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Abstract 

Critically ill patients undergo early impairment of their gut microbiota (GM) due to routine antibiotic therapies and 
other environmental factors leading to intestinal dysbiosis. The GM establishes connections with the rest of the 
human body along several axes representing critical inter-organ crosstalks that, once disrupted, play a major role 
in the pathophysiology of numerous diseases and their complications. Key players in this communication are GM 
metabolites such as short-chain fatty acids and bile acids, neurotransmitters, hormones, interleukins, and toxins. Inten-
sivists juggle at the crossroad of multiple connections between the intestine and the rest of the body. Harnessing 
the GM in ICU could improve the management of several challenges, such as infections, traumatic brain injury, heart 
failure, kidney injury, and liver dysfunction. The study of molecular pathways affected by the GM in different clinical 
conditions is still at an early stage, and evidence in critically ill patients is lacking. This review aims to describe dysbio-
sis in critical illness and provide intensivists with a perspective on the potential as adjuvant strategies (e.g., nutrition, 
probiotics, prebiotics and synbiotics supplementation, adsorbent charcoal, beta-lactamase, and fecal microbiota 
transplantation) to modulate the GM in ICU patients and attempt to restore eubiosis.
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Introduction
The total number of human cells is approximately 
3.0·1013while the number of microorganisms inhabiting 
humans is approximately 3.8·1013 [1]. Collectively, they 
constitute the human microbiota, representing an organ 
itself [2].

Most of the microbiota colonizes the gut establishing 
a symbiosis with their host [3]. The gut microbiota (GM) 
of a healthy subject harbors all three main life domains: 
bacteria, archaea, and eukarya. The bacterial domain 
is the most represented [4]. There are six known bacte-
rial phyla [5]. Firmicutes and Bacteroidetes are the most 
abundant, followed by Actinobacteria and Proteobacteria 

[6, 7]. The GM composition varies among individuals, 
changing throughout life due to intrinsic factors like age 
and genetics and extrinsic modifiable factors like diet [8], 
environment, and drug use [9]. In healthy individuals, 
the GM has prerogative functions, including enterocyte 
renewal modulation, metabolic and antimicrobic actions, 
and systemic activities such as improvement of glucose 
sensitivity [10], reduction of systemic inflammation, and 
even longevity [11]. Illness and drugs can disrupt the GM 
balance. In the intensive care unit (ICU), patients are 
subjected to antibiotics, gastrointestinal transit changes, 
nutritional changes, and sepsis [4], collectively leading to 
a GM imbalance, namely dysbiosis, whose most common 
symptom is diarrhea [12]. Ninety percent of the intestinal 
microflora is lost within 6 h of ICU admission [13]. ICU 
patients have lower bacterial diversity and variability, and 
opportunistic pathogens are enriched over symbiotics 
[14–16]. Most opportunistic pathogens are Gram-neg-
ative aerobic proteobacteria such as Enterobacteriaceae 
and Gram-positive bacteria such as Staphylococcus spp. 
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and Enterococcus spp. [14]. This imbalance can lead to 
Candida albicans overgrowth in critically ill patients 
[2, 14, 15] while beneficial species such as Ruminococ-
cus spp., Pseudobutyrivibrio spp., and Faecalibacterium 
prausnitzii become less represented [17, 18]. For these 
reasons, the GM in critically ill patients is defined as 
"pathobiota" (Fig. 1) [19]. The GM is also the main reser-
voir for "multidrug-resistant" bacteria (MDROs): Initially, 
these bacteria are counteracted by the resident beneficial 
bacteria, but then, as antibiotics eradicate them, MDROs 
take over and may promote infections during hospitaliza-
tion [reviewed in [20]].

In critically ill patients, dysbiosis could be considered 
an organ dysfunction [21]. This review aims to describe 
this impairment and provide intensivists with a perspec-
tive on the currently available strategies to modulate the 
GM in ICU patients.

The gut microbiota and the host
The GM interacts with its host (Fig.  2), and scientists 
are just beginning to characterize GM composition and 
function in health and disease. This paragraph describes 
the GM functions and how it interacts with the body, 
focusing on critically ill patients.

