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Abstract 

Background Interpreting point-of-care lung ultrasound (LUS) images from intensive care unit (ICU) patients can 
be challenging, especially in low- and middle- income countries (LMICs) where there is limited training available. 
Despite recent advances in the use of Artificial Intelligence (AI) to automate many ultrasound imaging analysis tasks, 
no AI-enabled LUS solutions have been proven to be clinically useful in ICUs, and specifically in LMICs. Therefore, we 
developed an AI solution that assists LUS practitioners and assessed its usefulness in  a low resource ICU.

Methods This was a three-phase prospective study. In the first phase, the performance of four different clinical user 
groups in interpreting LUS clips was assessed. In the second phase, the performance of 57 non-expert clinicians with 
and without the aid of a bespoke AI tool for LUS interpretation was assessed in retrospective offline clips. In the third 
phase, we conducted a prospective study in the ICU where 14 clinicians were asked to carry out LUS examinations in 
7 patients with and without our AI tool and we interviewed the clinicians regarding the usability of the AI tool.

Results The average accuracy of beginners’ LUS interpretation was 68.7% [95% CI 66.8–70.7%] compared to 72.2% 
[95% CI 70.0–75.6%] in intermediate, and 73.4% [95% CI 62.2–87.8%] in advanced users. Experts had an average accu-
racy of 95.0% [95% CI 88.2–100.0%], which was significantly better than beginners, intermediate and advanced users 
(p < 0.001). When supported by our AI tool for interpreting retrospectively acquired clips, the non-expert clinicians 
improved their performance from an average of 68.9% [95% CI 65.6–73.9%] to 82.9% [95% CI 79.1–86.7%], (p < 0.001). 
In prospective real-time testing, non-expert clinicians improved their baseline performance from 68.1% [95% CI 57.9–
78.2%] to 93.4% [95% CI 89.0–97.8%], (p < 0.001) when using our AI tool. The time-to-interpret clips improved from a 
median of 12.1 s (IQR 8.5–20.6) to 5.0 s (IQR 3.5–8.8), (p < 0.001) and clinicians’ median confidence level improved from 
3 out of 4 to 4 out of 4 when using our AI tool.

Conclusions AI-assisted LUS can help non-expert clinicians in an LMIC ICU improve their performance in interpreting 
LUS features more accurately, more quickly and more confidently.
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Background
In recent years, point-of-care ultrasound (POCUS) has 
proved to be a useful bedside imaging technique for 
the assessment of critically ill patients for both diagno-
sis and therapeutic management [1–3]. LUS does not 
expose patients to radiation and has been shown to be 
more sensitive and specific in the diagnosis of many 
pulmonary pathologies when compared to chest x-ray 
(CXR) [4], hence the potential for application of LUS in 
low- and middle-income countries (LMICs) is high [5, 
6].

Respiratory failure due to infectious disease is one the 
most common reasons for ICU admission in LMICs, 
for example, due to dengue, sepsis, or malaria and more 
recently Covid-19. In severe cases, progression to Acute 
Respiratory Distress Syndrome (ARDS) can occur, which 
has a high mortality, and leaves survivors with signifi-
cant pulmonary morbidity [7–9]. LUS protocols such 
as the BLUE protocol and the FALLS protocol [10] are 
designed to assist doctors with the diagnosis and man-
agement of pulmonary and cardiac conditions. The Kigali 
modification of the Berlin ARDS criteria [11] has helped 
to diagnose ARDS in resource-limited settings by using 
ultrasound instead of CXR or Computed Tomography 
(CT) which are often unavailable in these settings. How-
ever, LUS is operator-dependent and requires extensive 
training for image acquisition and interpretation. The 
lack of qualified ultrasound professionals and the pau-
city of training programs are significant obstacles to the 
implementation of LUS in LMIC ICUs.

Artificial intelligence (AI), particularly deep learning, 
has made substantial advances in ultrasound imaging 
analysis during the last decade. For LUS, most exist-
ing work is limited to AI-recognition of a single artefact 
(B-lines), or, more recently, multi-class classification for 
a specific lung disease, focusing on COVID-19 [12–17]. 
Still, the implementation and validation of developed 
algorithms in clinical settings remains very limited and is 
focused mainly on fetal and cardiac ultrasound [18–20].

