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Abstract 

Background Chest radiographs are routinely performed in intensive care unit (ICU) to confirm the correct position 
of an endotracheal tube (ETT) relative to the carina. However, their interpretation is often challenging and requires 
substantial time and expertise. The aim of this study was to propose an externally validated deep learning model with 
uncertainty quantification and image segmentation for the automated assessment of ETT placement on ICU chest 
radiographs.

Methods The CarinaNet model was constructed by applying transfer learning to the RetinaNet model using an inter-
nal dataset of ICU chest radiographs. The accuracy of the model in predicting the position of the ETT tip and carina 
was externally validated using a dataset of 200 images extracted from the MIMIC-CXR database. Uncertainty quanti-
fication was performed using the level of confidence in the ETT–carina distance prediction. Segmentation of the ETT 
was carried out using edge detection and pixel clustering.

Results The interrater agreement was 0.18 cm for the ETT tip position, 0.58 cm for the carina position, and 0.60 cm 
for the ETT–carina distance. The mean absolute error of the model on the external test set was 0.51 cm for the ETT tip 
position prediction, 0.61 cm for the carina position prediction, and 0.89 cm for the ETT–carina distance prediction. The 
assessment of ETT placement was improved by complementing the human interpretation of chest radiographs with 
the CarinaNet model.

Conclusions The CarinaNet model is an efficient and generalizable deep learning algorithm for the automated 
assessment of ETT placement on ICU chest radiographs. Uncertainty quantification can bring the attention of inten-
sivists to chest radiographs that require an experienced human interpretation. Image segmentation provides intensiv-
ists with chest radiographs that are quickly interpretable and allows them to immediately assess the validity of model 
predictions. The CarinaNet model is ready to be evaluated in clinical studies.
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Graphical Abstract

Background
Chest radiographs in the intensive care unit (ICU) are 
routinely performed to search for signs of pneumonia 
and pleural effusion or to check the placement of gas-
tric tubes, central catheters, and endotracheal tubes 
(ETT) [1–3].

In the ICU, chest radiographs are usually performed 
with the patient in a semi-sitting or supine position. As 
a result, they are often of inferior quality to those per-
formed in the radiology department, and their interpre-
tation typically requires substantial time and expertise 
[4]. In this context, the automated interpretation of chest 
radiographs using artificial intelligence could help save 
time and limit human error by focusing the attention of 
intensivists on malpositioned ETTs. Artificial intelligence 
algorithms have shown excellent performance in medi-
cal imaging, with deep learning algorithms proving espe-
cially effective for the interpretation of fundus images 
[5, 6], brain magnetic resonance imaging [7], cardiovas-
cular imaging [8], and chest radiographs [9]. The good 
performance of artificial intelligence algorithms for the 
assessment of ETT placement on chest radiographs has 
also been demonstrated. Some studies have successfully 
used template matching and shape recognition of ana-
tomical landmarks for the detection of the ETT tip and 

carina [10, 11]. Others have shown the effectiveness of 
deep learning algorithms trained for the segmentation 
of the ETT [12], the detection of the ETT tip and carina 
[13], or the prediction of the ETT–carina distance [14]. 
However, none of these algorithms includes uncertainty 
quantification, and none combines ETT tip and carina 
detection with ETT segmentation. This is unfortunate, 
as uncertainty quantification would increase the reliabil-
ity of model predictions, while ETT segmentation would 
improve the interpretability of chest radiographs in real-
world use.

The aim of this study was to propose an externally 
validated deep learning model with uncertainty quan-
tification and image segmentation for the automated 
assessment of ETT placement on unselected ICU chest 
radiographs.

Methods
Study design
The CarinaNet model was constructed by applying trans-
fer learning to the RetinaNet model using an internal 
dataset composed exclusively of unselected ICU chest 
radiographs. This dataset called RadioICU was created 
especially for this work.
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The accuracy of the CarinaNet model in predicting the 
position of the ETT tip and carina on ICU chest radio-
graphs was externally validated using a dataset extracted 
from the MIMIC-CXR database, a US multicenter data-
base of chest radiographs [15].

Uncertainty quantification was performed using the 
level of confidence in the ETT–carina distance predic-
tion. Segmentation of the ETT was carried out using 
edge detection and pixel clustering. In accordance with 
the Consort-AI guidelines [16], the model code and 
weights are available at https://github.com/USM-CHU-
FGuyon/CarinaNet .

