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Abstract

Mesenchymal stromal cells (MSC) have shown potential efficacy in both animal and human trials of acute respiratory
distress syndrome (ARDS). Especially during the COVID-19 pandemic, MSC was intensely studied for treating COVID-
19-induced ARDS. The purpose of this study is to evaluate the safety and efficacy of MSC in ARDS via a meta-analysis
of randomized controlled trials (RCTs). Therefore, a meta-analysis of RCTs of MSC as a therapy for ARDS was con-
ducted. The protocol of this review was registered on Open Science Framework. With no language restriction and
according to the “PICOs" principle, searches were conducted on Pubmed and Embase to retrieve any clinical literature
on MSC for ARDS. Any RCT, which compared MSC to controls for ARDS, where MSC and controls were intravenously
infused, of any dosage, was eligible for inclusion. A total of 13 RCTs, which evaluated MSC versus control for treating
ARDS, enrolling a total of 655 cases, met the inclusion criteria and appeared in this meta-analysis. A heterogeneity
assessment was carried out using the y’ test, where a P value less than 0.05 was considered significant. The choice

of a fixed-effect or a random-effect model was decided by the /* value in each of the analyses. This meta-analysis
indicated that there was no significant difference in terms of adverse events between MSC and control for ARDS
(OR=0.64, 95% CI [0.34, 1.20], P=0.17, and > =0%). In comparison with control, MSC could reduce the mortality of
ARDS (OR=0.66, 95% CI [0.46, 0.96], P=0.03, and /> = 10%). Based on the results of our meta-analysis, the safety of
MSC was demonstrated to be non-inferior to that of standard treatment, and MSC may reduce the mortality rate of
ARDS. Though the heterogeneity in the main results was low (> < 25%), more high-quality and large-scale clinical trials
are needed to further confirm our findings.

Keywords Mesenchymal stromal cells, Acute respiratory distress syndrome, Acute lung injury, Cell transplantation,
Coronavirus disease 2019

Introduction

Acute respiratory distress syndrome (ARDS) is a life-
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ventilation [3], controlling driving pressure [4], prone
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position [5], and ECMO [6] were identified as effective
measures, the mortality of ARDS was still unacceptably
high. Apart from low-dose corticosteroids (such as 6 mg/
day dexamethasone) and remdesivir were recommended
for treating COVID-19-induced ARDS [7], there is no
other guideline-recommended therapy directly targeting
the pathophysiology of this lethal clinical syndrome.

Mesenchymal stromal cells (MSC) belonging to a
member of pluripotent stem cells, are of stromal origin
and can be extracted from bone marrow, adipose tissue,
umbilical cord, etc. [8]. MSCs are considered candidates
for the treatment of ARDS because they can be deployed
to the injured sites, where they are shown to repair tissue
through its paracrine and anti-fibrosis effects in animal
models of ARDS induced by endotoxin [9]. Additionally,
MSC may transfer mitochondria into alveolar epithelium
to improve bioenergetics of lung tissue and improve lung
function [10]. The secretome released by MSC also is
demonstrated to possess anti-inflammatory effects and is
protective in animal models of ARDS [11]. Through the
release of lipocalin-2 and LL-37, MSC has been shown to
possess antimicrobial effects, possibly by enhancing the
phagocytic activity of host immune cells [12]. In addi-
tion, MSC has been reported to preserve the integrity
of vascular endothelial and alveolar epithelial barrier in
preclinical models of ARDS [13]. Beyond that, in lung
injuries induced by endotoxin, MSC is able to improve
alveolar fluid clearance [14]. By exhibiting multipotent
characteristics such as tissue repair, regeneration, antimi-
crobial, and anti-inflammation, MSC was widely investi-
gated in ARDS animal models and was considered as a
promising therapy for ARDS [15].

In the last decade, clinical trials have been conducted
to investigate the safety and efficacy of MSC concerning
ARDS [16-23]. However, due to the small sample size of
these early clinical trials, the potency of MSC for ARDS
is still subject to question and thus merits further discus-
sion and investigation. Toward this end, we conducted a
meta-analysis of randomized controlled trials of MSC in
patients with ARDS to review the safety and efficacy of
MSC for ARDS. The main outcomes of this meta-analy-
sis were treatment-related adverse events (AEs) and all-
cause mortality.

