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Abstract 

Mesenchymal stromal cells (MSC) have shown potential efficacy in both animal and human trials of acute respiratory 
distress syndrome (ARDS). Especially during the COVID-19 pandemic, MSC was intensely studied for treating COVID-
19-induced ARDS. The purpose of this study is to evaluate the safety and efficacy of MSC in ARDS via a meta-analysis 
of randomized controlled trials (RCTs). Therefore, a meta-analysis of RCTs of MSC as a therapy for ARDS was con-
ducted. The protocol of this review was registered on Open Science Framework. With no language restriction and 
according to the “PICOs” principle, searches were conducted on Pubmed and Embase to retrieve any clinical literature 
on MSC for ARDS. Any RCT, which compared MSC to controls for ARDS, where MSC and controls were intravenously 
infused, of any dosage, was eligible for inclusion. A total of 13 RCTs, which evaluated MSC versus control for treating 
ARDS, enrolling a total of 655 cases, met the inclusion criteria and appeared in this meta-analysis. A heterogeneity 
assessment was carried out using the χ2 test, where a P value less than 0.05 was considered significant. The choice 
of a fixed-effect or a random-effect model was decided by the I2 value in each of the analyses. This meta-analysis 
indicated that there was no significant difference in terms of adverse events between MSC and control for ARDS 
(OR = 0.64, 95% CI [0.34, 1.20], P = 0.17, and I2 = 0%). In comparison with control, MSC could reduce the mortality of 
ARDS (OR = 0.66, 95% CI [0.46, 0.96], P = 0.03, and I2 = 10%). Based on the results of our meta-analysis, the safety of 
MSC was demonstrated to be non-inferior to that of standard treatment, and MSC may reduce the mortality rate of 
ARDS. Though the heterogeneity in the main results was low (I2 < 25%), more high-quality and large-scale clinical trials 
are needed to further confirm our findings.

Keywords Mesenchymal stromal cells, Acute respiratory distress syndrome, Acute lung injury, Cell transplantation, 
Coronavirus disease 2019

Introduction
Acute respiratory distress syndrome (ARDS) is a life-
threatening clinical syndrome with high morbidity and 
mortality, which is featured by acute non-cardiogenic 
lung edema, hypoxia refractory to routine oxygena-
tion, and severe respiratory distress [1]. According to 
the “Lung Safe” international epidemiological investiga-
tion, the mortality of ARDS ranged from 34.9 to 46.1% 
and the prevalence of it accounted for 10.4% of all ICU 
admissions around the globe [2]. Though lung-protective 
ventilation [3], controlling driving pressure [4], prone 

†Fengyun Wang and Yiming Li contributed equally to this work.

*Correspondence:
Zhiyong Peng
pengzy5@hotmail.com
1 Department of Critical Care Medicine, Zhongnan Hospital, Wuhan 
University, Wuhan, Hubei Province, China
2 Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, 
Hubei, China
3 Department of Critical Care Medicine, Center of Critical Care 
Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA 
15213, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-022-04287-4&domain=pdf
http://orcid.org/0000-0002-9447-2599
http://orcid.org/0000-0003-0236-9840
http://orcid.org/0000-0002-3873-9607


Page 2 of 11Wang et al. Critical Care           (2023) 27:31 

position [5], and ECMO [6] were identified as effective 
measures, the mortality of ARDS was still unacceptably 
high. Apart from low-dose corticosteroids (such as 6 mg/
day dexamethasone) and remdesivir were recommended 
for treating COVID-19-induced ARDS [7], there is no 
other guideline-recommended therapy directly targeting 
the pathophysiology of this lethal clinical syndrome.