The gut–brain axis
The blood–brain barrier (BBB) has always been consid-
ered molecule impermeable. However, immune cells, 
neurotransmitters, and some gut bacterial metabo-
lites (SCFAs, vitamins, bile acids) can pass through it 
[reviewed in [22]]. These molecules affect memory, learn-
ing, behavior, and locomotion. Unbalanced molecular 
communication contributes to neurodegenerative and 
neuropsychiatric diseases [23], traumatic brain injury 
(TBI) [24], and sepsis-correlated brain impairment 
[25, 26]. The gut–brain axis (GBA) bidirectionally con-
nects the central nervous system with the enteric one. 
It goes beyond a mere anatomical network and includes 
immune, endocrine, metabolic, and humoral communi-
cation routes. The GBA was first described in the early 
2000s when antibiotic-treated germ-free (GF) or spe-
cific pathogen-free mice developed neurological prob-
lems [27]. The GBA links brain’s emotional and cognitive 
centers with the gut [28]. Lactobacillus, Bifidobacteria, 
Enterococcus, and Streptococcus produce acetylcholine,γ-
aminobutyric acid (GABA), and serotonin [29]. Serotonin 
impacts brain functions, heart, bowel motility, bladder 
control, and platelet aggregation. Serotonin-based treat-
ments in psychiatry and neurology regulate sleep, mood, 

Fig. 1 P1:The shift from microbiota to pathobiota in the ICU is driven by antibiotics and ICU-specific treatments like artificial feeding, mechanical 
ventilation, proton pump inhibitors, vasopressors, and opioids
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and behavior [30]. Ninety-five percent of serotonin is 
produced from tryptophan in the gut by microbes [31, 
32]. The GM also produces SCFAs butyrate, acetate, 
and propionate by fiber fermentation [22]. SCFAs con-
tribute to maintaining the gut and BBB physiology. GF 
mice have increased gut and BBB permeability, and sup-
plementation with the SCFAs-producing Clostridium 
tyrobutyricum restores both gut and brain homeostasis 
[33]. SCFAs influence the production of glutamate, glu-
tamine, GABA, and neurotrophic factors. Propionate and 
butyrate modulate the expression of serotonin- and cat-
echolamine-synthesizing enzymes and regulate intracel-
lular potassium levels [reviewed in [34]].

Dysbiosis in the GBA is linked to neuroinflammation 
through the creation of the inflammasome, a biological 
complex of innate immune system multiprotein oligom-
ers that activates inflammatory responses. Activated by 
pathogens or stress signals, the inflammasome assembles, 
producing pro-inflammatory cytokines [e.g.,interleukins 
(IL)-1 and IL-18] implicated in neuroimmunomodu-
lation, neuroinflammation, neurodegeneration, and 
pyroptosis [35]. GM and inflammasome are strongly 
connected. Indeed, the inflammasome binds pathogen-
associated and/or danger-associated molecular patterns, 
specific molecular motifs carried by gut microorganisms. 

Thus, a perturbation of the GM composition could over-
stimulate the inflammasome and compromise the GBA 
homeostasis, promoting neuroinflammation as seen in 
multiple sclerosis [36], Alzheimer’s disease [37], Parkin-
son’s disease [38], neuropsychiatric disorders [39], and 
sepsis [25, 26]. While no human studies are available, a 
recent preclinical study has shown how the GM plays a 
part in sepsis-associated encephalopathy by improving 
neurological outcomes when indole-3-propionic acid, a 
microbial neuroprotective metabolite, is produced, lead-
ing to the inhibition of NLRP3 inflammasome activation 
and IL-1β secretion in the microglia [26]. Similar preclin-
ical results have been found in model of sepsis-induced 
cognitive decline [25], emphasizing the link between GM 
dysbiosis and the brain.

TBI is another condition compromising the GBA. Pre-
liminary evidence on non-ICU patients shows that pri-
mary brain damage compromises the vagal nuclei and 
tractus solitarius nucleus [40], possibly leading to dysau-
tonomia in the gastrointestinal tract and leaky-gut occur-
rence, which in turn affects BBB’s permeability, reduces 
intestinal motility and leads to immune system dysregu-
lation, as shown in a rat study [41].