In the case of LUS there are, to date, no published 
investigations on real-time deployment of AI-enabled 
tools to recognise multiple LUS patterns. In addition 
to improving accuracy, automatic recognition can help 
improve confidence in, and reduce the time spent by 
the clinician on, image interpretation, especially where 
resources are limited [21].

For these reasons, our study aimed to evaluate a real-
time AI-ultrasound system designed to detect five com-
mon LUS patterns relevant to LMIC ICU clinicians. 
Building upon our previous AI methodology work, in 
this study, we evaluated the clinical need and assessed the 
utility of AI-enabled LUS in an ideal offline scenario fol-
lowed by real-time clinical practice.

Methods
Our study was carried out in Vietnam in three phases. 
In the first phase we confirmed the use-case for our tool 
and set a minimum performance target for the AI sys-
tem. This was an online interactive survey of participants 
from multiple hospitals in Vietnam. The second and third 
phases assessed the use of the AI tool and were carried 
out at the Hospital for Tropical Diseases (HTD) Ho Chi 
Minh City. In this study we deliberately chose to focus 
on the non-expert clinician in phase 2 and 3, as there 
are currently few experts or advanced users, and inex-
perienced clinicians are the target users for our tool. The 
study was approved by the Scientific and Ethical Com-
mittee of the Hospital for Tropical Diseases and the 
Oxford Tropical Research Ethics Committee. All partici-
pants gave written informed consent.

Phase 1: baseline characterization of user performance 
in LUS interpretation without AI support
An online survey was completed by 276 participants of 
an online LUS training course attended by doctors from 
multiple centres around Vietnam on September 4th, 
2021. The level of expertise was self-assessed by clini-
cians using four pre-defined categories: (1) beginners, 
defined as “just know about LUS but have not practiced 
in patients”, (2) intermediate, a clinician who has been 
carrying out LUS (< 2 times/week) but have not used the 
findings for clinical assessment, (3) advanced, a clinician 
who uses LUS in daily practice and its findings are used 
for clinical assessment, and (4) expert, a clinician who 
specialised in lung ultrasound and has more than 5 years’ 
experience. The participants were asked to identify the 
findings in a series of 10 LUS clips from adult patients 
hospitalized with dengue shock and septic shock display-
ing A-lines, B-lines, Confluent B-lines, Consolidation and 
Pleural Effusion (2 of each) given in a set order (samples 
are shown in the Additional file  1: Fig. S1). Responses 
were compared with the expert-defined labels consist-
ent with our data curation process. All clips were sourced 
and labelled with agreement by three ultrasound-trained 
clinicians and one expert.

Phase 2: development and clinical validation 
of the real‑time AI‑assisted LUS framework (RAILUS) 
in controlled environment
In this phase, we evaluated the impact of our bespoke 
LUS AI system on clinicians’ performance in a controlled 
environment, using a set of images already obtained by 
LUS experts. Our RAILUS (Real-time AI-assisted LUS) 
system is described in greater detail in the Additional 
file 1 (Table S1, Table S2, Fig. S2, Fig. S3) and consists of 
an AI model integrated into the PRETUS platform (Fig. 
S4) [22].
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Briefly, the system provides continuous real-time 
prediction through a laptop and can be used in both 
pre-recorded LUS clips and the real-time clinical envi-
ronment with clinicians carrying out the LUS exami-
nation, with the ultrasound machine’s video output 
connected to the laptop (Fig.  1). RAILUS also captures 
the user prediction, model prediction, time-to-interpret, 
and the confidence of the users, and can be used in any 
ultrasound machine with a video output port.

We evaluated the performance of RAILUS in a con-
trolled environment in workshops for 57 non-expert cli-
nicians in three different clinical settings (tertiary referral 
centre, COVID-19 field hospital and academic ventilation 
training course). Participants were given 1  h of training 

to become familiar with the RAILUS software then asked 
to interpret LUS videos (as in phase 1) firstly, without 
the RAILUS tool and then with the RAILUS tool (par-
ticipants were blinded to the AI-assisted interpretation). 
Reponses were used to calculate the average accuracy of 
the interpretation against expert-defined labels.

