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Abstract 

Background ICU risk assessment tools, routinely used for predicting population outcomes, are not recommended 
for evaluating individual risk. The state of health of single patients is mostly subjectively assessed to inform relatives 
and presumably to decide on treatment decisions. However, little is known how subjective and objective survival 
estimates compare.

Methods We performed a prospective cohort study in mechanically ventilated critically ill patients across five Euro‑
pean centres, assessed 62 objective markers and asked the clinical staff to subjectively estimate the probability of 
surviving 28 days.

Results Within the 961 included patients, we identified 27 single objective predictors for 28‑day survival (73.8%) 
and pooled them into predictive groups. While patient characteristics and treatment models performed poorly, the 
disease and biomarker models had a moderate discriminative performance for predicting 28‑day survival, which 
improved for predicting 1‑year survival. Subjective estimates of nurses (c‑statistic [95% CI] 0.74 [0.70–0.78]), junior 
physicians (0.78 [0.74–0.81]) and attending physicians (0.75 [0.72–0.79]) discriminated survivors from non‑survivors at 
least as good as the combination of all objective predictors (c‑statistic: 0.67–0.72). Unexpectedly, subjective estimates 
were insufficiently calibrated, overestimating death in high‑risk patients by about 20% in absolute terms. Combining 
subjective and objective measures refined discrimination and reduced the overestimation of death.

Conclusions Subjective survival estimates are simple, cheap and similarly discriminative as objective models; how‑
ever, they overestimate death risking that live‑saving therapies are withheld. Therefore, subjective survival estimates of 
individual patients should be compared with objective tools and interpreted with caution if not agreeing.
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Introduction
The assessment of risk, or predictive modelling, is a fun-
damental strategy across nearly all medical disciplines 
[1–3], including respiratory conditions like community-
acquired pneumonia [4], asthma [5] and COPD [6]. 
Similarly, risk assessment has several implications on 
different levels of intensive care medicine. For example, 
predictive modelling can evaluate population outcomes, 
such as intensive care unit (ICU) benchmarking, to assess 
whether the observed mortality matches predicted mor-
tality. Furthermore, predictive models could be employed 
for personalised applications ranging from identifying 
patients at risk for preventive measures and clinical tri-
als over ICU allocation strategies in resource-limited set-
tings to severity tailored treatment regimens.

Numerous intensive care scoring systems like the 
Acute Physiology and Chronic Health Evaluation 
(APACHE) Score [7] and the Simplified Acute Physiol-
ogy Score (SAPS) [8] were developed over the last dec-
ades, many of which have been validated across multiple 
patient populations [9]. Subsequently, several risk tools 
have been updated with improved algorithms and addi-
tional predictors [10, 11]. More recently, due to the surge 
of big data and machine learning, new well-performing 
algorithms have been proposed [12, 13].

Due to limited score performance and evidence sup-
porting severity guided treatment approaches, physi-
cians rarely use ICU scores on individual patients. Still, to 
inform relatives, physicians subjectively estimate patient 
outcomes based on clinical parameters, experience and 
personal factors. Whether accurate or not, these subjec-
tive estimates may affect treatment decisions, such as life 
support limitations [14]. While subjective clinical assess-
ments are easy to obtain and may inform about patho-
physiological features difficult to capture elsewhere, they 
are also prone to bias.

This prospective international study addresses the 
strengths and limitations of subjective and objective sur-
vival prediction markers in mechanically ventilated criti-
cally ill patients. We assess potential predictors across 
groups of patient characteristics, diseases and biomarkers 
individually, combine them in models and validate these 
models for predicting short- and long-term outcome. 
Finally, we propose how combined subjective probability 
estimates and objective markers synergise the strengths 
of different prognostic assessments.

Methods
Study subjects
BioVent (Biomarkers for mechanically ventilated 
patients) is an investigator-initiated prospective longi-
tudinal cohort study, performed at five ICUs in Austria 

