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Dear editor,
During acute respiratory distress syndrome (ARDS), esti-
mation of transpulmonary pressure (PL) using esophageal 
pressure has been proposed to customize the positive 
end-expiratory pressure (PEEP) in order to avoid alveo-
lar collapse (i.e., positive end-expiratory PL [PL, exp]) while 
limiting the stress applied to the lung (i.e., limit end-
inspiratory PL below 20–25  cmH2O) [1]. Regarding the 
latter, the calculation of end-inspiratory PL based on the 
elastance ratio method (PL,end-insp,ER) is usually preferred 
because it has been shown to better approximate the 
PL of the non-dependent areas than the direct method 
(PL,end-insp,direct) [2]. However, the elastance ratio method 
relies on the assumption that PL is zero at atmospheric 
pressure, which may be inappropriate in some patients. 
We herein report such an illustrative case.
A 30-year-old obese woman (BMI 52.5  kg.m−2) with 
past medical history of HIV infection was admitted to 
the Intensive Care Unit for a moderate ARDS related to 
undocumented community-acquired pneumonia. After 

intubation, tidal volume was set at 6.6  mL/kg of pre-
dicted bodyweight and respiratory rate at 34 cycles/min. 
With a PEEP of 6   cmH2O, the plateau pressure (PPLAT) 
was measured at 30   cmH2O. However, an airway open-
ing pressure (AOP) of 16   cmH2O [3] was retrieved dur-
ing low-flow insufflation. Chest CT-scan showed bilateral 
alveolar consolidations. To customize ventilator’s set-
tings, an esophageal catheter was inserted and electrical 
impedance tomography (EIT, Enlight 1800, TIMPEL, São 
Paulo, Brazil) was recorded during decremental PEEP 
titration from 30 to 6  cmH2O, in steps of 2  cmH2O, with 
constant tidal volume and flow rate. Esophageal bal-
loon (Nutrivent, Sidam, Italy) was filled with 4 mL of air. 
Proper position and filling were verified by chest radio-
graph, the presence of cardiac artifacts on  PES record-
ing, and a ΔPES/ΔPAW ratio induced by gentle chest 
compressions during end-expiratory occlusion at PEEP 
18  cmH2O at 0.99 [1]. At each step, the following param-
eters were collected or calculated according to standard 
formulas: PPLAT (measured after 0.5  s end-inspiratory 
occlusion), total PEEP  (PEEPTOT, measured after 2 s end-
expiratory hold), lung driving pressure (ΔPL, computed 
as PL,end-insp,direct – PL,exp) and respiratory system driving 
pressure (ΔPRS, defined as PPLAT – end-expiratory alveo-
lar pressure, where end-expiratory alveolar pressure was 
either  PEEPTOT or AOP, whichever was greater), lung 
compliance (CL) and CRS, PL, exp (defined as end-expir-
atory alveolar pressure—Pes,exp, where end-expiratory 
alveolar pressure was either  PEEPTOT or AOP, whichever 
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was greater), PL,end-insp,direct, PL,end-insp,ER, stress index, and 
the percentage of collapse and overdistension estimated 
by EIT.

During the decremental PEEP titration, PPLAT, PL, exp, 
PL, end-insp, direct, PL, end-insp, ER, and the percentage of over-
distension decreased, while the percentage of collapse 
increased. Consequently, both ΔPRS and ΔPL adopted a 
U-shaped pattern, with a nadir corresponding to a PEEP 
of 24  cmH2O. No significant hemodynamic changes were 
observed.

The PL, exp measurement and EIT assessment of the 
percentage of collapse resulted in a congruent estimate of 
the minimum PEEP required to minimize derecruitment: 

the lowest PEEP associated with positive PL, exp corre-
sponded to the lowest PEEP associated with a percentage 
of collapse < 1% (Fig. 1).

In contrast, PL, end-insp, ER appeared to overestimate the 
risk of overdistension, according to EIT assessment:  PL, 

end-insp, ER reached the upper limit of 20–25   cmH2O for 
a PEEP of 6–18  cmH2O, respectively. However, between 
18 and 24  cmH2O, we found no other marker of overdis-
tension: ΔPRS and ΔPL decreased continuously, the stress 
index remained below 1, and overdistension measured 
by EIT was kept negligible (Fig.  1). Conversely, PL, end-

insp, direct appeared to underestimate the risk of overdis-
tension. In fact, as ΔPL increased between PEEP 24 and 

Fig. 1 Results of the PEEP titration. A collapse indices. Left Y axis, green curve: collapse determined by EIT. Right Y axis, blue curve: end‑expiratory 
transpulmonary pressure. Blue‑dashed horizontal line indicates 0  cmH2O. B Overdistension indices. Left Y axis, orange curve: overdistension 
determined by EIT. Left Y axis, red curve: transpulmonary driving pressure (ΔPL). Right Y axis, blue curve: end‑inspiratory, elastance derived 
transpulmonary pressure (PL, end‑insp, ER); Right Y axis, green curve: plateau pressure (PPLAT). Blue horizontal‑dashed line indicates 25  cmH2O. On each 
graph, green vertical‑dashed line indicates airway opening pressure; blue vertical‑dashed line indicates the highest set PEEP with elastance derived 
transpulmonary pressure < 25  cmH2O; grey vertical‑dashed line indicates set PEEP with lowest transpulmonary driving pressure; red vertical‑dashed 
line indicates the lowest level of set PEEP associated with positive end‑expiratory transpulmonary pressure, and the lowest level of set PEEP 
associated with minimal collapse by EIT (defined as collapse < 1%)
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30   cmH2O and EIT revealed significant overdistension 
at PEEP 30  cmH2O (17%), PL, end-insp, direct increased from 
eight to 14   cmH2O between these two levels of PEEP, 
suggesting a safe range.

Based on this overall assessment, the PEEP was 
adjusted to 24   cmH2O to mitigate the risk of both col-
lapse and overdistension. Two prone sessions were per-
formed and the patient was weaned from mechanical 
ventilation on day-16.

We herein report a case illustrating that estimating 
end-inspiratory PL using esophageal pressure may sig-
nificantly misjudge the risk of overdistension in obese 
patients. Two non-mutually exclusive explanations could 
account for the discrepancy between PL, end-insp, ER and 
overdistension estimated by EIT in this patient. Firstly, 
since EIT estimates distension and collapse from the 
relative change in pixel-level compliance calculated from 
pixel intratidal variation of impedance and driving pres-
sure, the percentage of overdistension can be altered 
when the PEEP is set below AOP. In the current case, 
overdistension estimated by EIT started several levels of 
PEEP above AOP, lending support to the second explana-
tion, which is that obesity is associated with significantly 
higher end-expiratory pleural pressure [4], a situation 
where the conditions for PL, end-insp, ER interpretation are 
no longer met [5]. In that case, EIT assessment may help 
adjusting PEEP to limit both derecruitment and overdis-
tension. Further studies are needed to determine the con-
sistency of such an observation.
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