Phase 3: real‑time implementation of RAILUS software 
in critically ill patients
Real-time evaluation was carried out prospectively by a 
subset of non-expert clinicians from Phase 2 who carried 
out LUS with and without the AI system in the Emer-
gency Department or on ICU patients at the Hospital 
for Tropical Diseases Ho Chi Minh City. Eligible patients 

Fig. 1 Real-time AI-assisted LUS framework (RAILUS)



Page 4 of 8Nhat et al. Critical Care          (2023) 27:257 

were adults aged ≥ 18 years with dengue shock admitted 
between December 2021 to February 2022. Patients who 
were allergic to ultrasound gel or had open wounds on 
their chest were excluded. This study was approved by the 
Oxford Tropical Research Ethics Committee (OxTREC) 
and the HTD Institutional Review Board. Patients 
underwent LUS scans by non-expert clinicians who had 
received 1 h of training similar to above. Participating 
clinicians were randomly assigned to perform the LUS 
scans on patients following a standard 12 zone LUS pro-
tocol with or without the RAILUS software (Additional 
file 1: Fig. S5). When assigned to the non-AI group, the 
AI-assisted interpretation was turned off. A LUS expert 
then performed the same 12 zone scan on the same 
patient within 2 h of the non-expert clinicians perform-
ing their LUS scans. To assess whether each scan was of 
adequate diagnostic quality, we performed an independ-
ent expert validation (blinded to whether the study was 
performed using the AI tool or not). To evaluate usability, 
a questionnaire was administered to the clinicians at the 
end of the procedure. The full questionnaire can be found 
in Additional file 1: Table S4 and Table S5.

Results were evaluated to quantify the accuracy of the 
interpretation against the expert, the time required to 
interpret single lung zones, and the clinicians’ perceived 
confidence in their interpretation (from 1 to 4. with 1 
= not confident and 4 = very confident).

Statistical analysis
To assess the performance of the clip classification task, 
we assessed (1) overall accuracy, calculated as the num-
ber of correctly classified clips as a fraction of the total 
number of clips; (2) average accuracy, calculated as the 
average over all lung pathologies of per-pathology accu-
racy; (3) F-score; (4) precision and (5) sensitivity (recall). 
Confusion matrices were calculated and reported. The 
discriminative variable of demographic information was 
reported as a percentage. To compare the clinicians’ per-
formance with and without our AI tool, we utilized con-
fusion matrices with the horizontal axis and vertical axis 
corresponding to predicted label and true label, respec-
tively. The proportion of clips that were accurately classi-
fied are reported with 95% confidence intervals (95% CI).

Results
User performance in LUS interpretation without AI support 
(phase 1)
The demographic information of the clinicians and prin-
cipal challenges encountered are provided in Additional 
file  1: Tables S6 and S7. The majority (194/276, 70%) of 
clinicians identified themselves as beginners, and there 
were very few experts (4/276, 1%). Most clinicians identi-
fied “image interpretation" as the main challenge.

The unassisted video classification results are shown in 
the confusion matrices in Fig. 2 (showing total count and 
percentage). Experts showed excellent ability to accu-
rately classify LUS clips. For all other clinician catego-
ries, there was more difficulty in differentiating A-lines, 
B-lines and confluent B-lines, and relative ease in identi-
fying consolidation and pleural effusion.

Horizontal and vertical axis show predicted label and 
expert-defined label, respectively. The numbers in each 
cell indicate total count (percentage of total). Cells are 
colored by percentage.

Interestingly, although the average accuracy was corre-
lated to the level of expertise (beginners: 68.7% (95% CI 
66.8–70.7%), intermediate 72.2% (95% CI 70.0–75.6%), 
advanced 73.4% (95% CI 62.2–87.8%), and experts 95.0% 
(95% CI 88.2–100.0%)), (p < 0.001), the difference in per-
formance between beginners, intermediate and advanced 
users was relatively small (< 5%).