(Vienna General Hospital), France (Groupe Hospitalier 
Pitié-Salpêtrière) and Switzerland (University Hospital 
Basel, Kantonsspital Liestal, University Hospital Zürich). 
The study was registered (ISRCTN59376582), approved 
by the respective institutional review boards, conducted 
in accordance with the Declaration of Helsinki and the 
International Conference on Harmonisation Guidelines 
for Good Clinical Practice, and is reported in accordance 
with the STROBE statement [15, 16]. Written informed 
consent was obtained from the patients’ legal repre-
sentatives. Patients were recruited from treating physi-
cians and study nurses. Critically ill medical and surgical 
patients 18 years or older at the start of mechanical ven-
tilation (ventilated for less than 36 h) were considered for 
study inclusion if they were expected to be mechanically 
ventilated for at least 24 h or were already ventilated for 
12 to maximal 36  h. Between April 2011 and February 
2017, 1313 patients were screened and 961 patients were 
included in the study. A sample size of 450 patients in the 
development and validation cohort, assuming a 28-day 
mortality of 25%, resulted in a power of 90% to detect a 
minimal significant difference in c-statistic (0.6 vs. 0.5) 
with a two-sided alpha of 0.05. Study follow-up was fin-
ished in May 2018. The development cohort (for defining 
a model) and the validation cohort (for model valida-
tion) were set up as defined previously. The first 50% of 
patients per centre (480 patients) were included in the 
development cohort and the last 50% (481 patients) in the 
validation cohort (temporal validation). The study proto-
col did not provide additional information to the clinical 
team and did not interfere with treatment decisions.

Predictors
At the time of study enrolment, 62 potential predic-
tors of outcome were assessed (Additional file  1). 
Events or markers assessed at a later timepoint were 
not integrated into predictive models. Apart from the 
newer biomarkers pro-adrenomedullin (proADM), 
midregional pro-atrial natriuretic peptide (proANP) 
and C-terminal pro-arginine vasopressin (copeptin), for 
which blood was stored and analysed at study end, all 
measures were obtained on the same day and available 
to the responsible medical team. ProADM, proANP 
and copeptin (Brahms, Thermo Scientific Biomarkers, 
Hennigsdorf, Germany) were analysed as described 
previously [17–20]. Predictors were used to calculate 
the simplified acute physiologic score (SAPS) II and 
SOFA. Furthermore, a single nurse, junior doctor and 
attending physician were asked to give an estimate for 
28-day survival, assigning a value on a visual analogue 
scale ranging from 0 (0% 28-day survival probability) to 
100 (100% 28-day survival probability).
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Outcome
The outcome measures 28-day and 1-year survival, and in 
case of death the date of death, were obtained from the 
hospital, patients, family members or the patient’s gen-
eral practitioner.

Details on statistical analysis are provided in the Addi-
tional file 1.

Results
Patients
Among 1313 critically ill mechanically ventilated 
patients, 961 patients were included in five European 
study centres (Additional file  1: Fig. S1). Patients were 
predominantly male (70.1%), had a mean age of 63.8 
(± 15.0) years, a mean SOFA of 8.7 (± 3.4) and were 
admitted to medical and surgical intensive care (45.2% 
and 54.8%, respectively). As defined previously, the first 
50% of patients per centre (n = 480) were included in the 
development cohort; the last 50% formed the validation 
cohort (n = 481). Most parameters were well balanced 

between the two cohorts (Additional file 1: Table S1). In 
total, 252 patients died within 28 days (26.2%, Additional 
file 1: Fig. S2).

Prognostic markers
To evaluate markers for survival prediction, captur-
ing acute and chronic measures of disease and overall 
health, across multiple organ systems, we prospectively 
assessed four groups of potential outcome predictors at 
study inclusion; namely markers of patient character-
istics (6 markers, Additional file  1: Table  S2), diseases 
(20 markers), treatment (5 markers) and biomarkers (31 
markers). Within the markers of patient characteristics, 
a group of disease unrelated markers, age (odds ratio 
[95% confidence interval]; 1.02 [1.01–1.03], p = 0.0008; 
Fig.  1) and weight (0.99 [0.98–1.00], p = 0.016) were 
predictive for 28-day survival. Stronger predictors, 
however, were identified in the other three groups. In 
the diseases group, reflecting mainly the nature of acute 
and chronic diseases, coagulopathy (2.61 [1.61–4.21], 

Fig. 1 Univariate analysis of 62 markers for predicting 28‑day outcome. Potential predictors were pooled into four groups: patient characteristics, 
diseases including acute and chronic conditions, treatment variables and biomarkers. Forest plots represent the associations of single predictors 
with death within 28 days (odds ratios normalised to unit and 95% confidence intervals)



Page 4 of 10Boeck et al. Critical Care          (2023) 27:150 

p = 0.0001) as well as renal (2.29 [1.69–3.10], p < 0.0001) 
and liver disease (2.42 [1.63–3.57], p < 0.0001) were 
the strongest predictors for outcome. Haemodialysis 
(with or without filtration) was the major predictor in 
the treatment group (3.42 [2.32–5.05], p < 0.0001) and 
the overall best single predictor for survival. The larger 
group of biomarkers mainly indicates the patient’s 
acute pathophysiological condition. Next to the newer 
biomarkers proADM and proANP (both p < 0.0001), the 
Glasgow coma scale (0.92 [0.89–0.96], p < 0.0001) and 
especially markers of renal failure were strongly predic-
tive for survival.