Fig. 2 The GM interacts with its host along several axes. The GM is at the crossroad of multiple arrows representing molecular pathways involved in 
axes’communication. Further details in the main text. SCFAs: Short-Chain Fatty Acids. LCFAs: long chain fatty acids. FGF-19: Fibroblast growth factor 
19
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The gut–heart axis
The gut–heart axis is bidirectional. Beneficial microbial 
metabolites like SCFAs and uremic toxins (UT) wire this 
connection [42, 43]. Dysbiosis and, consequently, down-
regulated production of SCFAs concomitant to a high 
level of UT negatively affect the gut–heart axis. In this 
context, lower SCFAs and higher UT production have 
been observed. This is accompanied by increased absorp-
tion of lipopolysaccharide and endotoxin due to epithe-
lial dysfunction, which ultimately triggers the systemic 
inflammatory response. This sequence of events facili-
tates the development of atherosclerosis and heart failure 
(HF) (reviewed in [44]). Conversely, it has been shown 
that HF causes dysbiosis, which promotes intestinal bar-
rier damage, impairs nutrient absorption, and primes a 
vicious cycle leading to harmful microbial product trans-
location into systemic circulation, further aggravating HF 
[45–47]. Indoxyl sulfate (IS) and p-cresyl sulfate (PCS), 
UT derived from tryptophan and tyrosine fermentation, 
play a key role in this context. They promote fibrosis in 
klotho deficient and wild-type mice, negatively affect-
ing heart and kidney function [48, 49]. Moreover, GF 
mice have less angiotensin II-induced hypertension and 
cardiac fibrosis than conventionally raised mice [50]. 
Observational data in patients with HF show decreased 
intestinal blood flow [46] and edema in the terminal 
ileum and colon [45], which lead to a change in the GM 
composition, with enrichment of Campylobacter, Shi-
gella, and Salmonella [47]. Several HF therapeutic strate-
gies targeting the GM, such as probiotic supplementation 
and diets, are being preclinically and clinically tested. In 
a rat ischemia–reperfusion model, probiotics administra-
tion reduces myocardial infarct size and remodeling [51].
In a pilot human trial, Saccharomyces boulardii supple-
mentation in HF patients improved left ventricular frac-
tion and decreased left atrium diameter[52]. However, 
data are controversial so far, possibly because not all 
subjects included in these studies present with differ-
ent grades of dysbiosis. The gutHeart trial studying GM 
manipulation to treat HF did not confirm the previous 
findings, possibly due to the lack of substantial dysbiosis 
in the enrolled patients[53].

A high-fiber diet prevents hypertension and cardiac 
hypertrophy in hypertensive mice by reshaping the 
intestinal microbial community GM and increasing the 
abundance of acetate-producing bacteria [54]. Simi-
larly, a plant-based diet rich in complex carbohydrates 
and fibers while low in fat reduces HF events in both 
men [55] and women [56], improving arterial compli-
ance, exercise endurance, and quality of life [57]. Cho-
line is another soluble nutrient linked to HF. HF is worse 
in wild-type mice fed choline-supplemented diets [58]. 
Certain gut bacteria, such as Enterobacteriaceae[59], 

can metabolize choline to trimethylamine (TMA). TMA 
should remain in the intestine; however, in a condition 
of leaky-gut secondary to other pathological conditions, 
TMA can translocate to the liver, where it is converted 
to trimethylamineN oxide (TMAO), causing liver [60, 
61] and heart damage [58]. Dysbiosis also promotes ath-
erosclerosis. In fact, GF ApoE-deficient mice fed a low-
cholesterol diet have more atherosclerosis plaques than 
conventionally raised mice [62]. However, when admin-
istered with Akkermansia muciniphila, which prevents 
endotoxemia-induced inflammation, they present with 
smaller atherosclerotic plaques [63].

As the emerging data show the contribution of the GM 
in the onset or progression of heart diseases and preclini-
cal studies start to lay the foundation of interventions, 
data on the potential of these strategies in critically ill 
patients are lacking.

The gut–lung axis
Evidence suggests that the lung and gut also communi-
cate with each other, and complex pathways between 
their cognate microbiota strengthen the gut–lung axis 
(GLA). Neonatal gut dysbiosis with reduced Bifido-
bacteria, Akkermansia, and Faecalibacteria may cause 
CD4+ T cell dysfunction associated with childhood 
atopy and asthma [64]. IBD patients carry a higher risk 
of pulmonary diseases. In fact, IBD patients commonly 
have small and large airway dysfunction, obstructive and 
interstitial pulmonary diseases [65, 66] and, even when 
asymptomatic, may display early respiratory symptoms 
that could lead to bronchiectasis, mosaic perfusion, and 
air trapping, indicating obliterative bronchiolitis and cen-
trilobular nodules and bronchial linear opacities bronchi-
olitis or bronchiectasis with mucoid secretion [67, 68]. 
Early after colectomy, several IBD patients developed res-
piratory symptoms. No bacterial pathogens were identi-
fied in these patients’ sputum cultures, and corticosteroid 
therapy was required, suggesting a pulmonary impair-
ment due to inflammation and not infection [69].

SCFAs may act as anti-inflammatory molecules and 
barrier keepers in the respiratory tract [70]. Mice admin-
istered with high-fiber diets display high intestinal SCFAs 
levels [71]. No SCFAs were found in lung tissue, but their 
levels promoted dendritic cell hematopoiesis and acti-
vated T helper 2 effector cells in the airways, establishing 
a de facto gut–bone marrow-lung axis protecting mice 
from allergic lung inflammation [71]. Wild-type mice 
depleted of GM with antibiotics, subsequently intrana-
sally infected with pneumococcal pneumonia and then 
subjected to fecal microbiotal transplantation have an 
enhanced primary alveolar macrophage function thanks 
to a GM beneficial reshape [72].



