients. ŧ These data included several variables that have not been shown in detail for each cohort. There was no 
significant difference for any type and location of injury between cohorts with favorable and unfavorable outcomes at 3- and 12 months post-injury
* Shows the number of patients that had intubation and mentioned physiological conditions in each unfavorable and favorable group. ŧ the details have not been 
shown due to several conditions and table limitation. ** shows the number of patients that had brain damage captured on CT for unfavorable and favorable group

Prediction of GOSE 3 Month 12 Month

Patients characteristics and clinical 
information

unfavorable 
outcome (n = 35)

Favorable 
outcome (n = 9)

p value Unfavorable 
outcome (n = 14)

Favorable 
outcome (n = 15)

p value

Sex (male/female) 30/5 6/3 0.42 11/3 13/2 0.82

Age (mean ± SD) 55.4 ± 20.4 40.5 ± 21.0 0.03 52.0 ± 18.7 38 ± 19.8 0.06

Weight (mean ± SD) 88.5 ± 19.5 76.4 ± 21.1 0.08 81.7 ± 22.6 79.3 ± 16.1 0.75

Injury severity score (ISS) (mean ± SD) 56.4 ± 22.6 35.1 ± 12.6  < 0.01 35.5 ± 12.5 36.4 ± 12.5 0.81

Admission-type
 ER
 ICU

13 (37.1%)
21 (60%)

2 (22.2%)
7 (77.7%)

0.36 4 (28.5%)
10 (71.4%)

4 (26.6%)
11 (73.3%)

0.58

Hypoxia (yes/no) * 8/22 0/9 0.07 3/8 1/14 0.38

Intubated (yes/no) * 21/13 7/2 0.61 11/3 10/5 0.77

Hypotension (yes/no) * 5/25 1/7 0.98 2/10 2/13 0.64

Paralytic-AGT (yes/No) * 16/17 6/1 0.40 6/7 9/4 0.32

Loss consciousness* 25/4 5/2 0.30 13/0 8/2 0.48

Location of injury ŧ 0.70 0.52

Type of injury ŧ 0.24 0.21

 GCS (total) (mean ± SD) 5.3 ± 2.17 5.3 ± 2.5 0.95 4.5 ± 1.9 5.8 ± 2.3 0.11

 GCS-motor
 GCS-eye (mean ± SD)
 GCS-verbal

2.9 ± 1.9
1.5 ± 1.1
1.0 ± 0.75

2.4 ± 2.2
1.0 ± 0.0
1.1 ± 0.78

0.54
0.14
0.94

2.28 ± 2.0
1.4 ± 0.99
0.71 ± 0.48

2.7 ± 2.1
1.6 ± 1.3
1.13 ± 0.74

0.57
0.68
0.08

 GCS 3–4
 GCS 5–6 (mean ± SD)
 GCS 7–8

15 (42.5%)
6 (14.1%)
14 (40%)

5 (55.5%)
0
4 (44.4%)

0.80 9 (64.2%)
1 (7.1%)
4 (28.5%)

6 (40%)
1 (6.6%)
8 (53.3%)

0.62

CT findings**
  Diffuse axonal injury
  Mid shift
  Skull fracture
  Cerebral edema
 Contusion
 Intracranial hemorrhage
  Epidural hemorrhage
  Subdural hemorrhage
  Arachnoid hemorrhage
 Marshall score
 I
 II
 III
 IV
 V