Predictor relatedness
We next sought to identify the association of prognostic 
markers. Single markers predictive for 28-day survival 
were correlated and grouped with hierarchical cluster-
ing (Fig.  2). We identified two clusters of predictors. 
One cluster included markers poorly correlating with 
other predictors, presumably reflecting distinct patho-
physiological features not captured by other markers 
(specialised predictors). Examples are markers of respira-
tion, liver disease and the neurological state. The second 
cluster contained highly correlated markers of kidney 
function, acid–base balance and the novel biomarkers 

Fig. 2 Relatedness of survival predictors. To identify predictor relatedness, a correlation matrix (Pearson correlation) of markers associated with 
28‑day survival was generated and ordered via hierarchical clustering (non‑significant correlations are plotted in white). We observed two clusters: 
one cluster with highly related markers such as renal markers and newer biomarkers (generalised predictors in grey); the other cluster consisted of a 
diverse set of predictors with only a minor association to other markers (specialised predictors in black)
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proADM and proANP, likely capturing multiple body or 
disease compartments with broader prognostic informa-
tion (generalised predictors).

Prognostic groups
To improve predictive performance, we combined indi-
vidual objective predictors into models composed of sev-
eral markers. These models were developed using three 
different strategies (logistic regression, lasso regression 
and random forest) in the development cohort. Dis-
crimination (the ability to separate outcomes) and cali-
bration (the agreement between observed and predicted 
outcomes) of the respective models were then tested in 
an independent prospectively assessed validation cohort 
(Fig.  3) [16]. In all predictive models, discriminative 
performance considerably declined from the develop-
ment to the validation cohort. While the logistic model 
performed worst, overfitting was particularly evident 
with the random forest approach. Lasso regression pro-
vided the best calibrated models, and therefore agree-
ment between predicted and observed probabilities 
(Additional file  1: Fig. S3). Models composed of mark-
ers of patient characteristics were not predictive. In 
other models, the discriminative performance increased 
from the treatment (c-statistic across different models: 
0.60–0.61) and disease models (c-statistic: 0.61–0.64) to 
the biomarker models (c-statistic: 0.69–0.71; treatment 
vs. biomarker model p = 0.0003, disease vs. biomarker 
model p = 0.015). Combining all markers only margin-
ally improved on top of the biomarker model (c-statistic: 
0.67–0.72), which was superior to SOFA (c-statistic: 0.64 
[0.60–0.69], p = 0.007) and similar to the performance of 
SAPS2 (c-statistic: 0.71 [0.67–0.75], p = 0.8). The perfor-
mance of most models, specifically the disease model, 
increased for predicting 1-year survival.

Subjective survival estimates
Considering the constraints of predictive scores, we 
assessed subjective survival estimates. Irrespective of 
training and experience, physicians discriminated con-
siderably well between 28-day survivors and non-sur-
vivors (c-statistic junior physician: 0.78 [0.74–0.81]; 
c-statistic attending physician: 0.75 [0.72–0.79]). Junior 
physicians performed better than nurses, but we detected 
no difference between attending physicians and nurses 
(c-statistic nurse: 0.74 [0.70–0.78]; junior physician vs. 
nurse p = 0.009; attending physician vs. nurse p = 0.08). 
Regardless of the discriminative performance, we identi-
fied that the subjective survival estimates of doctors and 
nurses overestimated death. Specifically, between 0 and 
60% probability estimates of survival, the observed sur-
vival rates were about 20% higher in absolute terms (i. 

e. around 20–80%, Fig.  4). This overestimation of death 
was similar in doctors and nurses, in medical and surgical 
patients and across different centres and age groups.

