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Abstract 

Background A quantitative assessment of pulmonary edema is important because the clinical severity can range 
from mild impairment to life threatening. A quantitative surrogate measure, although invasive, for pulmonary edema 
is the extravascular lung water index (EVLWI) extracted from the transpulmonary thermodilution (TPTD). Severity of 
edema from chest X-rays, to date is based on the subjective classification of radiologists. In this work, we use machine 
learning to quantitatively predict the severity of pulmonary edema from chest radiography.

Methods We retrospectively included 471 X-rays from 431 patients who underwent chest radiography and TPTD 
measurement within 24 h at our intensive care unit. The EVLWI extracted from the TPTD was used as a quantitative 
measure for pulmonary edema. We used a deep learning approach and binned the data into two, three, four and five 
classes increasing the resolution of the EVLWI prediction from the X-rays.

Results The accuracy, area under the receiver operating characteristic curve (AUROC) and Mathews correlation coef-
ficient (MCC) in the binary classification models (EVLWI < 15, ≥ 15) were 0.93 (accuracy), 0.98 (AUROC) and 0.86(MCC). 
In the three multiclass models, the accuracy ranged between 0.90 and 0.95, the AUROC between 0.97 and 0.99 and 
the MCC between 0.86 and 0.92.

Conclusion Deep learning can quantify pulmonary edema as measured by EVLWI with high accuracy.
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Introduction
Pulmonary edema is one of the most common findings 
in chest radiographs [1] and has important clinical con-
sequences. By impeding the gas exchange and reducing 
lung compliance, severe pulmonary edema is potentially 
life threatening [2]. Measuring and monitoring pulmo-
nary edema is useful in many, but especially important in 
critically ill patients.

Technically, the attenuation of X-rays should be pro-
portional to the amount of lung water, and thus, a chest 
radiograph should be a valuable tool in monitoring the 
amount of pulmonary edema. Commonly, radiologists 
rate the severity on a categorical scale. A quantitative 
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measure for pulmonary edema widely used for critically 
ill patients is the extravascular lung water (EVLW) which 
is defined as the amount of water accumulating in the 
lungs outside of the pulmonary vasculature [2]. Meas-
urement of EVLW by transpulmonary thermodilution 
(TPTD), although invasive, shows good correlation with 
the gold standard ex vivo method of gravimetry [3]. How-
ever, mixed results have been reported in the literature 
with the grade of correlation of clinicians’ chest X-ray 
reports or clinicians’ scores to extravascular lung water 
(EVLW), ranging from good [4, 5] over modest [6, 7] to 
poor [8, 9].

Recently Horng et al. used a radiologist-based categori-
cal four grade severity score to train a deep learning clas-
sification system on chest radiographs and report a high 
performance [10]. To our knowledge, our present study 
is the first to explore the usefulness of deep learning in 
predicting the quantitative pulmonary edema measure 
EVLW from chest radiographs.

Acquisition of the chest radiographs 
and classification
A total of 471 images from 431 patients were acquired 
between 06/2014 and 09/2022 on two Carestream Health 
DRX-Revolution X-ray machines (120 kV, 0.6 mAs). The 
images were extracted in the jpg format. We used the 374 
images acquired between 06/2014 and 12/2020 as the 
training set and 97 images from 01/2021 to 09/2022 for 
the test set with no patient overlap. We included patients 
who underwent chest radiography and a TPTD meas-
urement within a maximum of 24  h. TPTD measure-
ment was performed as previously reported [11, 12] and 
the extravascular lung water was indexed as previously 
reported (EVLWI, [6]).

Deep learning model
We developed a convolutional neural network for the 
image classification task. For preprocessing, all images 
were resized to 300 × 300 pixels and the pixel values 
were normalized. Data were augmented using cutmix 
[13]. A transfer learning approach with an EfficientNet 
B5 backbone [14] with pretrained weights on ImageNet 
was used. Fine-tuning of the last feature layer was imple-
mented in FastAI [15] using the Adam optimizer and the 
cross-entropy loss function. Training and testing were 
performed on a Nvidia Tesla K80 or T4. A result between 
0 to 0.5 and 0.5 to 1 was used for the binary classification 
of each image. We report the accuracy, micro-averaged 
area under the receiver operator curve in “one vs rest” 
(AUROC) with confidence Interval (CI) and the Mathews 
correlation coefficient (MCC) as outcome measures [16].

Patient characteristics
The patients mean age was 64.1  years, ranging from 23 
to 92  years. There were slightly less females than males 
(37.4%). The patients stayed from 1 to 103  days on the 
intensive care unit (ICU), and the average time on ICU 
was 21.3 days. The mean EVLWI was 14.9 ranging from 
5 to 42.