5/20
6/18
209/6
6/20
14/12
18/8
3/23
20/6
22/4
0
17
4
3
2

0/7
4/3
3/4
0/7
2/5
3/4
0/7
5/2
5/2
0
3
1
0
3

0.57
0.41
0.30
0.24
0.33
0.53
0.62
0.34
0.37
0.19

2/7
4/4
7/2
3/6
3/6
5/4
7/2
8/2
6/3
0
4
1
3
1

2/11
6/7
9/4
2/11
7/6
8/5
9/4
8/4
8/5
0
6
2
1
4

0.62
0.16
0.52
0.49
0.47
0.63
0.11
0.86
0.16
0.37
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outcomes compared to favorable outcomes. Overall, 
metabolite changes are enhanced among the patients 
with unfavorable outcomes. Lysophosphatidylcholines 
(16:0, 16:1, 17:0, 18:0 and 18:2) and lysophosphatidyl-
cholines (14:0, 20:3, 28:1, and 18:0) showed an increase 
from day 1 to day 4 mostly in patients with unfavorable 
outcomes. Also, BCAAs, NAA, tyrosine, ornithine, and 
glutamate increased from day 1 to day 4 predominantly 
among the patients with unfavorable outcomes. His-
tidine, alanine, serine, citrulline, pyruvate and lactate 
decreased from day 1 to day 4 mainly among the patients 
with unfavorable outcomes.

A brief overview highlights that unfavorable outcome 
was associated with increased metabolites related to 
lipids and “anaerobic” metabolism and decreased metab-
olites related to serotonergic, polyamine metabolism and 
NMDA receptor integrity on day 1 post-injury. Increased 
metabolites related to neuroinflammation, excitotoxicity 
and brain injury-specific biomarkers were found on day 4 
post-injury. Also, notable was an association of increased 
metabolites related to acylcarnitine metabolism and 
energy metabolism with mortality.

Clinical variables for the prognosis of GOSE outcome at 3 
months, 12 months, and mortality
We investigated whether clinical variables could predict 
the outcome of sTBI at 3- and 12 months post-sTBI. SIM-
PLS analysis revealed the most differentiating clinical 
variables for predicting outcomes at 3 months (age, ISS, 
Marshall classification and hypoxemia) and 12  months 
(age, GCS, hypoxemia, and loss of consciousness). How-
ever, these clinical variables had low prediction capacity 
 (Q2 < 0.16) and less sensitivity (66%), and specificity (86%) 
compared to metabolomics-based prediction (Table S6). 
SIMPLS analysis of clinical data revealed that age and ISS 
are useful predictors  (Q2 = 0.37, AUC = 0.86) to prognos-
ticate mortality. However, these clinical variables lack sig-
nificant sensitivity and specificity (66%-83%) compared 
to metabolomics data (Additional file  1: Table  S6 vs. 
Table 3 and Additional file 1: Table S7).

The combination of metabolomics and clinical variables 
for predicting GOSE outcome at 3‑ and 12‑months post‑injury
SIMPLS analysis demonstrated that clinical vari-
ables could moderately improve the performance of 

Table 3 Prediction models’ characteristics show a higher predictability of metabolic profiles on day 4 than day 1 post-sTBI for 3- and 
12-month GOSE and mortality at the 3-month outcome

* p value < 0.05 was considered significant. Additionally, the metabolic profiles obtained by DI/LC–MS/MS are more predictive than 1H-NMR results.  R2, the goodness of 
fit of the model;  Q2, the goodness of prediction of the model: and AUC, the area under the receiver operating curve of the model

Prognosis Analytical platforms Sampling time R2 Q2 p value* Sensitivity Specificity AUC # Metabolites

Unfavorable  versus  
favorable outcome 
3-month

DI-MS/MS Day 1 0.60 0.40 0.0004 93 100 0.99 26

Day 4 0.75 0.54 0.0003 100 100 1.00 24
1H-NMR Day 1 0.47 0.25 0.017 72 100 0.92 10

Day 4 0.75 0.59 0.0001 100 96 1.00 9

Unfavorable 
versus favorable out-
come 12-month

DI-MS/MS Day 1 0.88 0.58 0.0002 100 100 0.99 21

Day 4 0.79 0.62 0.0004 100 100 0.98 29
1H-NMR Day 1 0.64 0.46 0.003 76 91 0.91 12