Radio ICU dataset
The RadioICU dataset was composed of all consecutive 
chest radiographs performed in the polyvalent ICU of 
Reunion Island University Hospital between 01/01/2016 
and 12/31/2019. All radiographs were acquired using 
a Siemens (München, Germany) Mobilett XP Hybrid 
Analog Imager with Fuji (Tokyo, Japan) radio lumines-
cent memory screens.

Chest radiographs showing non-intubated patients 
were retained. Those showing intubation through trache-
ostomy were dropped from the dataset.

Radiographs were converted from their original 
DICOM format to 8-bit PNG images and the PixelSpac-
ing attribute was extracted for the conversion from pixel 
to centimeters. The mean resolution was 3.0 ± 0.5 meg-
apixels. The images were anonymized and did not con-
tain burned-in text.

Images were independently annotated by two expe-
rienced intensivists (JA or AR), over a predetermined 
3-day period. Intensivists were blinded to each other. The 
annotation of images included the following information:

• A subjective quality score between 0 = barely read-
able; 1 = hardly visible carina; 2 = poor quality; 3 = 
acceptable quality;

• The pixel coordinates of the ETT tip;
• The pixel coordinates of the carina;
• A classification of the ETT tip relative to the carina : 

good; too high; too low; bronchial insertion

No coordinates were provided when the carina or the 
ETT tip could not be located. The annotated pixel coor-
dinates were used as ground truth positions of the ETT 
tip and carina. A 2-cm distance is commonly cited in 
the literature as a minimal threshold for the positioning 
of the ETT relative to the carina [2, 17]. Hence, the ETT 
position was defined as too low when the ground truth 
ETT–carina distance was lower than 2cm. The intensiv-
ists were asked to classify the too low ETTs following 

their clinical practices, and were informed that the 2-cm 
threshold would be used as ground truth for the identi-
fication of too low ETTs. After classification, they anno-
tated precisely the pixel coordinates of the ETT tip and 
carina.

Among radiographs where both the ETT tip and carina 
coordinates were provided, 200 were randomly selected. 
This constituted the internal test. No radiographs were 
excluded on criteria of quality or readability.

MIMIC‑CXR dataset
The CarinaNet model was externally validated using a 
dataset extracted from the MIMIC-CXR database, a US 
multicenter database of chest radiographs. This exter-
nal test set allowed to evaluate the generalizability of the 
CarinaNet model [15].

The MIMIC-CXR dataset was created by randomly 
selecting 200 chest radiographs featuring an ETT from 
the MIMIC-CXR database. Radiographs were selected 
without consideration for image quality or medical report 
content. Unlike the RadioICU dataset, the MIMIC-
CXR dataset contained images with burned-in text. The 
MIMIC-CXR dataset had higher resolution than the 
RadioICU dataset images.

On a given day ( t0 ), the chest radiographs of the 
MIMIC-CXR dataset were independently annotated by 
two experienced intensivists (NA and JA). Ten days later 
( t10 ), the chest radiographs of the MIMIC-CXR dataset 
were shuffled and given back to one of the two intensiv-
ists (JA) for a second blinded annotation. The annota-
tions at t0 and t10 consisted of the pixel coordinates of the 
ETT tip and carina.

The ground truth positions of the ETT tip and carina 
were defined by averaging the two annotations made at 
t0 . The interrater agreement was defined as the mean 
absolute difference between the two annotations made 
at t0 . The intrarater agreement was defined as the mean 
absolute difference between the annotations made by the 
same intensivist (JA) at t0 and t10 . Finally, the ETT posi-
tion was defined as too low when the ground truth ETT–
carina distance was lower than 2cm.

The CarinaNet model: a deep learning model 
for the automated assessment of endotracheal tube 
placement on chest radiographs
The CarinaNet model was constructed by applying 
transfer learning to the RetinaNet model, an object 
detection model developed by Facebook AI Research 
(New York, USA) [18]. The RetinaNet model has 
shown state-of-the-art performance on the Common 
Objects in Context dataset which consists in the detec-
tion of specific objects in photographs of everyday life 
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[19]. It has also been used with great success in aer-
ial imagery [20, 21], and medical imaging (computed 
tomography scans [22], ultrasounds [23], chest radio-
graphs [24], etc.).