Mesenchymal stromal cells (MSC) belonging to a 
member of pluripotent stem cells, are of stromal origin 
and can be extracted from bone marrow, adipose tissue, 
umbilical cord, etc. [8]. MSCs are considered candidates 
for the treatment of ARDS because they can be deployed 
to the injured sites, where they are shown to repair tissue 
through its paracrine and anti-fibrosis effects in animal 
models of ARDS induced by endotoxin [9]. Additionally, 
MSC may transfer mitochondria into alveolar epithelium 
to improve bioenergetics of lung tissue and improve lung 
function [10]. The secretome released by MSC also is 
demonstrated to possess anti-inflammatory effects and is 
protective in animal models of ARDS [11]. Through the 
release of lipocalin-2 and LL-37, MSC has been shown to 
possess antimicrobial effects, possibly by enhancing the 
phagocytic activity of host immune cells [12]. In addi-
tion, MSC has been reported to preserve the integrity 
of vascular endothelial and alveolar epithelial barrier in 
preclinical models of ARDS [13]. Beyond that, in lung 
injuries induced  by endotoxin, MSC is able to improve 
alveolar fluid clearance [14]. By exhibiting multipotent 
characteristics such as tissue repair, regeneration, antimi-
crobial, and anti-inflammation, MSC was widely investi-
gated in ARDS animal models and was considered as a 
promising therapy for ARDS [15].

In the last decade, clinical trials have been conducted 
to investigate the safety and efficacy of MSC concerning 
ARDS [16–23]. However, due to the small sample size of 
these early clinical trials, the potency of MSC for ARDS 
is still subject to question and thus merits further discus-
sion and investigation. Toward this end, we conducted a 
meta-analysis of randomized controlled trials of MSC in 
patients with ARDS to review the safety and efficacy of 
MSC for ARDS. The main outcomes of this meta-analy-
sis were treatment-related adverse events (AEs) and all-
cause mortality.

Materials and methods
Data sources
The protocol of this review was registered on Open Sci-
ence Framework (OSF), registration https:// doi. org/ 10. 
17605/ OSF. IO/ V74XA. PubMed and EMBASE (up to 
November 2022) were searched to identify relevant clini-
cal trials with a tailored search strategy. Trials other than 
randomized controlled trials (RCT) were excluded from 
further screening. Search terms included ‘Mesenchymal 

Stromal Cells,’ ‘Mesenchymal Stem Cells’ ‘MSC,’ ‘Acute 
Respiratory Distress Syndrome,’ ‘ARDS,’ ‘Acute Lung 
Injury,’ and ‘ALI,’ and they were combined by patients, 
intervention, control, and outcomes (PICOs) principle. 
No language restriction was set in the database search. 
The search strategy is as follows: (((((Acute Respiratory 
Distress Syndrome[Title/Abstract]) OR (ARDS[Title/
Abstract])) OR (acute lung injury[Title/Abstract])) 
OR (ALI[Title/Abstract])) AND ((((Mesenchymal 
Stem Cells[Title/Abstract]) OR (Mesenchymal Stro-
mal Cells[Title/Abstract])) OR (MSC[Title/Abstract])) 
OR (MSCs[Title/Abstract]))) AND ((((((((control[Title/
Abstract]) OR (randomized[Title/Abstract])) OR 
(randomly[Title/Abstract])) OR (controlled[Title/
Abstract])) OR (RCT[Title/Abstract])) OR 
(placebo[Title/Abstract])) OR (sham[Title/Abstract])) 
OR (random[Title/Abstract])).

Study selection
Two authors (FYW and YML) independently searched 
and scrutinized literature on databases and read the title 
and abstract of each retrieved article to determine which 
of them required further assessment. Full texts of articles 
were retrieved when the information given in the titles 
and abstracts indicated that the study adopted a pro-
spective design to compare MSC with control in patients 
with ARDS. When disputes existed, they were discussed 
thoroughly to reach a consensus. The inclusion criteria 
were (1) any RCTs that compared MSC with controls for 
ARDS, (2) included patients who were adults, of any gen-
der, and had an established ARDS, (3) MSC intravenously 
infused, of any dosage; and controls or placebo intrave-
nously infused, of any dosage.

Data extraction
Review authors (FYW and YML) independently extracted 
data with a customized data extraction form. The data 
extraction form included the following detailed informa-
tion: (1) year of publication, (2) the number of included 
patients, (3) descriptions of dose, route, and timing of 
MSC and controls, (4) treatment-related AEs, all-cause 
mortality and other secondary outcomes.