Day 4 0.7 0.41 0.044 100 100 1.00 9

Mortality outcome DI-MS/MS Day 1 0.54 0.35 0.002 79 100 0.98 19

Day 4 0.76 0.50 0.0006 100 100 1.00 16
1H-NMR Day 1 0.50 0.24 0.01 84 87 0.88 17

Day 4 0.61 0.39 0.011 91 90 0.96 16

Fig. 2 PLS-DA scatter plots: discrimination models show highly predictive  (Q2) separation of patients with unfavorable outcome (purple filled circle) 
from the favorable outcome (black filled square) based on serum metabolomic profiling on day 4 and GOSE at 3 months. A DI/LC–MS/MS using 
24 metabolites, B 1H-NMR using 9 metabolites. The high predictability is visualized by a good separation between the two cohorts and yielding 
a  Q2 > 0.5. The model metrics for the day 4 DI/LC–MS/MS model and GOSE outcome at 3 months are  R2Y = 0.75,  Q2Y = 0.54 and p = 0.0003 
and for day 4 1H-NMR model and GOSE outcome at 3 months are  R2Y = 0.75, Q2Y = 0.59 and p = 0.0001. Metabolomic profiling on day 4 for GOSE 
at 12 months. C DI/LC–MS/MS using 29 metabolites, D 1H-NMR using 9 metabolites. The metabolic profile on day 4 serum samples analyzed 
using DI/LC–MS/MS was more predictive  (Q2 = 0.62) than 1H-NMR  (Q2 = 0.41). GOSE outcome at 3 months is  R2Y = 0.75, Q2Y = 0.59 and p = 0.0001. 
Metabolomic Mortality outcome at 3 months: non-survivor (purple filled circle) versus survivor outcome (black filled square). E DI/LC–MS/MS 
using 16 metabolites,  Q2 = 0.50. F 1H-NMR using 16 metabolites.  Q2 = 0.39. These  Q2 values show a high predictability of metabolic profile on day 4 
with DI/LC–MS/MS being better than 1H-NMR to predict mortality at 12 months and mortality outcome

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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metabolomics-based prediction models to prognos-
ticate only GOSE outcome at 3  months and mortality 
(Additional file 1: Table S7). For the prognosis of GOSE 
outcome at 12 months, clinical variables were found to 
minimally improve the metabolomics models (data not 
shown). However, age was an important clinical predic-
tor of outcome among clinical variables, with a high 
level of contribution to prediction models, particularly 
for mortality. Consequently, Marshall classification 
(3  months outcome) and GCS (12  months outcome) 
remain important clinical variables (Additional file  1: 
Table  S8). Although SIMPLS and PLS-DA use differ-
ent algorithms, the two approaches showed overall 
similar predictabilities when metabolites were used to 

prognosticate sTBI outcomes, with only slight differ-
ences (as shown in Additional file 1: Table S7 vs. Tables 
S4-6). Importantly, permutation tests (not shown) veri-
fied the predictabilities of metabolite-based prediction 
models and were used to help prevent overfitting of the 
data.

Discussion
The current findings show that metabolite alterations on 
days 1 and 4 post-sTBI were highly predictive and well-
correlated with GOSE unfavorable and favorable out-
comes at 3 and 12 months and importantly, may also be 
used as a promising prognostic tool to predict the worst 
GOSE outcome, i.e., death. The metabolic biosignatures 