The RetinaNet architecture combines a ResNet 
architecture with a Feature Pyramid Network that out-
puts a series of feature maps at different spatial scales 
[25]. These feature maps are fed to two subnetworks: 
1) a box subnetwork that builds an anchor box around 
the object; and 2) a classification subnetwork that clas-
sifies the anchor boxes (Fig. 1).

The CarinaNet model was constructed by training 
the RetinaNet model on the RadioICU chest radio-
graphs. For this purpose, clinician’s annotations were 
converted to ( 200× 200 pixel) bounding boxes around 
the pixel coordinates of the ETT tip and carina, as 
shown in Fig. 2.

For each image, the model output a bounding box 
for the ETT tip and carina each classified with a confi-
dence score. The position predictions were defined as 
the center of each bounding box.

Model performance assessment
We evaluated the model performance by computing the 
mean absolute error between the ETT tip position pre-
diction, the carina position prediction, the ETT–carina 
distance prediction and their respective ground truths.

The mean errors between the prediction and ground 
truth for the ETT tip position, carina position, and ETT–
carina distance were computed using a linear mixed 
model. Correlation between measures was accounted 
for by using a compound symmetry variance–covariance 
matrix. The same method was used for assessing the 
interrater and intrarater mean errors. All statistical tests 
were performed at a two-tailed type I error of 5%.

Uncertainty quantification
To increase the reliability of the CarinaNet model, uncer-
tainty quantification was performed using the level of 
confidence in the ETT–carina distance prediction.

The level of confidence in the ETT–carina distance 
prediction was defined as the lowest confidence score 
between the ETT tip position prediction and the carina 
position prediction. Expression (1) was used to give the 
uncertainty U of the ETT–carina distance prediction 
from the level of confidence C.

The ETT tip position was classified as follows :

(1)U = α + β e−γC

Fig. 1 Architecture of the RetinaNet model

Fig. 2 Bounding boxes around the carina and the endotracheal tube 
tip on a chest radiograph
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where Dpred is the ETT–carina distance prediction and 
Upred is the uncertainty of the ETT–carina distance 
prediction.

The use of uncertainty quantification allowed for a 
higher sensitivity in the classification of too low ETTs. 
Chest radiographs showing a bronchial insertion were 
classified along with radiographs showing a too low posi-
tion of the ETT tip.

Lastly, the accuracy in classifying the ETT tip position 
as good or too low was compared between a clinician, the 
CarinaNet model, and a coupled reading. In the latter 
case, the ETT tip position was classified as too low when 
either the model or the clinician had classified it as such.

Image augmentation
For each chest radiograph, the following operations were 
performed to identify the full ETT.

(2)
Good position, if Dpred − Upred ≥ 2cm
Too low, if Dpred − Upred < 2cm

,
First, a 6-cm-wide rectangular region of interest was 

selected that extended from 1 cm below the prediction 
to the top of the image. The resulting smaller image 
contained the entire ETT.

Second, ridge detection was performed by comput-
ing the eigenvalues of the hessian matrix of the image 
[26], knowing that in image processing a ridge denotes 
a bright curve against a darker background. This oper-
ation resulted in an edge map, containing only the 
brighter and sharper elements of the chest radiograph.

Third, all non-vertical elements were removed from 
the edge map using vertical filter (3) on the assump-
tion that the ETT was nearly vertical on all chest radi-
ographs. Morphological opening was applied to the 
edge map for noise reduction. A binary edge map was 
obtained by setting the first decile pixel values to 1 and 
the rest to 0. This binary image was treated as a 2D 
point cloud.

Fig. 3 Illustration of the cluster thinning algorithm
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Fourth, clustering of the binary edge map was performed 
using DBSCAN (Density Based Spatial Clustering of 
Applications with Noise) [27]. This algorithm clusters 
point clouds based on the density of neighboring points.

Fifth, the ETT was segmented using a cluster thinning 
algorithm developed specifically for this study and is 
illustrated in Fig. 3.

This algorithm selected the cluster located closest to 
the CarinaNet prediction of the ETT tip. It started with 
the point of the cluster located closest the CarinaNet pre-
diction and then iteratively propagated upwards along 
the cluster.