Page 5 of 14Corriero et al. Critical Care          (2022) 26:379  

The GLA could be a route for gut-to-lung bacterial 
migration. In a recent case–control study, Klebsiella and 
Enterococcus physically translocated to the bloodstream 
and pulmonary system, causing sepsis with disruption 
of GM diversity and enrichment of antibiotic-resist-
ant bacteria, which led to secondary bloodstream and 
abdominal infections [73]. Acute respiratory distress 
syndrome(ARDS) could also be linked to GM dysbiosis 
as ARDS patients present enrichment of Enterobacte-
riaceae in the gut and lung while displaying lower bacte-
rial diversity [74].

The gut–kidney axis
A dysbalanced GM has also been associated with kidney 
diseases, including acute kidney injury (AKI) [reviewed 
in [75]] and chronic kidney disease (CKD) [76]. UT, 
SCFAs, and D-serine establish the so-called gut–kidney 
axis. Abnormal levels of IS, PCS, and TMA contribute 
to the onset of renal tubular cell dysfunction, pruritus, 
fatigue, neurological damage, coagulation and endothe-
lial dysfunction, mineral bone disorder, cardiovascular 
impairment, and insulin resistance, especially in patients 
affected by chronic kidney disease (CKD) [77]. Renal fail-
ure leads to higher urea concentration in both blood and 
intestine. This cause an overgrowth of intestinal bacte-
ria owning urease activity, converting urea to ammonia 
[78], leading to dysbiosis. Patients with CKD and end-
stage renal disease (ESRD) subjected to hemodialysis 
display enrichment of the genus Faecalibacterium and 
the families Bifidobacteriaceae and Prevotellaceae. Con-
versely, in ESRD patients subjected to peritoneal dialysis, 
the Escherichiagenusand Enterobacteriaceae-Enterococ-
caceae families are predominant [79].UT also accumu-
late in AKI, but the underlying cause of this association 
remains uncovered [80].

Kidneys also express SCFAs receptors[81]. The olfac-
tory receptor 78 (Olfr78) is a renal SCFA receptor, which 
promotes renin secretion. In experimental murine AKI 
models, butyrate decreases the production of reactive 
oxygen species and several pro-inflammatory cytokines 
[74] and exerts direct epigenetic activities by inhibit-
ing histone deacetylases involved in the progression of 
glomerulopathies [82]. Renal Toll-like receptor-4mRNA 
levels are lower in mice supplemented with SCFAs, and 
inflammation is tampered [83]. Furthermore, Bifidobac-
terium bifidum BGN4 supplementation in mice previ-
ously subjected to bilateral renal ischemia–reperfusion 
injury attenuates AKI severity by modulating the inflam-
matory-immune response [84].

Free D-aminoacids are produced by bacteria in mice 
[85] and play a role in the physiology of several organs, 
including the kidneys. In fact, AKI-associated dysbiosis 
in mice leads to a lower D-serine associated with kidney 

injury aggravation [85]. Oral administration of D-serine 
alleviated renal damage pointing to D-serine’s renopro-
tective properties [85]. In the same study, authors have 
also shown a direct correlation between impaired kidney 
function in AKI patients and D-serine levels [83]. Despite 
the lack of mechanism of this association, these data sug-
gest that D-serine levels could be a biomarker for AKI 
patients.

The gut–liver axis
The portal vein, biliary tree, and systemic circulation con-
nect the gut and liver. The liver interacts with the intes-
tine by producing bile acids (BAs)[86], while the intestine 
interacts with the liver by metabolizing BAs, aminoacids, 
and exogenous components like alcohol and choline [87]. 
Dietary molecules, xenobiotics, free fatty acids, choline, 
and ethanol metabolites in the bloodstream reinforce 
this crosstalk [88]. Several signaling cues go through GM 
metabolism. In fact, gut dysbiosis contributes to several 
gut–liver conditions. Enterococcus faecalis contributes to 
alcoholic liver disease (ALD) [89], Klebsiella pneumonia 
to non-alcoholic steatohepatitis [90], and Enterococcus 
gallinarum to autoimmune hepatitis [91] pathogenesis.