Materials and methods

Data sources

The protocol of this review was registered on Open Sci-
ence Framework (OSF), registration https://doi.org/10.
17605/OSEIO/V74XA. PubMed and EMBASE (up to
November 2022) were searched to identify relevant clini-
cal trials with a tailored search strategy. Trials other than
randomized controlled trials (RCT) were excluded from
further screening. Search terms included ‘Mesenchymal
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Stromal Cells, ‘Mesenchymal Stem Cells’ ‘MSC, ‘Acute
Respiratory Distress Syndrome, ‘ARDS; ‘Acute Lung
Injury; and ‘ALL} and they were combined by patients,
intervention, control, and outcomes (PICOs) principle.
No language restriction was set in the database search.
The search strategy is as follows: (((((Acute Respiratory
Distress Syndrome[Title/Abstract]) OR (ARDS[Title/
Abstract])) OR (acute lung injury[Title/Abstract]))
OR  (ALI[Title/Abstract])) AND ((((Mesenchymal
Stem Cells[Title/Abstract]) OR (Mesenchymal Stro-
mal Cells[Title/Abstract])) OR (MSC|[Title/Abstract]))
OR (MSCs|Title/Abstract]))) AND ((((((((control[Title/
Abstract]) OR  (randomized[Title/Abstract])) OR
(randomly[Title/Abstract])) OR (controlled[Title/
Abstract])) OR (RCT[Title/Abstract])) OR
(placebo[Title/Abstract])) OR (sham[Title/Abstract]))
OR (random|[Title/Abstract])).

Study selection

Two authors (FYW and YML) independently searched
and scrutinized literature on databases and read the title
and abstract of each retrieved article to determine which
of them required further assessment. Full texts of articles
were retrieved when the information given in the titles
and abstracts indicated that the study adopted a pro-
spective design to compare MSC with control in patients
with ARDS. When disputes existed, they were discussed
thoroughly to reach a consensus. The inclusion criteria
were (1) any RCTs that compared MSC with controls for
ARDS, (2) included patients who were adults, of any gen-
der, and had an established ARDS, (3) MSC intravenously
infused, of any dosage; and controls or placebo intrave-
nously infused, of any dosage.

Data extraction

Review authors (FYW and YML) independently extracted
data with a customized data extraction form. The data
extraction form included the following detailed informa-
tion: (1) year of publication, (2) the number of included
patients, (3) descriptions of dose, route, and timing of
MSC and controls, (4) treatment-related AEs, all-cause
mortality and other secondary outcomes.

Analyzed outcomes

The primary outcomes of this review were treatment-
related AEs and all-cause mortality at 28 days. The sec-
ondary outcomes included clinical data such as ICU
length of stay, PiO,/FiO,; and inflammatory biomarkers
such as IL-6 and IL-8.

Data analysis and statistical methods
Data analyses of this review were performed by the
Review Manager (Version: 5.4, Cochrane Collaboration,
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UK). Clinical heterogeneity was assessed in the popula-
tion, methodology, and in interventions and outcomes of
each study to assess whether the pooling of results was
feasible. Values of * less than 25% were considered low in
heterogeneity, for which the fixed-effect model of meta-
analysis was used, whereas values of I* between 25 and
75% were considered moderate in heterogeneity and a
random-effects model was used. Values of I* higher than
75% indicated high levels of heterogeneity, in which case
no meta-analysis was performed. All statistical tests were
two-sided and a P value less than 0.05 was considered
statistically significant. Dichotomous variables such as
treatment-related AEs and all-cause mortality expressed
in ratios were extracted. Continuous variables such as
inflammatory biomarkers IL-6 and IL-8 expressed in
mean and standard deviation were extracted. Serum IL-6
and IL-8 examined 5 days or 7 days after trial drug or pla-
cebo administration were to be extracted in our review.

Heterogeneity exploration and quality assessment

A heterogeneity assessment was performed using the x*
test, where a P value less than 0.1 was considered as the
significance set. The funnel plot was utilized to detect any
possible publication bias. The quality of the included lit-
erature was assessed by the Cochrane Collaboration tool
for assessing risk of bias, which contains the following
five aspects: sequence generation, allocation conceal-
ment, blinding, incomplete outcome data, and selec-
tive outcome reporting. The assessment of risk of bias
was presented by using a “risk of bias summary figure,’
which presents all of the judgments in a cross-tabulation
of study by entry. This display of internal validity indi-
cates the weight the writer may give to the results of each
study.