Finally, the model output a list of points following a sin-
gle ridge, which constituted the ETT segmentation.

Results
Annotation of chest radiographs
RadioICU dataset
The RadioICU dataset was composed of 1,890 separate 
radiographs, 1,357 of which had annotations for both the 

(3)
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ETT and carina. The clinicians rated 12.9% of the radio-
graphs as acceptable quality, 70.1% as poor quality, 15.6% 
as hardly visible carina, and 1.3% as barely readable.

Clinicians generally classified the position of the ETT 
tip as too low when the ETT–carina distance was less 
than 2 cm (Fig. 4).

Mimic‑CXR dataset
The interrater agreement and intrarater agreement 
obtained from the annotation of 200 chest radiographs 
are given in Table 1. The intrarater agreement was slightly 
lower than the interrater agreement. The latter was used 
as the reference for human accuracy in interpreting chest 
radiographs in clinical practice. Table 1 indicates that the 
readings of the ETT tip and carina positions from the 
same intensivist (JA) at a 10-day interval were not statis-
tically different, whereas the readings from two separate 
intensivists (NA and JA) were statistically different.

Predictive performance of the CarinaNet model
The mean absolute error of the CarinaNet model for the 
ETT tip position prediction, the carina position pre-
diction, and the ETT–carina distance prediction per-
formed on the internal and external test sets are shown 
in Table  1. The mean absolute error on radiographs 

Fig. 4 Number of chest radiographs per classification of the endotracheal tube tip position as a function of the annotated endotracheal tube–
carina distance
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from the external test set where the level of confidence 
was superior to 0.5 was also computed. The CarinaNet 
mean error for the prediction of the ETT tip position, 
carina position, and ETT–carina distance indicated 
that the model predictions were not statistically differ-
ent from the ground truth positions.

Table 2 shows the model’s performance on the Radi-
oICU dataset for each radiograph quality. The best 
predictive performance was obtained with the more 
frequent radiograph qualities (poor quality, hardly vis-
ible carina) rather than with the acceptable quality 
radiographs.

Table 1 Model performance, interrater and intrarater agreements for the position of the endotracheal tube (ETT) tip, carina, and ETT–
carina distance

aThe standard deviation is shown in parentheses
bThe interval of confidence shown in brackets. The mean error and interval of confidence were obtained using a linear mixed model that accounted for intraclass 
correlation
cThe p value refers to the mean error obtained using the a linear mixed model

Element Test set Measure Sample size Mean absolute 
error (cm)a

Mean error (cm)b p valuec

ETT tip Internal CarinaNet prediction 200 0.59 − 0.11 0.23

(1.03) [− 0.28, 0.07]

External CarinaNet prediction 200 0.51 0.064 0.41

(1.08) [− 0.09, 0.22]

CarinaNet prediction with high confidence 101 0.49 0.066 0.09

(0.61) [− 0.01, 0.14]

Interrater agreement 200 0.18 − 0.12 < 0.0001

(0.30) [− 0.17, − 0.08]

Intrarater agreement 200 0.15 − 0.015 0.53

(0.33) [− 0.061, 0.031]

Carina Internal CarinaNet prediction 200 0.60 0.059 0.42

(1.25) [− 0.08, 0.20]

External CarinaNet prediction 200 0.61 0.019 0.76

(0.90) [− 0.11, 0.15]

CarinaNet prediction with high confidence 101 0.28 0.13 0.04

(0.61) [0.01, 0.25]

Interrater agreement 200 0.58 − 0.30 < 0.0001

(0.88) [− 0.43, − 0.18]

Intrarater agreement 200 0.48 0.056 0.34

(0.84) [− 0.06, 0.17]

ETT–carina distance Internal CarinaNet prediction 200 0.90 − 0.16 0.14

(1.55) [− 0.38, 0.05]

External CarinaNet prediction 200 0.89 0.045 0.66

(1.49) [− 0.15, 0.24]

CarinaNet prediction with high confidence 101 0.59 − 0.061 0.41

(0.74) [− 0.21, 0.08]

Interrater agreement 200 0.60 0.17 0.009

(0.93) [0.05, 0.30]

Intrarater agreement 200 0.54 − 0.071 0.26

(0.89) [− 0.20, 0.05]

Table 2 Mean absolute error on all images of the RadioICU 
dataset where coordinates were provided for both the 
endotracheal tube and carina. ETT : endotracheal tube

The results in this table are formatted as [mean ± standard deviation].