Fig. 3 Heatmap metabolite plots show the metabolite alterations at day 1 and day 4 of the most differentiating metabolites to predict unfavorable 
and favorable outcomes at 3 months using DI/LC–MS/MS and 1H-NMR. The figure reveals the changes in metabolites for day 1 or day 4 used 
to prognosticate GOSE outcome at 3 months with increased changes seen in metabolites from day 1 to day 4 among patients with unfavorable 
outcomes. The heatmap key shows the normalized and transformed concentration for each metabolite. Since each metabolite has its own relative 
concentration in the cell plots the key shows the range of relative concentrations
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on day 4 post-injury were more predictive and signifi-
cant than on day 1 to prognosticate 3- and 12-month 
outcomes. From a total of 160 metabolites, multivariate 
analysis revealed that several metabolites contributed to 
the separation of groups with unfavorable versus favora-
ble outcome, implying fundamental metabolic altera-
tions with sTBI that allows one to predict the outcome 
with high sensitivity, specificity, and AUC. The higher 
predictability of serum metabolic biosignatures on day 
4 for the prognosis of outcomes may reflect the contri-
bution of secondary brain injury (more likely reflected 
by day 4 metabolites) in addition to primary brain injury 
(reflected by day 1 metabolites) that correlate with out-
come. Considerable metabolite alterations from day 1 to 
day 4 among patients with unfavorable outcomes com-
pared to favorable outcomes may well reflect damage 
to the brain identified by these metabolite changes. The 
current study demonstrated that subtle changes in the 
metabolic profiles correlate with known and unknown 
pathophysiological pathways that can be applied to pre-
dict 3- and 12-month outcomes. Despite the higher pre-
dictability of metabolic biosignatures obtained by DI/
LC–MS/MS for the prognosis of the outcome, the 1H-
NMR platform was able to significantly predict the out-
come. This capability of 1H-NMR, a much less sensitive 
analytical platform than DI/LC–MS/MS, reveals there is 
measurable early detectable metabolite alteration associ-
ated with outcomes. Importantly, a remarkable similar-
ity was found for the trends in changes in metabolites 
measured by both methodologies, showing a high level of 
accuracy of quantification using two different analytical 
platforms.

Metabolomics appears to be superior compared to 
patients’ demographics, clinical features, and CT find-
ings in predicting GOSE outcome at 3- and 12-months 
post-injury. Notably, the combination of metabolomics 
with clinical and CT variables enhanced the metabo-
lomics prognostication of sTBI outcome in the early days 
post-injury, though clinical and CT data only improved 
the metabolomics prediction models for the prognosis of 
GOSE outcome at 3  months, not 12  months. The addi-
tion of age, GCS, hypoxemia, injury severity score, and 
Marshall CT classification enhanced the performance of 
metabolomics-based prediction of outcome. Our results 
were similar to the IMPACT and CRASH studies [27] 
in their use of age, GCS motor, pupillary reactivity, CT 
classification, EDH (epidural hematoma), tSAH (suba-
rachnoid hemorrhage), hypoxia, and hypotension [27]. 
European Brain Injury Consortium Core Data (EBIC) and 
Traumatic Coma Data Bank (TCDB) studies identified 
age, GCS motor, pupillary reactivity, hypoxia, hypoten-
sion and CT classification as the most important predic-
tors of 6- months outcomes using multivariate analysis 

(AUC 0.83–0.89) [28]. We showed that age and ISS are 
the most differentiating prognostic variables for mortal-
ity, while the IMPACT prediction model revealed age, 
GCS motor score, pupillary reactivity, hypoxia, hypoten-
sion, basal cisterns narrowing, midline shift and tSAH as 
the most predictive variables for 14-day mortality [29]. 
Using a multimodal approach, physiological (ICP, MAP, 
CPP and pbtO2) and biochemical (pyruvate, lactate, gly-
cine, glutamate, and glucose) parameters could predict 
sTBI outcome with approximately 90% accuracy [30]. 
Our study also demonstrates the importance of mul-
tivariate predictive and machine learning-based mod-
els versus simplified methods to determine predictive 
metabolites. A Bayesian networks approach previously 
showed an improvement in prediction models using vari-
ables that were not predictive in simplified models [31]. 
PLS-DA and SIMPLS have shown the power of multi-
variate methods to explore big and complex datasets with 
many variables and relatively small sample sizes [32].