BAs aid in the absorption of dietary fats and fat-soluble 
vitamins in the small intestine [92, 93] and act as sign-
aling molecules by binding to the farnesoid X receptor 
(FXR) and G protein coupled bile acid receptor 1 [94]. 
This triggers molecular events impacting their own 
hepatic synthesis(via the action of the FXR-FGF19 duo) 
and glucose and lipid homeostasis [94]. As BAs and GM 
communicate with each other, disrupting this delicate 
balance can lead to intestinal barrier impairment, inflam-
mation, and even contribute to cancer onset and devel-
opment. A damaged intestinal barrier allows bacteria 
to enter the portal vein and reach the liver, exacerbat-
ing liver [95] and intestinal diseases [96]. Akkermansia 
muciniphila, a gram-negative anaerobe colonizing intes-
tinal mucus, is decreased in liver damage [97]. In this 
respect, bile duct ligated mice in which BA-FXR physiol-
ogy is restored via the administration of a semisynthetic 
BA and FXR ligand, display a restored gut barrier integ-
rity and Akkermansia muciniphila enrichment [96]. Loss 
of barrier caused by pathogenic bacteria disrupting epi-
thelial integrity can lead to sepsis by triggering systemic 
inflammation (reviewed in [98]), and, in turn, sepsis 
increases the risk of liver damage [99]. Intriguingly, these 
studies suggest that sepsis-induced liver damage could 
potentially be prevented by harnessing the GM in ICU 
septic patients.

SCFAs and LCFAs are gut–liver messengers. Studies in 
rodents have shown that reducing SCFAs increases intes-
tinal permeability [100] while reducing LCFAs decreases 
luminal Lactobacilli [101]. Supplementation with 
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Lactobacillus spp. probiotics in animal models improves 
intestinal barrier integrity, inhibits colonization of infec-
tious bacteria like Clostridium difficile and Clostridium 
perfringens, Campylobacter jejuni, Salmonella Enteritidis, 
Escherichia coli, Staphylococcus aureus, and Yersinia, and 
eases intestinal inflammation [102, 103].

Choline is metabolized into lecithin, contributing to 
VLDL hepatic excretion. Low choline may cause hepatic 
steatosis [104–106]. Lecithin levels depend on the host’s 
choline-to-lecithin conversion. Any impairment in 
enterocyte metabolism could harm the liver by reduc-
ing lecithin supply. Personalized nutrition could slow the 
choline-TMAO pathway to prevent liver damage [60, 61, 
107, 108].

Acute (caused by toxins or infections without underly-
ing liver disease) or chronic (caused by pre-existing liver 
disease) liver dysfunction is common in ICU [reviewed in 
[109]]. No study has explored preventing or treating liver 
dysfunction in the ICU using GM modulators. Previous 
research on the adjuvant benefits of probiotics/prebiot-
ics/symbiotics, fecal microbiota transplantation (FMT), 
and bacteriophages in non-alcoholic fatty liver disease 
[110, 111] and ALD [89, 112] could lay the groundwork 
for their future employment in other clinical contexts.

Harnessing the microbiota in critically ill patients
Despite the emerging data, there is a lack of human 
studies, especially on critically ill patients, and the 
available data should be expanded and validated in 
clinical trials. Moreover, a further effort to address bio-
marker discovery should be made in this field, as indi-
cated by the potential shown by TMAO and D-serine. 
GM manipulation could be used as an adjuvant strategy 
in some comorbidities rising in critically ill patients. 
An overview of the current preclinical and clinical tri-
als with grade of evidence with potential application to 
the ICU is provided in Table 1. Moreover, we propose 

a potential strategy (Fig. 3), where nutrition is the first 
and easiest step in managing dysbiosis in ICU patients, 
followed by probiotics, prebiotics, synbiotics, beta-lac-
tamase, absorbent charcoal administration, and, finally, 
FMT. These treatments require validation with a high 
level of evidence before they can be routinely applied in 
ICU. They must be used with extreme caution aiming 
for a tailored approach to the patient with ideal efficacy 
and safety.

Nutrition
Different dietary patterns can modulate the GM in 
different ways. Quantity, quality, fiber content, and 
feeding patterns [141, 142] affect GM abundance and 
diversity [143]. ICU patients may undergo fasting or 
limited nutrition [144], resulting in dysbiosis [145]and 
compromised bacterial metabolite levels [4]. Nutri-
tion in critical illness is a complex topic, and evidence 
is limited. Nevertheless, it has been observed that 
enteral nutrition (EN) benefits the GM more than par-
enteral nutrition (PN). PN raises Bacteroidetes levels 
and intestinal permeability in wild-type mice [146], 
while these effects are absent with EN [146]. GM is 
affected by the macronutrient-to-fiber ratio in EN for-
mulas. A high protein and animal fat load will enrich 
GM Bacteroides, while carbohydrate-rich diets increase 
Prevotella strains [147]. Low fiber intake impacts gut 
epithelium integrity, mucus layer thickness, and the 
enrichment of pathogenic strains [148]. EN should be 
preferred over PN to preserve intestinal barrier integ-
rity, prevent villi atrophy, and promote eubiosis, ulti-
mately leading to lower mortality and morbidity [149] 
and fewer infectious complications [reviewed in [113]]. 
Anyhow, caution should be taken in formula selection. 
It has been observed that mice fed dietary emulsifiers 
show an imbalanced GM linked to colitis and metabolic 