Integrating subjective and objective survival assessments
We then assessed if both risk assessment strategies could 
be combined, in particular, whether subjective estimates 
could be refined and recalibrated using objective assess-
ments. We stratified patients into three subjective risk 
groups with 0–33%, 33–66% and 66–100% estimates of 
survival and further sub-grouped each group into SAPS2 
risk terciles (Fig. 5). Across all three subjective risk strata, 
patients with a low objective risk had a significantly bet-
ter outcome than patients with a high objective risk. 
Importantly, concordant predictions (low objective + low 
subjective risk or high objective + high subjective risk) 
supported the assessed risk, while discordant objective 
and subjective assessments (low objective + high subjec-
tive risk or high objective + low subjective risk) indicated 
prediction uncertainty.

Discussion
This study highlights the strengths and limitations of dif-
ferent ICU risk assessment strategies. While objective 
predictive measures are generally preferable, prognostic 
models lack reproducibility and do not sufficiently pre-
dict outcome. Subjective estimates of the clinical staff, 
presumably frequently used on individual patients, per-
form similarly well; however, subjective assessments 
overestimate death, potentially affecting patient infor-
mation and medical decision making. We conclude that 
subjective individual high-risk estimates need to be inter-
preted with caution and should be compared to objective 
risk measures.

Our first goal was to characterise different predictors 
individually, thereby assessing the contribution of par-
ticular pathophysiological aspects regarding outcome. 
We identified two groups of predictors. Predictors of 
the first group were poorly associated with other predic-
tors and were considered more specific disease markers, 
reflecting distinct pathophysiological states. Examples 
are liver disorders or poor oxygenation  (pO2/FiO2), which 
contribute to outcome if present but do not capture prog-
nosis over a wide range of disease states. Predictors of 
the second group belonged to the group of highly related 
markers. Rather than reflecting a small disease spectrum, 
they address a more comprehensive range of disease 
entities and severity thereof. Several predictors within 
this group were related to kidney function, such as the 
requirement for dialysis, urea and urinary output. These 
markers were performing exceptionally well, emphasising 
the already well-established role of renal failure regard-
ing outcome [21, 22]. Other predictors of this group were 
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Fig. 3 Model performance in the development and validation cohort. Different predictive models were generated using logistic regression (green), 
lasso regression analysis (yellow) or random forests (blue) for 28‑day and 1‑year survival. Models were trained in the development cohort and tested 
in the validation cohort. The discriminative performance was evaluated with the c‑statistic (error bars reflect the 95% confidence interval). Model 
discrimination declined from the development to the validation cohort and improved from predicting 28‑day to 1‑year survival
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the newer biomarkers proADM and proANP, for which it 
was previously shown that they predict outcome across 
different acute and chronic diseases [17, 18, 20].

Single parameters do not perform sufficiently well and 
are commonly combined in prognostic prediction mod-
els. However, proposed models are often overly optimis-
tic, primarily due to a small number of outcomes, a large 
number of predictors and feature selection approaches, 
also referred to as overfitting [23]. We tried to overcome 

these statistical limitations with several strategies. First, 
we used different feature selection approaches to com-
pare their performance in order to evaluate the contribu-
tion of modelling. Furthermore, we validate all models in 
a predefined independent cohort using the model perfor-
mance measures of discrimination and calibration. We 
observed that several models adequately discriminated 
survivors from non-survivors in the development cohort. 
However, despite a resampling step, the performance of 

Fig. 4 Calibration of subjective survival estimates. In order to assess calibration, subjective survival estimates were plotted against observed 
survival. Subjective estimates deviate from perfect calibration, especially between 0 and 60% probability of survival (red line: perfect calibration; 
green line: 20% absolute overestimation of death)

Fig. 5 Combining subjective and objective risk assessment tools. A Patients were pooled into three subjective risk (SR) groups. In the moderate and 
high subjective risk group, survival was underestimated, i. e. death overestimated. B Subjective groups were further sub‑grouped using SAPS2, a 
frequently available objective risk (OR) tool. C Concordant subjective and objective predictions are highlighted in purple, discordant predictions in 
yellow. Differences in survival were analysed with the long‑rank test for trend
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all models considerably declined from the development 
to the validation cohort. Only the models including bio-
markers or all predictors had a moderate performance 
in the validation cohort. In contrast, the pooled markers 
of patient characteristics, diseases and treatment were 
poorly or not predictive. This finding stresses the reliabil-
ity of internal cross-validation and highlights the impor-
tance of independent validation. A particular goal of our 
study was to address long-term outcome. It is well known 
that several acute diseases contribute to mortality after 
the very immediate phase and hospital stay. However, 
new unrelated events are more likely to occur during a 
more extended prediction period and might restrict pre-
diction. Surprisingly, model performance improved from 
28-day to 1-year survival, indicating that the initial event, 
leading to mechanical ventilation, significantly contrib-
utes to mortality beyond the acute stage.