ETT tip Carina ETT–carina distance

Barely readable, n= 14 1.98 ± 3.22 0.49 ± 0.65 2.36 ± 3.57

Hardly visible carina, 
n= 193

0.36 ± 0.83 0.49 ± 0.80 0.61 ± 1.03

Poor quality, n = 1100 0.43 ± 1.13 0.44 ± 0.96 0.62 ± 1.25

Acceptable quality, n= 
50

0.49 ± 1.32 0.54 ± 1.38 0.73 ± 1.53
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Uncertainty quantification
Figure  5 indicates an exponential decrease in the abso-
lute error of the ETT–carina distance prediction with the 
increase in the level of confidence. This justified the use 
of equation (1).

Based on the exponential fit shown in Fig. 5, the uncer-
tainty quantification of the CarinaNet model was defined 
as:

where Upred is the uncertainty of the ETT–carina dis-
tance prediction and C is the level of confidence in the 
ETT–carina distance prediction.

Confusion matrices for the classification of the ETT 
tip position by a clinician, the CarinaNet model, and a 

(4)Upred = 0.1+ 4.2 e−3.3C

coupled reading are shown in Fig.  6. The coupled read-
ing classified the ETT tip as too low, when either the 
CarinaNet model or the clinician classified it as such. In 
each matrix, the classification of the ETT tip position 
was compared to a measure of the effective ETT–carina 

Fig. 5 Exponential fit of the absolute error for the endotracheal tube–carina distance prediction as a function of the level of confidence in this 
prediction. The predictions were grouped into 8 bins based on the level of confidence and the mean absolute error was computed for each bin

Fig. 6 Confusion matrices for the classification of the endotracheal tube tip position by a clinician, the CarinaNet model, and a coupled reading

Table 3 Sensitivity and specificity of the classification of low 
endotracheal tip location by a clinician, the CarinaNet model, 
and a coupled reading

The results in this table are formatted as [value [95% confidence interval]].

Sensitivity Specificity

Clinician 0.76 [0.60, 0.91] 0.99 [0.98, 1.0]

CarinaNet Model 0.85 [0.73, 0.97] 0.87 [0.82, 0.92]

Clinician + CarinaNet Model 0.91 [0.80, 1.0] 0.87 [0.82, 0.92]
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distance. As Fig.  6 indicates, 8 chest radiographs were 
wrongly classified as showing a well-positioned ETT tip 
when the classification was performed by a clinician. This 
number fell to 3 when the classification was performed 
by a clinician together with the CarinaNet model.

The sensitivity and specificity of the classification of too 
low ETT tips by a clinician, the CarinaNet model, and a 
coupled reading are shown in Table 3. The lower speci-
ficity of the CarinaNet model was expected when using 

classification criterium (2), but induced a better sensi-
tivity in the context of a combination with the human 
interpretation.

Image segmentation
The successive steps of the image segmentation per-
formed on a chest radiograph of the RadioICU dataset 
are shown in Figs. 7 and 8 .

Fig. 7 Edge detection on the region of interest

Fig. 8 Clustering and cluster thinning on the binary edge map
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First, a region of interest centered on the ETT was 
obtained thanks to the good accuracy of the ETT tip 
position prediction (Fig. 7).

Second, the ridge detection algorithm was applied 
to the chest radiograph. The resulting edge map clearly 
highlighted the ETT. However, other elements of the 
region of interest were also highlighted, in particular the 
horizontal cable at the bottom of the image and the small 
artifacts on either side of the ETT (Fig. 7).

Third, all non-vertical elements and smaller artifacts 
were removed from the original image by applying the 

vertical filter (3) to the edge map and then performing 
morphological opening. The horizontal cable and the 
smaller edges totally disappeared, leaving the entire ETT 
clearly highlighted (Fig.  7). After binarization of the fil-
tered edge map, the only remaining elements were the 
ETT, the gastric tube, and certain artifacts (Fig. 8).