Fig. 3 Potential personalized approach for treating dysbiosis in ICU patients
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syndrome [150]. Since EN formulas include preserva-
tives and emulsifiers, like soy lecithin and glycerol deri-
vates [151], they could potentially harm ICU patients.

Probiotics, prebiotics, synbiotics
Probiotics
Probiotics are live microorganisms that provide a health 
benefit to the host when supplemented in sufficient quan-
tities [152]. Probiotics promote eubiosis, reduce gut cell 
apoptosis, and support the immune system [153–155].

A meta-analysis analyzing several trials in about 2.900 
critically ill patients on probiotic use in the ICU reported 
that strains such as Saccharomyces boulardii, Lactoba-
cillus spp., and Bifobacterium spp. are associated with 
a reduction in infections, particularly in patients with 
ventilator-associated pneumonia (VAP) and treated with 
antibiotics, but not to increased survival [118]. Con-
versely, a more recent study did not confirm the benefi-
cial role of Lactobacillus rhamnosus GG in reducing VAP 
incidence in ICU patients [156]. Another meta-analysis, 
which analyzed 4893 patients, has shown that probiotics 
reduce VAP, ICU length of stay, and duration of antibi-
otic therapy; however, the high variability in treatments 
and type of patients prevents the introduction of the use 

of probiotics as VAP prophylaxis [116]. Other positive 
effects of probiotics in specific patient subgroups, such 
as polytrauma patients, include improvement in clini-
cal conditions, less use of vasopressors, reduction in the 
"sequential organ failure assessment" (SOFA) score, and a 
shorter ICU stay [157]. In particular, four probiotic prep-
arations in polytrauma patients under mechanical ven-
tilation lowered the incidence of VAP from 23.8% in the 
placebo group to 11.9% in the interventional group [157].

Three more meta-analyses analyzing the use of probi-
otics in critically ill patients to prevent VAP or mortal-
ity and ICU-acquired infections were recently published 
[117, 158, 159]. Consistently, authors concluded that 
probiotics administration is safe and beneficial and leads 
to a decrease in the incidence of ICU infections, notably 
VAP, whose prevention was the most effective in trauma 
patients. Conversely, the largest network meta-analysis, 
including 8339 patients from 31 RCTs, advocates that the 
safety of probiotics should be further studied, especially 
in critically ill patients, as in some cases, high dosages 
have been linked to an increase in infection complica-
tions such as sepsis, pneumonia, abscesses, and endocar-
ditis due to bacteremia and fungemia [117].

Table 1 Overview of the current preclinical and clinical trials with grade of evidence with potential application to the ICU

Evidence reported in ICU or critically ill settings have been specified

ICU intensive care unit, VAP ventilator associated pneumonia, TBI traumatic brain injury, RCDI recurrent clostridioides difficile infection, FMT fecal microbiota 
transplantation

Interventions Potential ICU applications Grade of evidence

Nutritional approach (EN) Promote GM eubiosis
Reduce mortality/morbidity
Reduce infectious complications

Very weak [113]

Adsorbent Charcoal Prevention of RCDI Very weak
Pre clinical studies [114]
One phase 2 trial completed[115]

Probiotics Prebiotics Synbiotics Reduce infection rate, notably VAP Weak [116–118]
RCTs in ICU with low quality of evidence

Coadjuvant in sepsis Very weak [119, 120]
Preclinical studies

Coadjuvant in SARS-CoV-2 infection Weak
Ongoing RCTs in ICU [121–126]

Coadjuvant in TBI Very weak [127]
Preclinical studies

Prevention of RCDI Very weak [128]

Beta-Lactamase Prevention of RCDI Very weak
Phase 2 trials completed [129]
One phase 1b/2a trial ongoing [130]

FMT Treatment of RCDI Weak [131, 132]
One RCT [133]
Four ICU retrospective cohort studies [134–137]