While these models provide insights into the patho-
physiological compartments related to outcome, these 
models did not outperform SAPS2 and were insufficient 
to emphasise their use in individual patients. However, we 
argue that individual risk assessments are frequently per-
formed to inform relatives and guide treatment decisions, 
such as deciding whether to initiate resuscitation proce-
dures, life support treatments or palliative care [14]. Most 
commonly, ICU physicians subjectively estimate individual 
patient risk rather than using objective tools. We investi-
gated whether subjective survival estimates could provide 
additional prognostic information. We observed that these 
estimates performed similarly to more complicated objec-
tive prediction models. Especially junior physicians per-
formed well to discriminate survivors and non-survivors, 
whereas the performance of nurses was slightly lower. 
While nurses have better information on the patient’s 
social history and life, nurses mostly do not know all 
details of the patient’s examinations [14]. Both could nega-
tively influence the accuracy of their estimates. Regardless 
of the discriminative performance, all of the clinical staff 
overestimated death in high-risk patients. Death was over-
estimated in nurses, junior doctors and attending physi-
cians, medical and surgical patients, older and younger 
patients, and at different study centres. Overestimation of 
death is of particular concern since treatment and life sup-
port may be withheld from patients who are estimated to 
be at the highest risk for death [14, 24, 25].

In order to minimise misclassification and poor cali-
bration, we combined subjective and objective predic-
tion tools. We demonstrate that objective tools can refine 
subjective risk estimates. Objective measures identified 
patients at lower risk within different subjective groups 
and improved calibration of subjective assessments. 
While subjective low-risk estimates are relatively accu-
rate and moderate-risk estimates presumably have a 

minor impact on clinical management, there should be 
a focus on subjective high-risk estimates. High-risk esti-
mates need to be interpreted cautiously and if possible, 
compared to objective risk tools. Whereas concordant 
subjective and objective prediction measures may rein-
force the evaluation, disagreeing results should question 
the assessment.

We have to report several limitations of our study. Not 
all eligible ICU patients have been screened throughout 
the study period, therefore generating the risk of selec-
tion bias. However, patient inclusion was mainly driven 
by available study personal and given that the study pop-
ulation was extremely diverse it is unlikely that a minor 
patient selection would have a strong effect on predic-
tive markers. The assessed risk may have an impact on 
treatment and especially high-risk assessments may lead 
to withdrawing or withholding treatments (self-fulfill-
ing-prophecy). Since we have no details on withhold-
ing or withdrawing treatments, we cannot exclude that 
risk assessments changed outcomes in single patients 
and may have slightly increased the performance of pre-
dictions. But importantly, if “self-fulfilling-prophecy” 
has occurred it would have decreased overestimation 
of death, and the true overestimation of death would 
have been even higher. There exist many risk assess-
ment tools to benchmark ICUs. Since most scores were 
not routinely assessed at our study centres, comparing 
and assessing many predictive scores was beyond the 
scope and goal of this study. We focussed on mechani-
cally ventilated patients since they are at the highest risk 
for death. Therefore, we do not know if our findings can 
be translated to non-ventilated ICU patients. However, 
since the study population covered many disease entities 
and severities, several results could also apply to the ICU 
population not requiring mechanical ventilation. Finally, 
subjective risk estimates are driven by patient and physi-
cian factors, with variable relevance. Therefore, survival 
perceptions probably vary across nurses and physicians 
and very likely across countries. We do not know if clini-
cians discriminate survivors from non-survivors equally 
well in different hospitals and if the overestimation of 
death occurs globally. Therefore, our findings need to 
be validated in larger international cohorts, including 
patients and clinicians of multiple backgrounds.

To summarise, we report several findings on risk 
assessment in mechanically ventilated ICU patients. We 
reveal specialised predictors and more general predictors 
capturing more specific or broader pathophysiological 
mechanisms related to outcome. We assessed different 
groups of objective markers for predicting short- and 
long-term outcomes and showed that the performance in 
the development cohort declines in the validation cohort, 
with the best combinations not outperforming SAPS2. 
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And finally, we demonstrate that all of the clinical staff 
overestimates death and propose to combine subjective 
and objective tools to identify misclassified patients.
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