Fourth, non-overlapping objects were separated by 
applying the DBSCAN algorithm to the binary edge map. 
The artifacts located on either side of the ETT were clas-
sified into separate clusters. As the gastric tube consid-
erably overlapped with the ETT on the original chest 

Fig. 9 Example outputs of the CarinaNet model. Top-left and top-right chest radiograph were, respectively, classified as having acceptable quality 
and a hardly visible carina. The endotracheal tube tip and carina were accurately detected and the model uncertainty was inferior to 1 cm, indicating 
that the model result could be trusted. The segmentation was successful for both these radiographs. Bottom-left radiograph had a very unusual 
angle, this disrupted the segmentation step. However the endotracheal tube was entirely segmented and the endotracheal tube tip and carina 
were accurately detected. Bottom-right radiograph featured no endotracheal tube. The CarinaNet model properly detected the carina and output 
an endotracheal tube tip position but with an uncertainty of 3.3 cm indicating that the result could not be trusted. Note that the segmentation step 
also failed
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radiograph, the DBSCAN algorithm generated a single 
cluster containing both objects (Fig. 8).

Fifth, the cluster thinning algorithm was applied to the 
binary edge map. This operation highlighted the ETT but 
not the gastric tube (Fig. 8).

The output of the cluster thinning algorithm consti-
tuted the ETT segmentation. The segmentation obtained 
from the successive operations shown in Figs. 7 and 8 is 
visible on the top-left radiograph in Fig. 9. As Fig. 9 indi-
cates, the CarinaNet model predicted the ETT–carina 
distance with very low uncertainty. Bottom-left radio-
graph of Fig.  9 shows the segmentation of the ETT on 
a tilted radiograph. On this radiograph, the ETT was 
entirely segmented, but the segmentation also selected 
the border of the image.

Discussion
This is the first study to propose an externally validated 
deep learning algorithm with uncertainty quantification 
and image segmentation for the automated assessment 
of ETT placement on unselected ICU chest radiographs. 
The main benefit of the CarinaNet model is that it can 
help intensivists prioritize chest radiographs that have 
been pre-classified as featuring a too low ETT. Uncer-
tainty quantification is also a major security contribution 
in that it can bring the attention of intensivists to chest 
radiographs that require an experienced human inter-
pretation. Lastly, the usability of the CarinaNet model is 
reinforced by image segmentation, which provides inten-
sivists with chest radiographs that are quickly interpret-
able and allows them to immediately assess the validity of 
model predictions.

Little difference was observed between the internal 
validation of the CarinaNet model and its external valida-
tion. Indeed, the mean absolute error of the model for the 
ETT tip position, carina position and ETT–carina dis-
tance was 0.51 cm, 0.61 cm, 0.89 cm on the external test 
set compared to 0.59 cm, 0.60 cm, 0.90 cm on the inter-
nal test set, respectively.

This good generalization of the CarinaNet model indi-
cates that it is not disturbed by unfamiliar elements on 
chest radiographs. More generally, the good predictive 
performance of the model suggests that it is usable in 
clinical practice.

Previous studies have shown the interest of using deep 
learning algorithms for the automated interpretation of 
ICU chest radiographs. In a study evaluating the Incep-
tionV3 model, external validation on 100 images yielded 
an error of 0.63 ± 0.55 cm for the ETT–carina distance 
prediction [14]. This suggests a better performance than 
the CarinaNet model; however, the model has low inter-
pretability as it did not explicitly detect the ETT tip and 
carina. Another study evaluated a cascaded convolutional 

neural network model for its accuracy in predicting the 
ETT tip or carina position on ICU chest radiographs 
from the MIMIC-CXR database [13]. The prediction 
error of this model on the internal test set was 0.82, 0.64 
and 0.86 cm for the ETT tip position, carina position, 
and ETT–carina distance, respectively [13]. While these 
findings are similar to ours, it should be noted that this 
study proposed no external validation. Moreover, in both 
these studies the models were evaluated on radiographs 
for which the ETT–carina distance was already specified 
in the medical report. This likely induced a selection bias.