The current study suggests that, as previously 
described, increased lysoPCs in patients with the unfa-
vorable outcome may be correlated with microvascu-
lar barrier disruption, promotion of oligodendrocyte 
demyelination and pericyte loss and with induced 
inflammation [33]. Increased stearic acid (C18) and its 
derivatives (stearic acid, oleic acid, linoleic acid) and 
lysoPCs in those with the unfavorable outcome may 
correlate with docosahexaenoic acid (DHA) metabo-
lism, a highly enriched brain lipid [34]. Increased CSF 
levels of lysoPCs and PCs were previously observed in 
non-survivors and survivors [13] respectively, in mild 
TBI patients compared to non-concussed controls [14]. 
Thomas et al. (2022) showed that choline phospholipids 
such as lysophosphatidylcholines, ether phosphatidyl-
cholines and sphingomyelins were the strongest predic-
tors of TBI outcome in association with some amino 
acids and sugars. The logistic regression model includ-
ing 19 metabolites had an AUC of 0.83 (95% CI 0.77–
0.89) to predict patient outcomes in TBI [15]. Within 
one day post-sTBI, increased energy-related metabo-
lites (lactate, glucose, and TCA cycle compounds) 
have been observed in patients with unfavorable out-
comes. The lactate/pyruvate ratio is well-recognized 
as a predictor for the prognosis of brain injuries such 
as apoptosis, cerebral anoxia, and anaerobic metabo-
lism [16, 17]. Mitochondrial dysfunction due to brain 
injury pathogenesis may appear with alterations in 
brain bioenergetics such as non-oxygen-requiring 
energy pathways and lipid peroxidation [35]. Even in 
the presence of oxygen, mitochondrial dysfunction 
can restrict the use of glucose efficiently, hence dam-
aged brain can shift the aerobic metabolism toward the 
use of lactate directly as a new fuel [36]. There was a 
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correlation between elevated lactate with unfavorable 
outcomes in TBI, in association with reduced cerebral 
blood flow (CBF), elevated ICP, and ischemia [16, 17]. 
In our study, increased tryptophan, kynurenine, tyros-
ine, phenylalanine, and glutamate on day 4 post-injury 
may intriguingly imply a correlation between excessive 
excitotoxicity mechanisms [18] and aromatic amino 
acid metabolism [19] with unfavorable outcomes. 
Increased quinolinic acid, the final product of the 
tryptophan-kynurenine pathway, has been associated 
with the inflammatory response due to the infiltration 
of macrophages and the activation of microglia in the 
CNS [20]. Higher level of quinolinic acid among sTBI 
patients with unfavorable outcomes and mortality may 
indicate the possibility of elevated macrophage-derived 
(or microglia-derived) excitotoxins in the contribution 
of secondary injury to poor outcome [20, 37]. In addi-
tion, day 4 increased NAA and phenylalanine, two well-
known neurotransmitters in patients with unfavorable 
outcomes, may be associated with the alteration of 
osmolality and the catecholaminergic mechanism of 
injury [38]. The current study also shows the associa-
tion of day 1 hyperglycemia and increased lactate with 
poor outcomes. Hyperglycemia and hyperlactatemia 
have been previously shown to be potential predictors 
for the prognosis of unfavorable TBI outcomes [39–
41]. Mondello et  al. (2022) found that 4 glycans were 
potentially correlated with TBI outcomes whereas two 
glycans significantly increased in patients with unfa-
vorable outcomes (GOSE ≤ 4) and 2 glycans increased 
in patients with favorable outcomes. This study also 
showed a correlation between the increased glycans 
and mass lesions and decompressive craniectomy [42]. 
While in agreement with earlier studies, our findings 
add new information to understanding complex meta-
bolic phenotypes for the prognosis of outcomes of 
sTBI that can help address possible therapeutic targets. 
Hence the correlation of increased lysoPCs, saturated 
and unsaturated long-chain fatty acids and aromatic 
amino acids with unfavorable outcomes suggest that 
anti-lysophosphatidylcholines and fatty acids may help 
to decrease the demyelination [43], neuroinflammation 
and enhance mitochondrial functions [44]. The proper 
balance of aromatic amino acids may enhance neuro-
chemical repairs and cognitive performance and help 
decrease ICP [45].