Coadjuvant in TBI Very weak [138]
Pre clinical studies

Coadjuvant in sepsis Very weak [139, 140]
Case reports and pre clinical studies
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Other potential indications for probiotics in ICU 
include sepsis, TBI, and, most recently, SARS-CoV-2 
infection. Since 2007, the gut has been conceptualized 
as a "motor" that, when impaired, could drive systemic 
inflammation and multiple organ failure [160]. Experi-
mental evidence point to Faecalibacterium prausnitzii as 
a probiotic strain potentially blunting systemic inflam-
mation during sepsis as it produces an anti-inflammatory 
peptide that can counteract chemically induced colitis 
in mice [119]. Moreover, daily oral intake of Lactobacil-
lus rhamnosus GG and Bifidobacterium longum has been 
shown to reduce mortality and improve intestinal epithe-
lial homeostasis in a murine model of septic peritonitis 
[120]. Probiotics could also be a valid asset in TBI, as 
shown in mice subjected to traumatic spinal cord injury 
and supplemented with VSL#3, a mixture of eight bac-
terial strains [161]. This intervention supported mice’s 
immune response in the gut and better locomotor recov-
ery, improving post-injury outcomes [127].

The SARS-CoV-2 pandemic has impacted every field of 
medicine, including intensive care, where each virus vari-
ant has differently affected critically ill patients [162]. The 
role of probiotics in infected patients in intensive wards 
has not been systematically explored. However, their sup-
plementation could influence the host’s immune response 
[163]. Clinical trials studying the effect of probiotic sup-
plementation in SARS-CoV-2 patients are ongoing or 
have recently been completed [121–126]. Emerging evi-
dence points to the modulation of the immune function 
and reduction of secondary infections achieved by probi-
otics supplementation [164].

Next-generation probiotics are in development. SER-
109 is obtained by transplanting fecal microbiota with 
alcohol-triggered massive sporulation. This new probi-
otic reduces the risk of recurrent Clostridium Difficile 
infection (RCDI) in patients treated with antibiotics per 
guidelines [128].

Prebiotics and synbiotics
Prebiotics are specific nutrients for intestinal bacte-
ria, while synbiotics combine prebiotics and probiotics. 
They can both be administered to modulate the GM [2]. 
A meta-analysis has shown that there is no difference in 
the incidence of infections in ICU patients between using 
probiotics alone or synbiotics [118]. Conversely, in VAP, 
synbiotics supplementation seems to produce a more sig-
nificant benefit, like reducing infection rates, than probi-
otic supplementation alone [116, 117].

Despite the emerging evidence on harnessing the GM 
through the use of nutrition, pro-, pre-, and symbiotics, 
the fine mechanisms describing the published observa-
tion are still lacking, and this complicates the translation 

from bench to bedside. Moreover, caution should be 
taken. Studies on safety are imperative as these strategies 
do not come without pitfalls, as demonstrated by a recent 
retrospective study showing a correlation between probi-
otic administration and an increase in probiotic-associ-
ated central line infections leading to increased mortality 
[165].

Beta‑lactamase
GM changes in ICU patients are mostly due to broad-
spectrum antibiotics, but not all induce dysbiosis [2]. 
Antibiotic stewardship includes switching from broad-
spectrum molecules to a narrower spectrum and short-
ening antibiotic therapy whenever possible [166]. The use 
of beta-lactamase in dogs treated with ampicillin lowered 
its jejunal concentration and prevented it from reach-
ing the colon [167]. This approach could lessen antibiot-
ics’ negative effects on the colonic microbial community. 
Ribaxamase (formerly SYN-004), an orally administered 
beta-lactamase with IV penicillins and cephalosporin, 
has shown promising results in preventing dysbiosis in 
hospitalized patients with lower respiratory tract infec-
tions treated with ceftriaxone [129]. A phase-2b study 
has shown a RCDI risk reduction in the interventional 
group [129]. This reduction occurred with macrolide plus 
ceftriaxone or ceftriaxone alone [129]. Ribaxamase is also 
effective when administered with beta-lactamase inhibi-
tors like tazobactam and sulbactam [168]. Moreover, a 
phase-1b/2a clinical trial study to assess the safety, tol-
erability, and efficacy of orally administered SYN-004 in 
adult patients undergoing allogeneic hematopoietic cell 
transplantation is also ongoing [130].

Adsorbent charcoal
The use of adsorbent charcoal is an additional approach 
to prevent antibiotic-induced dysbiosis. Dav-132 is a char-
coal-based adsorbent that is actively studied [169]. It was 
developed for oncological patients for whom therapy is 
mandatory to prevent infections. Dav-132 is designed to 
become active in the ileum, cecum and colon before anti-
biotics could start impairing the GM [169, 170]. A phase-2 
trial has confirmed that Dav-132 can be safely used in 
patients as it is well tolerated and promotes GM diversity 
by improving Clostridioides difficile colonization resist-
ance [115]. Notably, a study on hamsters with moxiflox-
acin-induced Clostridioides difficile infection showed that 
a modified version of Dav-132 suitable for mice, namely 
Dav-131, could reduce mortality in a dose-dependent 
manner by lowering the fecal-free moxifloxacin concen-
tration [114]. Therefore, despite lack of studies in critical 
illness, Dav-132 could potentially be an additional tool, 
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together with probiotics administration, to reduce RCDI 
incidence and progression risks in ICU patients.