Results

Study selection process

The whole search and selection process of the electronic
databases was shown in the flow diagram (Fig. 1). Specifi-
cally, 170 articles were retrieved from Pubmed and 143
articles were retrieved from Embase. After duplicates
were removed, a total of 259 articles were retrieved. After
reading the titles and abstracts of each of the retrieved
articles, the 166 retrieved articles were preserved and the
full text of 23 of them was obtained for further examina-
tion. Seven papers were eliminated from consideration
because they were either case series [23] or uncontrolled
safety studies [22] or a study protocol [24—28]. Another
three papers [29-31] were discarded because they
reported the same trials as the included studies [17, 18,
32] did. These three excluded studies were only the sec-
ondary analysis of the three relevant studies included in
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——

259 of records after 54
duplicates removed

166 of records

screened

23 of full-text

articles assessed
for eligibility

143 of records
excluded

10 of full-text
articles excluded,
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quantitative
synthesis
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Fig. 1 The flow diagram of the literature search process

our review and they didn’t report outcomes analyzed in
our study. Finally, 13 papers met the inclusion criteria
and were included in this meta-analysis [16—19, 32—40].
MSC or controls were initiated once the patients met the
Berlin definition of ARDS or severe/critical COVID-19 in
all the included studies after randomization.

Characteristics of the included studies

The main characteristics of the 13 studies including the
type of study design, patients’ characteristics, dose and
treatment duration of the studied medicine, population,
and outcomes are presented in Table 1. The etiology of
ARDS was not restricted to one specific disease in two
included studies [16, 17], whereas, in the other 11 stud-
ies, ARDS was solely induced by COVID-19. The average
age of the patients in the included studies ranged from
53 to 69.8 years old, and in terms of which, there was
no significant difference between the MSC group and
the Control group (P=0.55, Additional file 1: Fig. S1A).
Male patients accounted for 66.1% of the MSC group and
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66.3% of the Control group (P=0.77, Additional file 1:
Fig. S1B). MSC was only used in patients with moderate-
to-severe ARDS in six included studies, but in the other
seven studies, either the severity was not defined, or
MSC can be used for all patients with ARDS, regardless
of the severity of the disease. Four included studies held
a modality of multi-center RCT [17, 19, 34, 38], while the
other nine studies were just one single-center RCTs. The
method of randomization and allocation concealment
was not thoroughly elucidated in four included trials [16,
18, 19, 37]. The source origins of the MSCs included adi-
pose, bone marrow, umbilical cord, etc., and the dose of
MSCs ranged from 1 x 10° to 100420 x 10° in included
studies.

The meta-analysis of the primary outcomes

Regarding treatment-related AEs, the pooling results
of 10 RCTs, enrolling a total of 579 patients, sug-
gested that in comparison with control, MSC infusion
did not increase any pre-defined AEs in treating ARDS

MSC Control

Study or Subgroup

Events Total Events Total Weight M-H, Fixed, 95% CI
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(OR=0.64, 95% CI [0.34, 1.20], P=0.17, and I*=0%),
Fig. 2A. For the COVID-19-induced ARDS subgroup, the
pooled results of eight RCTs indicated that when com-
pared with control, MSC did not increase any treatment-
related AEs (OR=0.99, 95% CI [0.45, 2.18], P=10.99, and
PP=0%), Fig. 2B. When the random-effects model was
adopted, the results remained unchanged (Additional
file 1: Fig. S2A and B).

As for 28 days all-cause mortality, 13 studies with a
total of 655 patients enrolled, the synthesized data indi-
cated that compared with control, MSC reduced the
mortality rate in adult patients with ARDS (OR=0.66,
95% CI [0.46, 0.96], P=0.03, and 2=10%), Fig. 3A.
When the model of meta-analysis was adjusted to a ran-
dom-effects model, the difference remained significant
and the P value was 0.05 (Additional file 1: Fig. S3A).
For the COVID-19-induced ARDS subgroup, 11 stud-
ies with a total of 593 patients were included, and the
pooled results proved that compared with controls, MSC
reduced mortality in COVID-19 patients with ARDS
(OR=0.65, 95% CI [0.44, 0.96], P=0.03, and 2=22%),