Current findings provide novel evidence of targeted 
metabolomic profiling for the prognosis of short- and 
long-term GOSE outcome using serum samples at days 1 
and 4 post-injury. A combination of amino acids, organic 
acids, fatty acids, and clinical and CT findings as vari-
ables were found to prognosticate the GOSE outcome of 
sTBI among adult patients quite well. The current results 

show that the metabolite changes associated with severe 
brain injury at days 1 and 4 can predict outcomes at 3 and 
12 months. It is believed that daily serial sampling from 
day 1 to day 7 and day 14 or even later will provide more 
descriptions of metabolite changes and metabolic phe-
notypes to determine the outcome of sTBI in addition to 
understanding metabolite biomarker trajectories during 
the progression of brain damage, neuroplastic and thera-
peutic interventions.

Our findings support the notion that metabolomics is 
a powerful tool for understanding the complexity of the 
metabolic network of post-TBI pathogenic changes and 
that it may be useful to follow clinically relevant biomark-
ers that are monitored over time. These biomarkers may 
be used to evaluate the effectiveness of interventions or 
treatments supporting personalized treatments based on 
an individual’s specific metabolic phenotype. Stimulation 
or inhibition of specific metabolic pathways may be the 
pharmacological approaches that can change the level of 
certain metabolites leading to reduced injury or a faster 
recovery resulting from utilizing specific selected treat-
ment tools.

Targeted analysis of a limited number of metabolites 
in combination with more rapid (bedside-based) and 
improved analytical methods, especially mass spectrom-
etry, will enable new tools to be utilized for discussions 
in clinical settings. This may dramatically reduce the 
time spent and the costs involved in making wise clini-
cal decisions. The application of point-of-care devices 
and microfluidics can facilitate monitoring metabolite 
biomarkers for diagnostic, prognostic, and therapeutic 
purposes.

Limitations of the current study include: a relatively 
small sample size, not all patients had GOSE outcomes 
measured (several died or lost to follow-up), and there 
was a skewed cohort toward males (not uncommon in 
TBI studies). A larger and more gender-balanced cohort 
will be needed to validate our findings. The use of dichot-
omized GOSE, rather than using the full ordinal GOSE 
scale for our outcome models, was done because the 
small sample size would not allow the use of the full ordi-
nal GOSE scale for statistical predictability. A larger study 
allowing the use of the full ordinal GOSE scale may allow 
for underestimating the role of other metabolites in the 
prediction of outcome and may help uncover any non-
linearity between metabolites and GOSE outcome [46]. 
Sliding dichotomous outcome assessment is an alterna-
tive to the traditional dichotomous outcome assessment 
that may be associated with an increase in precision and 
prevent the risk of making overgeneralizations. It can 
provide a more precise and comprehensive way to under-
stand the complex relationships in sTBI prognosis in 
clinical trials. It can help researchers and clinicians better 
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understand the diversity and individual differences lead-
ing to an improved prognosis of outcomes [24, 47].