Fecal microbiota transplantation
FMT is a medical technique in which stools from a 
"healthy" donor are delivered to a dysbiotic patient to 
restore eubiosis [2]. An FMT sample contains all micro-
organisms that naturally harbor in the gut and all their 
associated metabolites. For this reason, this treatment 
may restore dysbiosis better than others [171, 172]. How-
ever, this procedure does not come without risks. In fact, 
undesired and/or undetected pathogens could also be 
delivered from the donor to the recipient subject, some-
times even with fatal complications. In a case report, two 
patients developed drug-resistant E. coli bacteremia fol-
lowing FMT, causing one death [173]. Therefore, extreme 
caution should be taken, especially in critically ill patients 
with a higher risk of infection. In 2017, a panel of experts 
from the European Consensus Conference drafted FMT 
recommendations [132]. To date, the main indication for 
FMT is recurrent RCDI infection, where efficacy is supe-
rior to antibiotics [132, 174].

However, its application is currently being trialed in 
other conditions and could potentially be studied in criti-
cally ill patients [175], particularly to eradicate intestinal 
MDRO burden [176] and manage ICU common illnesses 
such as TBI [138], sepsis and multi-organ failure (MOF) 
[177].

A group of patients affected by RCDI with dysbiosis 
and severe gastrointestinal symptoms improved sig-
nificantly after FMT, possibly via increased resistance 
MDROs’ gut colonization [176]. Intriguingly, FMT for 
sepsis has also been successfully used in patients with 
septic shock of undetermined cause with profuse diar-
rhea or diarrhea associated with antibiotic administration 
[139, 140]. FMT has been shown to promote eubiosis in a 
mouse model in which sepsis was induced post-adminis-
tration of stool collected from a septic patient [177].

FMT has also been studied in TBI, which causes auto-
nomic dysregulation, impaired BBB integrity, intestinal 
mucosal impairment, and brain immunity dysregulation. 
A recent study evaluated the effect of FMT following TBI 
in rats with a controlled cortical impact model, showing 
that this strategy could effectively restore eubiosis and 
resolve neurological deficits [138].

The emerging literature represents a great starting 
point for the exploitation of FMT in different ICU condi-
tions and complications. Although European guidelines 
to regulate the use of FMT are in place, targeted RCTs 
should be initiated to explore the safety and efficacy of 
this procedure in the ICU without putting patients at 
risk of post-antibiotic discontinuation, a key step in FMT 
protocols. Rehorová et  al. proposed an experimental 

standardized operating procedure for FMT in critically 
ill patients using a two-month-quarantined frozen multi-
donor transplant administered by enema (seven donors, 
50 ml from each donor to make a final graft of 350 ml). 
FMT should be done 48 h after the last antibiotic to max-
imize engraftment. Due to safety concerns, new studies 
should only include hemodynamically stable patients 
without perforated viscous or immunoparalysis [12].

Conclusions
Recent evidence has shown that critically ill patients dis-
play a changed GM, known as pathobiota. The pathobiota 
composition is one of the leading causes of clinical com-
plications. Metagenomic and meta-metabolomic studies 
are growing and dissecting mechanisms leading to dys-
biosis in different ICU conditions. Harnessing the GM 
in ICU patients is intriguing, and this review summa-
rizes the currently available results and outlines potential 
strategies for critically ill patients. Targeting intestinal 
bacteria has the potential to preserve or restore barrier 
integrity, which would then prime a beneficial cascade 
on the organ dysfunctions arising in ICU patients. New 
studies designed for critically ill patients should reinforce 
the current evidence, such as preventing VAP by probi-
otics, treating RCDI and MDRO colonization by FMT, 
preventing and resolving dysbiosis by personalized nutri-
tion and antibiotic “damage control” tools, and have the 
potential to uncover critical biomarkers, stratify patients 
according to infection risk, immune response and inflam-
mation status, and identify combination therapy/adju-
vant responders vs. non-responders. Intensivists juggle 
the multiple connections between the intestine and the 
rest of the body. Unraveling this communication could 
transform them into modern "enterointensivists" at the 
front line of critical care management, placing the intes-
tine at the center of critically ill patients as a "jack of all 
trades" card.
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