Analyzed outcomes
The primary outcomes of this review were treatment-
related AEs and all-cause mortality at 28 days. The sec-
ondary outcomes included clinical data such as ICU 
length of stay,  PiO2/FiO2; and inflammatory biomarkers 
such as IL-6 and IL-8.

Data analysis and statistical methods
Data analyses of this review were performed by the 
Review Manager (Version: 5.4, Cochrane Collaboration, 
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UK). Clinical heterogeneity was assessed in the popula-
tion, methodology, and in interventions and outcomes of 
each study to assess whether the pooling of results was 
feasible. Values of I2 less than 25% were considered low in 
heterogeneity, for which the fixed-effect model of meta-
analysis was used, whereas values of I2 between 25 and 
75% were considered moderate in heterogeneity and a 
random-effects model was used. Values of I2 higher than 
75% indicated high levels of heterogeneity, in which case 
no meta-analysis was performed. All statistical tests were 
two-sided and a P value less than 0.05 was considered 
statistically significant. Dichotomous variables such as 
treatment-related AEs and all-cause mortality expressed 
in ratios were extracted. Continuous variables such as 
inflammatory biomarkers IL-6 and IL-8 expressed in 
mean and standard deviation were extracted. Serum IL-6 
and IL-8 examined 5 days or 7 days after trial drug or pla-
cebo administration were to be extracted in our review.

Heterogeneity exploration and quality assessment
A heterogeneity assessment was performed using the χ2 
test, where a P value less than 0.1 was considered as the 
significance set. The funnel plot was utilized to detect any 
possible publication bias. The quality of the included lit-
erature was assessed by the Cochrane Collaboration tool 
for assessing risk of bias, which contains the following 
five aspects: sequence generation, allocation conceal-
ment, blinding, incomplete outcome data, and selec-
tive outcome reporting. The assessment of risk of bias 
was presented by using a “risk of bias summary figure,” 
which presents all of the judgments in a cross-tabulation 
of study by entry. This display of internal validity indi-
cates the weight the writer may give to the results of each 
study.

Results
Study selection process
The whole search and selection process of the electronic 
databases was shown in the flow diagram (Fig. 1). Specifi-
cally, 170 articles were retrieved from Pubmed and 143 
articles were retrieved from Embase. After duplicates 
were removed, a total of 259 articles were retrieved. After 
reading the titles and abstracts of each of the retrieved 
articles, the 166 retrieved articles were preserved and the 
full text of 23 of them was obtained for further examina-
tion. Seven papers were eliminated from consideration 
because they were either case series [23] or uncontrolled 
safety studies [22] or a study protocol [24–28]. Another 
three papers [29–31] were discarded because they 
reported the same trials as the included studies [17, 18, 
32] did. These three excluded studies were only the sec-
ondary analysis of the three relevant studies included in 

our review and they didn’t report outcomes analyzed in 
our study. Finally, 13 papers met the inclusion criteria 
and were included in this meta-analysis [16–19, 32–40]. 
MSC or controls were initiated once the patients met the 
Berlin definition of ARDS or severe/critical COVID-19 in 
all the included studies after randomization.

Characteristics of the included studies
The main characteristics of the 13 studies including the 
type of study design, patients’ characteristics, dose and 
treatment duration of the studied medicine, population, 
and outcomes are presented in Table  1. The etiology of 
ARDS was not restricted to one specific disease in two 
included studies [16, 17], whereas, in the other 11 stud-
ies, ARDS was solely induced by COVID-19. The average 
age of the patients in the included studies ranged from 
53 to 69.8  years old, and in terms of which, there was 
no significant difference between the MSC group and 
the Control group (P = 0.55, Additional file 1: Fig. S1A). 
Male patients accounted for 66.1% of the MSC group and 

Fig. 1 The flow diagram of the literature search process
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66.3% of the Control group (P = 0.77, Additional file  1: 
Fig. S1B). MSC was only used in patients with moderate-
to-severe ARDS in six included studies, but in the other 
seven studies, either the severity was not defined, or 
MSC can be used for all patients with ARDS, regardless 
of the severity of the disease. Four included studies held 
a modality of multi-center RCT [17, 19, 34, 38], while the 
other nine studies were just one single-center RCTs. The 
method of randomization and allocation concealment 
was not thoroughly elucidated in four included trials [16, 
18, 19, 37]. The source origins of the MSCs included adi-
pose, bone marrow, umbilical cord, etc., and the dose of 
MSCs ranged from 1 ×  106 to 100 ± 20 ×  106 in included 
studies.