It is controversial what role blood and blood prod-
uct transfusion in trauma care plays in the metabolites 
found in serum. In this study, 15 patients had blood or 
blood product transfusion between 1 to 4 units. The 
transfusion was performed for 8 out of 15 patients 
after day 1 post-injury and for 2 patients after day 4 
post-injury (thus not affecting measured metabolites), 
however, the impact on serum metabolites is uncer-
tain for those samples collected after transfusion. Some 
patients were lost to follow-up in this study. How this 
affected the results of this study is unknown, however, 
further analysis of patient’s demographics and clini-
cal symptoms on admission showed a random effect 
of those patients lost to follow-up (i.e., there was no 
systematic loss to follow-up noted). Despite these lim-
itations, our study shows great promise in using metab-
olomics to evaluate sTBI, particularly for prognostic 
assessment. In this study, the majority of patients (56%, 
Additional file 1: Tables S9 and S10) with sTBI did not 
have polytrauma. However, we did not exclude pol-
ytrauma patients due to the small sample size. This 
may add some heterogeneity to the data, but we were 
still able to see significant differences in metabolites 
that correlate closely with GOSE outcome. There was 
no separate analysis of the patients with polytrauma 
versus the patients with an isolated head injury. Pol-
ytrauma poses a challenge to TBI biomarker discovery 
due to the complexity and heterogeneous nature of 
the injuries involved. Polytrauma in TBI is associated 
with heterogeneity in the injury profile due to different 
injury severity, including orthopedic injuries, thoracic 
trauma, and abdominal injuries. These heterogeneities 
may influence the release and potency of different TBI-
specific biomarkers (including metabolites). Under-
standing the impact of polytrauma on the expression 
and kinetics of TBI biomarkers is crucial for effective 
research and monitoring [48]. Polytrauma associated 
with confounding factors can affect biomarkers that 
are strongly related to several disease processes such as 
inflammation or tissue damage and the interpretation 
of results in severe TBI research. These variables are 
not the primary focus of this study but may affect both 
biomarker levels and outcomes of interest. It is impor-
tant to consider and address these factors to ensure the 
accuracy and reliability of biomarker testing in sTBI. 
These confounding factors include the various factors 
of TBI, such as the cause of the injury (accidental falls 
and motor vehicle accidents), the location of the injury, 
and the characteristics of the patient (age, sex, and 

pre-existing conditions). Time from injury is important 
to capture biomarker levels in TBI that change over 
time [49]. Certain biomarkers become more important 
during different stages of injury and recovery. Con-
founding factors such as comorbidities and co-occur-
ring injuries can exacerbate TBI pathophysiology and 
alter the biomarker profiles. Finally, various factors 
unrelated to TBI, such as environmental exposures, 
genetic variations, and lifestyle (smoking, alcohol con-
sumption, and diet) may also influence biomarker pro-
files [50].

Metabolic profiling of sTBI patient samples beyond 
the first 4 days may potentially enhance the predictabil-
ity of metabolomics to prognosticate outcome and may 
provide more definitive information about molecular 
changes post-sTBI, especially in those who have a favora-
ble outcome of sTBI. Also, applying an untargeted mass 
spectrometry approach may help identify more known 
and unknown metabolites that may be correlated with 
sTBI prognosis and help to define the mechanisms of 
injury more clearly in sTBI (for both primary and sec-
ondary injury).

In this study, the prognostication models showed 
highly predictive and significant separation between 
sTBI patients with unfavorable and favorable outcomes 
using serum metabolomics with remarkable similarities 
between two different metabolomics analytical platforms 
while the patient’s demographics and clinical variables 
were not strong independent predictors of GOSE out-
come. Importantly, the information derived from metab-
olomics and prediction models may be used to stratify 
patients with sTBI that can be applied in future clinical 
trials, especially therapeutic trials as a means of prog-
nostic enrichment. Targeted DI/LC–MS/MS (including 
multiple lipid metabolites) appears to be superior to 1H-
NMR to predict sTBI outcome and this information may 
be useful for future studies.

Conclusion
In summary, the best prognostic metabolomics models 
to predict GOSE outcomes at 3- and 12-months revealed 
increased glycolytic metabolites, hyperglycemia, and lac-
tate on day 1, increased aromatic amino acids (trypto-
phan, tyrosine, and phenylalanine) on day 4, metabolites 
involved in excitotoxicity (increased glutamate), increased 
neuroinflammation metabolites (increased lysoPCs and 
kynurenine) on both days 1 and 4, increased neurobio-
markers (increased NAA and tyrosine), decreased ketone 
bodies, decreased urea cycle metabolites and degradation 
of branched-chain amino acids (BCAA) on day 4.
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