Odds Ratio Odds Ratio

M-H. Fixed, 95% Cl

(A) Adas 2021 110 1 10 37% 1.00[0.05 18.57]
Antoine Monsel 2022 6 21 6 24 166%  1.20[0.32,4.51] e L a—
Carmen Rebelatto 2022 1N 1 6 49%  0.50[0.03,9.77)
Giacomo Lanzoni 2020 1 12 3 12 11.4% 0.27 [0.02, 3.09]
Guoping Zheng 2014 2 6 1 6 2.8% 2.50[0.16, 38.60)
Ismail Dilogo 2021 120 0 20 19% 3.15([0.12,82.16]
Lei Shi 2021 1 B5 0 35 26% 1.65(0.07,41.60]
Michael Bowdish 2022 2110 2 107 83%  0.97[0.13,7.03]
Michael Matthay 2018 140 0 20 26% 1.56(0.06,39.95]
Xiaowe Xu 2021 10 28 15 18 452%  013[0.03,054 —@——
Total (95% Cl) 321 258 100.0%  0.64[0.34, 1.20] -
Total events 26 29
Heterogeneity: Chi*= 8.86, df= 9 (P = 0.45); F= 0% 5 =c|5 U=2 ; 5 2=0

Test for overall effect. Z=1.38(P=0.17)

Favours [MSC] Favours [Control]

Odds Ratio

MSC Control Odds Ratio

(B) Study or Subgroup Events Total Events Total Weight M-H. Fixed, 95% CI
Adas 2021 1 10 1 10 7.2% 1.00([0.05,18.57]
Antoine Monsel 2022 ] 21 B 24 31.9% 1.20[0.32, 4.51]
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Giacomo Lanzoni 2020 1 12 3 12 21.9% 0.27[0.02, 3.09]
Ismail Dilogo 2021 1 20 0 20 37% 315([012,8216]
Lei Shi 2021 1 65 0 35  5.0% 1.65([0.07, 41.60]
Michael Bowdish 2022 2 110 2 107 159% 097[0.13,7.03]
Kiaowe »u 2021 1 40 0 20 51% 1.56([0.06,39.95]
Total (95% CI) 289 234 100.0%  0.99[0.45,2.18]
Total events 14 13

Heterogeneity: Chi*= 2.02, df=7 (P = 0.96), F=0%

Test for overall effect: Z=0.02 (P = 0.99)

M-H. Fixejd. 95% Cl

I

T

0.05

0.2 1 5
Favours [MSC] Favours [Control]

20

Fig. 2 The meta-analyses of adverse events, comparing MSC with the control: A the comparison of MSC with control in general ARDS; B the

comparison of MSC with control in COVID-19-induced ARDS. The size of each square represents the proportion of information given by each trial.

Crossing with the vertical line suggests no difference between the two groups
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Total (95% Cl) 355 300 100.0%  0.66 [0.46, 0.96] <>
Total events 90 102
Heterogeneity: Chi*=13.28, df= 12 (P = 0.35); F= 10% 2 55 0%2 ] 5 2=0

Test for overall effect: Z=2.19 (P =0.03)

(B) Study or Subgroup

MSC

Control

Odds Ratio

Events Total Events Total Weight M-H, Fixed, 95% CI

Favours [MSC] Favours [Control]

Odds Ratio
M-H, Fixed, 95% Cl

Adas 2021 3 10 6 10 65%  0.29[0.04,1.82)

Antoine Monsel 2022 5 21 4 24 4.4% 1.56 [0.36, 6.80] ]

Carmen Rebelatto 2022 5 1 1 6 1.1% 4.17[0.36, 48.44] >
Giacomo Lanzoni 2020 2 12 712 91%  0.14[0.02,096] ¢

Hamid Aghayan 2022 5 10 5 10 39% 1.00(017,5.77)

Istnail Dilogo 2021 10 20 16 20 124%  0.25[0.06,1.02) I —

Lei Shi 2021 1 65 1 35 20% 053[0.03 8.76)

Lei Shu 2020 0 12 329 32% 0.30[0.01,6.32 ¢

Michael Bowdish 2022 42 112 47 110 46.0%  0.80[0.47,1.38] ——

Majmeh Farkhad 2022 2 10 110 1.2% 2.25[0.17,29.77]

Xiaowe Xu 2021 2 26 6 18 102%  0.17(0.03,0.95)

Total (95% Cl) 309 284 100.0%  0.65[0.44, 0.96] <>

Total events 77 97

Heterogeneity: Chi*= 12.87, df=10 (P = 0.23); F= 22% oAins 0?2 5 2=0

Test for overall effect: Z=2.18 (P =0.03)

Favours [MSC] Favours [Control]

Fig. 3 The meta-analyses of mortality, comparing MSC with the control: A the comparison of MSC with control in general ARDS; B the comparison
of MSC with control in COVID-19-induced ARDS. The size of each square represents the proportion of information given by each trial. Crossing with

the vertical line suggests no difference between the two groups

Fig. 3B. Of note, when the random-effects model was
adopted, the P value was 0.07 (Additional file 1: Fig. S3B).