Performance and clinical validation of the real‑time 
AI‑assisted LUS framework (RAILUS) in  a controlled 
environment (phase 2)
The performance of the proposed AI model is shown in 
the Additional file  1: Table  S2 and Fig. S3. The demo-
graphic information of the 57 non-expert clinicians is 
provided in the Additional file 1: Tables S6. The perfor-
mance of clinicians in identifying the LUS clips presented 
to them was improved using the RAILUS software, with 
a mean accuracy of 82.9% (95% CI 86.7–79.1%), com-
pared to 68.9% (95% CI 65.6–73.9%), (p < 0.001) (Fig. 3). 
The accuracy of all classes increased significantly except 
for the case of B-lines classification, which reduced from 
63% to 59% when using RAILUS. The performance of the 
subset of 14 clinicians who participated in both phase 2 
and phase 3 was shown in the Additional file 1: Fig. S6.

Real‑time implementation of RAILUS software in critically 
ill patients (phase 3)
In total, seven patients with dengue shock were recruited 
for real-time testing of the RAILUS software. Additional 
file 1: Table S3 and Table S6 show the characteristics of 
the patients and the 14 non-expert clinicians, respec-
tively. Overall, 26 LUS exams were carried out, result-
ing in 168 LUS videos (4 s each) performed with the AI 
tool and 144 LUS videos performed without the AI tool. 
Image quality was acceptable for all scans. No adverse 
events occurred during scanning.

Accuracy of image identification was higher in those 
using the RAILUS AI tool than those using the standard 
LUS technique: 93.4% (95% CI 89.0–97.8%) compared to 
68.1% (95% CI 57.9–78.2%), (p < 0.001). Performance was 
better in all classes for clinicians using our AI tool com-
pared to those without AI assistance as shown in Fig. 4. 
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In particular, A-line detection accuracy rose from 74 to 
98%, and Confluent B-line detection accuracy rose from 
6 to 92%.

The time taken to interpret one LUS clip was shorter 
when using the RAILUS software compared to the stand-
ard LUS technique: a median of 5.0 s (IQR 3.5–8.8) com-
pared to 12.1 s (IQR 8.5–20.6) (p < 0.001). In addition, the 
median confidence level of clinicians improved from 3 
out of 4 to 4 out of 4 when scanning patients using the 
AI tool.

Overall, most operators found the tool usable, use-
ful, and beneficial. Usability questionnaires showed an 
overall positive impression of the RAILUS tool. Most 
clinicians (13/14, 93%) found the AI-assisted tool useful 

in the clinical context and wanted to use the tool in the 
future (12/14, 86%). 64% (9/14) of clinicians thought the 
tool was useful for both real-time and post-exam evalua-
tion of LUS imaging while only 7% (1/14) thought it was 
only useful for post-exam evaluation. Interestingly, 71% 
(10/14) of clinicians wanted the radiologist/expert to 
re-evaluate their interpretation with the AI tool. More-
over, 64% (9/14) of clinicians felt more confident when 
performing LUS with the AI tool, compared to only 7% 
(1/14) being most confident without the AI tool.

Regarding the concerns of clinicians, the issues of legal 
responsibility (9/14, 64%) and data privacy (4/14, 28%) 
were identified. More details about the usability survey 
can be found in the Additional file 1: Figure S7.

Fig. 2 The results of the manual video classification of clinicians with 4 levels of expertise
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Discussion
In this paper, we have evaluated an AI-assisted LUS 
system in a resource-limited ICU setting. To this end, 
we initially assessed the baseline performance of clini-
cians in a LUS image classification task. Our results 
show that there is a significant gap between beginners, 
intermediate, advanced clinicians, and experts in LUS 
interpretation, particularly in B line interpretation. This 
is consistent with our survey where the majority of the 
participants stated that image interpretation was their 

most significant challenge in performing LUS. This per-
formance gap and the challenging nature of this task may 
prevent non-expert clinicians from carrying out LUS 
examinations in practice. In low resource settings like 
Vietnam, there are very few experts or even advanced cli-
nicians in LUS. As our survey in phase 1 showed, across 
Vietnam, there were very few advanced users or experts, 
hence the need for our tool. Even in our setting for phase 
3 of this study—a large teaching hospital- there are no 
experts in LUS. Developing an AI tool that can assist 

Fig. 3 Confusion matrices of clinicians with, and without RAILUS in a controlled environment using expert-acquired clips

Fig. 4 Confusion matrices of clinicians with and without RAILUS in real-time
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inexperienced users in this setting could be highly benefi-
cial for patient outcomes and improving quality of care.