The meta‑analysis of the primary outcomes
Regarding treatment-related AEs, the pooling results 
of 10 RCTs, enrolling a total of 579 patients, sug-
gested that in comparison with control, MSC infusion 
did not increase any pre-defined AEs in treating ARDS 

(OR = 0.64, 95% CI [0.34, 1.20], P = 0.17, and I2 = 0%), 
Fig. 2A. For the COVID-19-induced ARDS subgroup, the 
pooled results of eight RCTs indicated that when com-
pared with control, MSC did not increase any treatment-
related AEs (OR = 0.99, 95% CI [0.45, 2.18], P = 0.99, and 
I2 = 0%), Fig.  2B. When the random-effects model was 
adopted, the results remained unchanged (Additional 
file 1: Fig. S2A and B).

As for 28  days all-cause mortality, 13 studies with a 
total of 655 patients enrolled, the synthesized data indi-
cated that compared with control, MSC reduced the 
mortality rate in adult patients with ARDS (OR = 0.66, 
95% CI [0.46, 0.96], P = 0.03, and I2 = 10%), Fig.  3A. 
When the model of meta-analysis was adjusted to a ran-
dom-effects model, the difference remained significant 
and the P value was 0.05 (Additional file  1: Fig.  S3A). 
For the COVID-19-induced ARDS subgroup, 11 stud-
ies with a total of 593 patients were included, and the 
pooled results proved that compared with controls, MSC 
reduced mortality in COVID-19 patients with ARDS 
(OR = 0.65, 95% CI [0.44, 0.96], P = 0.03, and I2 = 22%), 

Fig. 2 The meta-analyses of adverse events, comparing MSC with the control: A the comparison of MSC with control in general ARDS; B the 
comparison of MSC with control in COVID-19-induced ARDS. The size of each square represents the proportion of information given by each trial. 
Crossing with the vertical line suggests no difference between the two groups
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Fig.  3B. Of note, when the random-effects model was 
adopted, the P value was 0.07 (Additional file 1: Fig. S3B).

The risk of bias summary for the included trials is pre-
sented in Fig. 4A. The general heterogeneity is low among 
these studies, and therefore, it is possible to pool them 
for meta-analyses. The funnel plot is utilized to detect 
any possible publication bias. As expressed in Fig. 4B, C 
the majority of the studies included in the meta-analyses 
are distributed symmetrically. Therefore, the publication 
bias in the present analysis is low and acceptable.

The summarization of secondary outcomes
The meta-analysis of secondary outcomes was not con-
ducted either because the data were not extractable or 
not presented. Six included studies reported the effect 
of MSC on oxygenation. Though three included stud-
ies implied that MSC may increase  PaO2/FiO2 ratio [16, 

37, 39], the other three studies suggested that MSC did 
not have much impact on  PaO2/FiO2 ratio at any time-
points [17, 19, 34]. On ventilation-free days to 28 days in 
ARDS, five studies didn’t detect any significant difference 
between MSC and controls [16, 17, 19, 34, 38]. In terms 
of ICU-free days, although five studies discovered no sig-
nificant difference between the two groups [16, 19, 34, 
38, 40], one study revealed that MSC may reduce ICU-
free days in ARDS [17]. Meanwhile, the effects of MSC 
on serum IL-6 in ARDS were also controversial, as while 
three studies suggested no significant difference detected 
[16, 17, 40], four others implied that MSC may down-
regulate serum IL-6 [18, 19, 35, 39]. Additionally, three 
included studies reported no significant impact of MSC 
on serum IL-8 in ARDS [16, 17, 35].