The risk of bias summary for the included trials is pre-
sented in Fig. 4A. The general heterogeneity is low among
these studies, and therefore, it is possible to pool them
for meta-analyses. The funnel plot is utilized to detect
any possible publication bias. As expressed in Fig. 4B, C
the majority of the studies included in the meta-analyses
are distributed symmetrically. Therefore, the publication
bias in the present analysis is low and acceptable.

The summarization of secondary outcomes

The meta-analysis of secondary outcomes was not con-
ducted either because the data were not extractable or
not presented. Six included studies reported the effect
of MSC on oxygenation. Though three included stud-
ies implied that MSC may increase PaO,/FiO, ratio [16,

37, 39], the other three studies suggested that MSC did
not have much impact on PaO,/FiO, ratio at any time-
points [17, 19, 34]. On ventilation-free days to 28 days in
ARDS, five studies didn’t detect any significant difference
between MSC and controls [16, 17, 19, 34, 38]. In terms
of ICU-free days, although five studies discovered no sig-
nificant difference between the two groups [16, 19, 34,
38, 40], one study revealed that MSC may reduce ICU-
free days in ARDS [17]. Meanwhile, the effects of MSC
on serum IL-6 in ARDS were also controversial, as while
three studies suggested no significant difference detected
[16, 17, 40], four others implied that MSC may down-
regulate serum IL-6 [18, 19, 35, 39]. Additionally, three
included studies reported no significant impact of MSC
on serum IL-8 in ARDS [16, 17, 35].
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Fig. 4 The assessment of possible bias: A The risk of bias summary graph:
study. B The funnel plot for adverse events. C The funnel plot for mortality

Discussion

Our meta-analysis summarized the results of currently
available RCT studies focused on MSC for ARDS and
determined that the safety of MSC was not inferior to
that of standard treatment. Second, with the treatment
of MSC, the short-term survival of ARDS was improved.
Third, the impact of MSC on oxygenation, ventilation-
free days, ICU-free days, and systemic inflammation was
still inconclusive thus far because no meta-analysis was
done for these important outcomes.

No discrepancy regarding treatment-related adverse
events was observed between MSC and controls in the
10 included RCTs, indicating the safety of MSC is reli-
able and further studies are warranted. In the COVID-
19-induced ARDS subgroup analysis, of AEs, there are
still no significant differences between MSC and control.
Thus, MSC is safe for treating severe COVID-19. Since
our meta-analyses showed that mortality is reduced in

0.05 0.2 1 5 20

review authors'judgements about each risk of bias item for each included

both general ARDS and COVID-19-induced ARDS, MSC
can be further investigated as a promising therapy for
ARDS. Though I <25%, when the random-effects model
of meta-analysis was used, the P value of the subgroup
analysis of COVID-19-induced ARDS exceeded 0.05
(P=0.07). Although the subtle difference in random-
effects model would not undermine the findings of mor-
tality, more MSC studies are needed to consolidate its
protective effect in COVID-19-induced ARDS. In our
meta-analysis, albeit improved survival with the treat-
ment of MSC, three included studies indicated that com-
pared with control, oxygenation was not improved, this
may suggest that the improvement of survival by MSC
was not primarily dependent on oxygenation for its effec-
tiveness. The paracrine of growth factors, promotion of
tissue repair and regeneration, and the anti-inflammatory
effects of MSC [41, 42] may comprehensively alter the
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pathophysiological progress of ARDS. However, the par-
ticular mechanism awaits future studies to decode.