A crucial aim of our study was to investigate whether 
operators improved their baseline performance when 
assisted by our RAILUS AI system. Our study showed 
that performance improved by 15% when using RAI-
LUS in a controlled environment (with expert-obtained 
clips), but by 25% when using RAILUS prospectively in 
real-time. Notably, this represented a level exceeding the 
baseline set by advanced clinicians in Phase 1. In addi-
tion, interpretation was approximately twice as fast when 
using the AI system. Of note, the clinicians using the 
tool were those already involved in routine care of these 
patients (imaging staff, infectious disease doctors and 
ICU staff) but they still showed a significant improve-
ment in performance with the AI tool in both phases 
2 and 3. The performance of clinicians in interpreting 
B-lines reduced slightly in the second phase. We note 
that this is mainly due to difficulty distinguishing B lines 
from confluent B lines. Our User Interface (UI) allowed 
several possibilities to be simultaneously displayed, and 
commonly this meant that both B line and confluent B 
lines were predicted for the same clips (although with 
varying degrees of certainty as represented by the green 
line in the UI—Additional File 1: Figure S4). The ultimate 
decision was left with the clinician, and hence this intro-
duces interesting questions about trust in AI and clinical 
decision making. In phase 3 there were only 2 loops with 
B-lines, thus a small sample size from which to make def-
inite conclusions in this sub-sample, and also we cannot 
exclude other contextual influences on decision making. 
In future studies, sample size calculations should take the 
incidence rate of each lung pattern into account and also 
make efforts to understand better clinicians’ reasons for 
following AI predictions (or not).

Finally, these quantitative results were supported by 
the post-experiment surveys, which revealed that the AI-
assisted tool was felt to be useful in the clinical context 
and most clinicians confirmed they were keen to use the 
tool in the future. However, the concerns raised about 
data privacy and legal responsibility when using an AI-
assisted tool are valid. As the application of AI in ultra-
sound is in its infancy, there are relatively few regulations 
on how to legally implement it in routine healthcare 
practice or who will be response for AI derived medical 
errors, particularly in low resource settings. By improv-
ing the accuracy, speed and confidence of bedside LUS, it 
might help clinicians in ICUs in LMICs to better manage 
critically ill patients with various lung pathologies. This 
could especially benefit the monitoring of patients dur-
ing fluid resuscitation where fluid balance is critical to 
achieve a stable haemodynamic status without causing 
fluid overload e.g., pulmonary oedema.

We believe our study represents an important step 
towards real-time implementation of AI in LMIC ICUs, 
but nevertheless has some limitations. The dataset 
used is from patients with severe dengue or sepsis so it 
remains to be seen how these results would translate to 
patients with other diseases. Furthermore, while we have 
designed our system to be agnostic to ultrasound devices, 
clinical validation of the tool on other types of device 
(such as portable devices) is yet to be performed. Our 
study focused on the individual findings of LUS. Clini-
cal practice requires a more nuanced interpretation of 
these findings for optimal benefit, for example, whether 
the confluent B-lines and consolidations are focal or non-
focal to discriminate between pneumonia or pulmonary 
edema. For the first phase, the order of questions in the 
survey was not randomized but it was distributed elec-
tronically to a pool of participants distributed across 
Vietnam who could not share the survey with each other. 
In terms of clinical validation, the study did not rand-
omize the patients to either use the AI tool or not. Future 
studies should explore the potential benefits of AI tools 
for advanced or expert users, the regulatory, ethical and 
cultural issues of the clinical use of AI methods in dif-
ferent healthcare settings. In addition, further technical 
development including but not limited to AI interpret-
ability, AI fairness, quantification of pleural effusion, or 
more complex LUS patterns such as pneumothorax can 
be attractive fields of research.

Conclusions
This is the first study of real-time implementation of AI-
assisted LUS interpretation in critically ill patients, dem-
onstrating the feasibility of our system for non-expert 
clinicians, with limited LUS experience, to acquire and 
interpret lung ultrasound in critically ill patients.
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