Results
For the split of the test set with an EVLWI smaller than 
15 and larger or equal to 15 the model reached an accu-
racy of 0.93, the AUROC was 0.98 (CI: [0.98, 1.00]) and 
an MCC of 0.86 (Fig.  1a). For the three class model we 
split the data into bins with an EVLWI from 5 to 11 
(interval notation: [5, 12[), from 12 to 19 ([12, 20[) and 
from 20 to 42 ([20, 42]). The corresponding accuracy 
on the test set was 0.95 (Fig. 1b), the AUROC 0.99 (CI: 
[0.92;0.99]) and MCC was 0.92. For the four-class model 
we choose to split the data randomly into the following 
bins: [5, 8[, [9, 13[, [13, 22[, [22, 44]. The trained model 
reached an accuracy of ACC 0.90 (CI: [0.89; 0.97]), an 
AUROC of 0.99 and an MCC of 0.86 (Fig. 1c). We next 
split the data into five classes in the following manner: 
EVLWI [5, 8[, [8, 12[, [12, 16[, [16, 20[, [20,44]. The accu-
racy by the model was 0.90, the AUROC 0.97 (CI: [0.94; 
0.98]) and the MCC was 0.87 (Fig. 1d). Splitting into six 
or more classes resulted in comparably diminished per-
formance (data not shown), most likely due to the lack of 
training data (On average 63 images in 6 bins).

Discussion
In this study, we sequentially developed a deep learning 
model that accurately quantifies pulmonary edema from 
chest X-ray images. We use the EVLWI measured inva-
sively by TPTD [2] as ground truth. Our models show 
very good to excellent performances when binning the 
available data up to five classes for the clinically most rel-
evant EVLWI range from 6 to 20.

Deep learning has been used in the literature to clas-
sify various pathologies from chest radiographs. For 
example, Majkowska et  al. use a machine learning 
approach to automatically detect four abnormal find-
ings in X-ray images [17]. For the detection of airspace 
opacity, which includes pulmonary edema, an AUROC 
of 0.91 to 0.94 is reported. Jarrel et al. use a deep learn-
ing approach to diagnose the presence of absence of 
congestive heart failure (CHF) from chest X-rays. The 
authors use a cutoff of 100  ng/L BNP as a marker for 
CHF and find an AUROC of 0.82 [18]. Horng et  al. 
not only diagnose the presence but also quantify lung 
edema with deep learning [10]. However, the authors 
use radiology reports as ground truth to categorize 
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training/test data into 4 classes ranging from “0: no 
edema” to “3: alveolar edema” and an AUC of 0.88 in 
2vs0 and only 0.69 in 2vs1.

We see our study as an expansion of these previous 
works. In our opinion, there are several strong points in 
our approach. Pulmonary edema presents as a continu-
ous value. We could further increase the resolution of the 
classification in a clinically relevant range in comparison 
to Horng et al.’s.

More importantly, our study uses invasively measured 
EVLWI values as the ground truth instead of subjectively 
classified radiological estimations of pulmonary edema. 
While there generally is a good correlation between the 
gold standard of gravimetry and EVLWI [3] for measur-
ing extravascular lung water, there are mixed results in 
the literature for correlating classical qualitative or semi-
quantitative radiological scores and EVLWI. Chryso-
poulo et  al. find a good correlation between a 5 scale 
severity score and EVLW [19]. Brown et al. report a mod-
est positive correlation of clinician-based chest X-ray 
severity score and EVLW [9]. Halperin et  al. describe a 

modest to poor correlation between a clinical edema 
score and an EVLW measurement [7].

There are also strong points from a conceptual view. 
While measuring lung water by TPTD needs a dedicated 
catheter and equipment, our method uses chest X-rays, 
which is a widely available tool. On the one hand, this 
could allow using EVLWI guided fluid therapy on inten-
sive care units where TPTD is not available. On the other 
hand, this approach could enable access to EVLWI surro-
gate measurement for a much larger patient cohort. One 
could speculate for example guiding the diuretics dose by 
EVLWI in patients with heart failure.

There are limitations to our study too. While Jar-
rel et  al. use 103,489 and Horng et  al. 369,071 X-rays 
to test and train their models we could only use 471 
images. This is due to the fact, that thermodilution is an 
invasive modality, feasible almost only in intensive care 
units. Furthermore, we tested our model only on a sin-
gle institution’s critically ill patients. Thus, our results 
need external confirmation, despite promising results 
of the above-mentioned studies and the prediction of 

Fig. 1 Precise prediction in the test set split into two, three, four or five classes. a EVLWI 0: < 15, 1: ≥ 15; ACC 0.93, AUROC 0.98, MCC 0.86; b EVLWI 
0:[5, 12[, 1:[12, 20[, 2:[20, 44]; ACC 0.95, MCC 0.92, c EVLWI 0:[5, 8[, 1:[9, 13[, 2:[13, 22[, 3:[22, 44]; ACC 0.90, MCC 0.86; d EVLWI 0:[5, 8[, 1:[8, 12[, 2:[12, 16[, 
3:[16, 20[,4:[20,44]; ACC 0.90; MCC 0.87
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semi-quantitative scores. Finally, only imaging data 
acquired on our in-house portable X-ray systems was 
used in this study. Therefore, model generalization may 
require not only external imaging data but also additional 
training with imaging data acquired on standard up right 
X-ray systems.

Despite these limitations our study demonstrates, that 
deep learning is a useful tool for the quantification of pul-
monary edema with a meaningful resolution with high 
accuracy.
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