Fig. 3 The meta-analyses of mortality, comparing MSC with the control: A the comparison of MSC with control in general ARDS; B the comparison 
of MSC with control in COVID-19-induced ARDS. The size of each square represents the proportion of information given by each trial. Crossing with 
the vertical line suggests no difference between the two groups
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Discussion
Our meta-analysis summarized the results of currently 
available RCT studies focused on MSC for ARDS and 
determined that the safety of MSC was not inferior to 
that of standard treatment. Second, with the treatment 
of MSC, the short-term survival of ARDS was improved. 
Third, the impact of MSC on oxygenation, ventilation-
free days, ICU-free days, and systemic inflammation was 
still inconclusive thus far because no meta-analysis was 
done for these important outcomes.

No discrepancy regarding treatment-related adverse 
events was observed between MSC and controls in the 
10 included RCTs, indicating the safety of MSC is reli-
able and further studies are warranted. In the COVID-
19-induced ARDS subgroup analysis, of AEs, there are 
still no significant differences between MSC and control. 
Thus, MSC is safe for treating severe COVID-19. Since 
our meta-analyses showed that mortality is reduced in 

both general ARDS and COVID-19-induced ARDS, MSC 
can be further investigated as a promising therapy for 
ARDS. Though I2 < 25%, when the random-effects model 
of meta-analysis was used, the P value of the subgroup 
analysis of COVID-19-induced ARDS exceeded 0.05 
(P = 0.07). Although the subtle difference in random-
effects model would not undermine the findings of mor-
tality, more MSC studies are needed to consolidate its 
protective effect in COVID-19-induced ARDS. In our 
meta-analysis, albeit improved survival with the treat-
ment of MSC, three included studies indicated that com-
pared with control, oxygenation was not improved, this 
may suggest that the improvement of survival by MSC 
was not primarily dependent on oxygenation for its effec-
tiveness. The paracrine of growth factors, promotion of 
tissue repair and regeneration, and the anti-inflammatory 
effects of MSC [41, 42] may comprehensively alter the 

Fig. 4 The assessment of possible bias: A The risk of bias summary graph: review authors’ judgements about each risk of bias item for each included 
study. B The funnel plot for adverse events. C The funnel plot for mortality
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pathophysiological progress of ARDS. However, the par-
ticular mechanism awaits future studies to decode.

Regarding secondary outcomes, because of the differ-
ent modalities used in data presentation, not enough data 
can be extracted. For this reason, no meta-analysis was 
conducted for secondary outcomes. Of note, despite no 
difference reported in the incidence of AEs and ventila-
tion-free days, the study by Michael Matthay et  al. [17] 
revealed that ICU-free days were reduced in the MSC 
group. They also detected nonsignificant elevated mor-
tality with the treatment of MSC for ARDS (12/40 in 
the MSC and 3/20 in the control died). However, they 
acknowledged that mortality, as expected, was higher in 
the group of MSC than in the control group and that this 
was due to higher severity of the disease in the first group 
than in the latter group [17].

So far, due to a lack of effective targeted treatments, 
ARDS is still one of the most deadly clinical syndromes in 
the critical care field even after more than half a century 
of its discovery [43, 44]. Even for patients who survived 
this purgatory, their quality of life inevitably and dramati-
cally declined because of their substantially damaged and 
not fully recovered lung function [45]. Especially after 
COVID-19 had swept all over the globe in the last three 
years and caused millions of deaths [46, 47], effective and 
available therapies for ARDS are quite needed.