The CarinaNet model was able to identify too low ETT 
tip positions with a sensitivity of 0.85 and a specificity of 
0.87. The sensitivity and specificity of the classification 
performed by a clinician were 0.76 and 0.99, respectively, 
while those of the classification performed by a clinician 
coupled with the CarinaNet model were 0.91 and 0.87, 
respectively. This increase in sensitivity corresponds to 
increased security compared to current clinical prac-
tice. The lower specificity of the CarinaNet model indi-
cates that pre-classification may prioritize the clinician’s 
reading of some chest radiographs showing a well-posi-
tioned ETT. Thus, this pre-classification remains a strict 
improvement from current clinical practice. Our findings 
support studies that recommend using artificial intelli-
gence as a complement to human tasks rather than as a 
substitute [28].

There was a considerable difference between the pre-
diction error of the CarinaNet model and the interrater 
agreement for the ETT tip position. This can be explained 
by the fact that the ETT was designed to be radiopaque 
and easily identifiable by the human eye. By contrast, the 
prediction error was very close to the interrater agree-
ment for the carina position. The model performance 
even surpassed the interrater agreement on the carina 
detection when considering predictions where the level 
of confidence was superior to 0.5, which was half of the 
dataset. These findings suggest that deep learning algo-
rithms have different perceptive qualities than the human 
eye and can therefore be used to complement the human 
interpretation of chest radiographs.

Additionally, the model predictions were not statisti-
cally different from the ground truth for the ETT tip and 
carina positions. By contrast, the readings of the ETT tip 
and carina positions by two experienced intensivists were 
statistically different. This demonstrates that our Cari-
naNet model could improve the current clinical practices 
by reducing the impact of the inter-intensivist variability 
for the reading of the routine chest radiographs.

Interestingly, the lowest prediction errors of the Cari-
naNet model were obtained not for chest radiographs 
classified by intensivists as being of acceptable qual-
ity, but for those of lower quality, which were the most 
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frequent. This shows that deep learning models trained 
with hard examples have good adaptability to challenging 
tasks. The CarinaNet model yielded the highest predic-
tion errors for images taken from a very unusual angle 
(see Fig.  9) or featuring opaque lungs. This problem 
could be addressed by increasing the proportion of tilted 
images or images of opaque lungs in the training set.

Moreover, we designed our model to be used solely 
on chest radiographs of intubated patients because we 
believe the pre-interpretation should only be made when 
clinically relevant. As a consequence, our model did not 
explicitly check for the presence of an endotracheal tube. 
However, our built-in uncertainty quantification acted 
as a safeguard by indicating that the result could not be 
trusted when the uncertainty was too high (bottom-right 
radiograph of Fig.  9). This demonstrates that integrated 
uncertainty quantification is a major robustness contri-
bution for the clinical application of our model.

Our study has some limitations. First, since the images 
of the training set were non-redundantly annotated, the 
prediction error of the model was necessarily higher than 
the interrater agreement for the carina position. Second, 
few of the test set images showed a malpositioned ETT, 
which induced imprecise sensitivity and specificity val-
ues for the model’s classification. This problem could be 
overcome by using test sets with a larger proportion of 
images showing a malpositioned ETT. Third, the cou-
pled reading was simulated using the model’s classifica-
tion and the clinician’s blinded annotation. Our results 
thus underestimate the benefit of using the CarinaNet 
model as the clinician’s reading should be evaluated with 
the knowledge of the model’s classification as well as the 
augmented image. Finally, the use of the 2-cm criterion 
could be debated as no study provided evidence for the 
superiority of this threshold against another. However, 
our model is adaptable to any given threshold if recom-
mendations change in the future.

In the future, the predictive performance of the Cari-
naNet model could be increased by using a training set 
with a larger proportion of images showing a malposi-
tioned ETT. Data augmentation in training or at test time 
could also improve the performance of the model. Lastly, 
studies should be performed to validate the applicability 
of the model in clinical practice.

Conclusion
In conclusion, the CarinaNet model is an efficient and 
generalizable deep learning algorithm for the automated 
assessment of ETT placement on ICU chest radio-
graphs. This model can help intensivists prioritize chest 
radiographs that have been pre-classified as featuring 
a malpositioned ETT. Moreover, uncertainty quantifi-
cation can bring the attention of intensivists to chest 

radiographs that require an experienced human interpre-
tation. Finally, image segmentation provides intensivists 
with chest radiographs that are quickly interpretable and 
allows them to immediately assess the validity of model 
predictions. The CarinaNet model is ready to be evalu-
ated in clinical trials.
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