Regarding secondary outcomes, because of the differ-
ent modalities used in data presentation, not enough data
can be extracted. For this reason, no meta-analysis was
conducted for secondary outcomes. Of note, despite no
difference reported in the incidence of AEs and ventila-
tion-free days, the study by Michael Matthay et al. [17]
revealed that ICU-free days were reduced in the MSC
group. They also detected nonsignificant elevated mor-
tality with the treatment of MSC for ARDS (12/40 in
the MSC and 3/20 in the control died). However, they
acknowledged that mortality, as expected, was higher in
the group of MSC than in the control group and that this
was due to higher severity of the disease in the first group
than in the latter group [17].

So far, due to a lack of effective targeted treatments,
ARDS is still one of the most deadly clinical syndromes in
the critical care field even after more than half a century
of its discovery [43, 44]. Even for patients who survived
this purgatory, their quality of life inevitably and dramati-
cally declined because of their substantially damaged and
not fully recovered lung function [45]. Especially after
COVID-19 had swept all over the globe in the last three
years and caused millions of deaths [46, 47], effective and
available therapies for ARDS are quite needed.

In the last decade, cell therapy including MSC has been
clinically investigated in a variety of pulmonary diseases.
In 2013, Daniel Weiss et al. investigated the safety and
efficacy of MSC in COPD. Though they didn’t observe
any significant differences in pulmonary function or
life-quality indicators, the safety of MSC was found to
be satisfying and an anti-inflammatory effect of MSC
was detected as it can decrease circulating CRP [48].
For preterm infants with bronchopulmonary dysplasia,
intratracheal transplantation of allogeneic UC-MSC was
also found to be safe and feasible [49, 50]. In the phase
1 clinical trial conducted by Jennifer Wilson et al., the
dose-escalation of MSC from 1 x 10° to 10 x 10° MSC/kg
was well tolerated by patients with moderate-to-severe
ARDS, and no infusion-associated AEs and serious AEs
were observed during the trial [22]. A compassionate
treatment trial of COVID-19-induced ARDS with UC-
MSC was demonstrated to be safe, yet the improvement
of oxygenation may have been attributable to the effects
of MSC or the evolution of the course of the disease
itself. This needs to be validated by more controlled trials
[23]. Furthermore, not only was MSC clinically investi-
gated for treating ARDS but MSC-derived therapies such
as exosomes of MSC were also considered for treating
this syndrome [11]. In a cohort study, BM-MSC-derived
exosomes were demonstrated to be safe and could restore
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oxygenation and downregulate cytokines for the treat-
ment of severe COVID-19 [51].

Though MSC may be a promising therapy for ARDS,
how to use it correctly in ARDS is still an issue that many
clinicians are concerned about. According to the sum-
mary of the dosage of MSC in our study, one dose or
several doses of 1 x 10° cells/kg of MSC seems to be safe
in ARDS since this dosage didn’t increase any treatment-
related AEs. Umbilical cord (UC) MSC was used in 8 of
the 13 included studies, and given its high availability,
it may be one of the most promising MSCs in the area
of ARDS. Diana Islam et al. discovered that the effect
of MSC in ARDS was determined by the microenviron-
ment at the time of administration [52]. They proved that
MSC might worsen ARDS in a microenvironment of high
levels of IL-6 and fibronectin along with low antioxidant
capacity. Correcting this adverse microenvironment with
anti-oxidants or anti-inflammatory factors can reverse
the detrimental effects of MSC. The aforementioned
findings might guide us to use MSC in ARDS correctly. A
combination of MSC with anti-oxidants and anti-inflam-
matory factors may be more beneficial for the treatment
of ARDS.

There are several limitations within our meta-analysis.
First, the sample size is small because the clinical inves-
tigation of MSC in ARDS is still at an early stage. Sec-
ond, not enough data on secondary outcomes were
extracted and no related meta-analysis was conducted.
Third, because 11 of the 13 included studies were focused
on COVID-19-induced ARDS, the evidence for non-
COVID-19 ARDS is still scarce. Finally, male patients
constituted about 66% of the total population, leading to
the imbalance of the female-to-male ratio, which might
be a source of clinical heterogeneity and limit the inter-
pretation of the effects of MSC on female patients.

Conclusion

Though 13 studies were included, the sample size (655
cases) was small. According to the results of our meta-
analysis, the administration of MSC in adult patients
with ARDS tended to be safe and feasible, and that MSC
may possess the potential to improve the survival of
ARDS. However, more high-quality, well-designed stud-
ies aiming to engineer and explore the beneficiary effects
of MSC in ARDS are necessary and expected.
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of MSC with control in COVID-19-induced ARDS. The size of each square
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