In the last decade, cell therapy including MSC has been 
clinically investigated in a variety of pulmonary diseases. 
In 2013, Daniel Weiss et  al. investigated the safety and 
efficacy of MSC in COPD. Though they didn’t observe 
any significant differences in pulmonary function or 
life-quality indicators, the safety of MSC was found to 
be satisfying and an anti-inflammatory effect of MSC 
was detected as it can decrease circulating CRP [48]. 
For preterm infants with bronchopulmonary dysplasia, 
intratracheal transplantation of allogeneic UC-MSC was 
also found to be safe and feasible [49, 50]. In the phase 
1 clinical trial conducted by Jennifer Wilson et  al., the 
dose-escalation of MSC from 1 ×  106 to 10 ×  106 MSC/kg 
was well tolerated by patients with moderate-to-severe 
ARDS, and no infusion-associated AEs and serious AEs 
were observed during the trial [22]. A compassionate 
treatment trial of COVID-19-induced ARDS with UC-
MSC was demonstrated to be safe, yet the improvement 
of oxygenation may have been attributable to the effects 
of MSC or the evolution of the course of the disease 
itself. This needs to be validated by more controlled trials 
[23]. Furthermore, not only was MSC clinically investi-
gated for treating ARDS but MSC-derived therapies such 
as exosomes of MSC were also considered for treating 
this syndrome [11]. In a cohort study, BM-MSC-derived 
exosomes were demonstrated to be safe and could restore 

oxygenation and downregulate cytokines for the treat-
ment of severe COVID-19 [51].

Though MSC may be a promising therapy for ARDS, 
how to use it correctly in ARDS is still an issue that many 
clinicians are concerned about. According to the sum-
mary of the dosage of MSC in our study, one dose or 
several doses of 1 ×  106 cells/kg of MSC seems to be safe 
in ARDS since this dosage didn’t increase any treatment-
related AEs. Umbilical cord (UC) MSC was used in 8 of 
the 13 included studies, and given its high availability, 
it may be one of the most promising MSCs in the area 
of ARDS. Diana Islam et  al. discovered that the effect 
of MSC in ARDS was determined by the microenviron-
ment at the time of administration [52]. They proved that 
MSC might worsen ARDS in a microenvironment of high 
levels of IL-6 and fibronectin along with low antioxidant 
capacity. Correcting this adverse microenvironment with 
anti-oxidants or anti-inflammatory factors can reverse 
the detrimental effects of MSC. The aforementioned 
findings might guide us to use MSC in ARDS correctly. A 
combination of MSC with anti-oxidants and anti-inflam-
matory factors may be more beneficial for the treatment 
of ARDS.

There are several limitations within our meta-analysis. 
First, the sample size is small because the clinical inves-
tigation of MSC in ARDS is still at an early stage. Sec-
ond, not enough data on secondary outcomes were 
extracted and no related meta-analysis was conducted. 
Third, because 11 of the 13 included studies were focused 
on COVID-19-induced ARDS, the evidence for non-
COVID-19 ARDS is still scarce. Finally, male patients 
constituted about 66% of the total population, leading to 
the imbalance of the female-to-male ratio, which might 
be a source of clinical heterogeneity and limit the inter-
pretation of the effects of MSC on female patients.

Conclusion
Though 13 studies were included, the sample size (655 
cases) was small. According to the results of our meta-
analysis, the administration of MSC in adult patients 
with ARDS tended to be safe and feasible, and that MSC 
may possess the potential to improve the survival of 
ARDS. However, more high-quality, well-designed stud-
ies aiming to engineer and explore the beneficiary effects 
of MSC in ARDS are necessary and expected.
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Additional file 1: Fig. S1. The meta-analyses of age and gender (male 
patients ratio), comparing MSC with the control: A the comparison of 
MSC with control regarding age; B the comparison of MSC with control 
regarding gender. The size of each square represents the proportion of 
information given by each trial. Crossing with the vertical line suggests no 
difference between the two groups. Fig. S2. The meta-analyses of adverse 
events, comparing MSC with the control in the random-effects model: A 
the comparison of MSC with control in general ARDS; B the comparison 
of MSC with control in COVID-19-induced ARDS. The size of each square 
represents the proportion of information given by each trial. Crossing with 
the vertical line suggests no difference between the two groups. Fig. S3. 
The meta-analyses of mortality, comparing MSC with the control in the 
random-effects model: A the comparison of MSC with control in general 
ARDS; B the comparison of MSC with control in COVID-19-induced ARDS. 
The size of each square represents the proportion of information given by 
each trial. Crossing with the vertical line suggests no difference between 
the two groups
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