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Abstract 

Background:  Patients with COVID-19-related acute respiratory distress syndrome (ARDS) require respiratory support 
with invasive mechanical ventilation and show varying responses to recruitment manoeuvres. In patients with ARDS 
not related to COVID-19, two pulmonary subphenotypes that differed in recruitability were identified using latent 
class analysis (LCA) of imaging and clinical respiratory parameters. We aimed to evaluate if similar subphenotypes are 
present in patients with COVID-19-related ARDS.

Methods:  This is the retrospective analysis of mechanically ventilated patients with COVID-19-related ARDS who 
underwent CT scans at positive end-expiratory pressure of 10 cmH2O and after a recruitment manoeuvre at 20 
cmH2O. LCA was applied to quantitative CT-derived parameters, clinical respiratory parameters, blood gas analysis and 
routine laboratory values before recruitment to identify subphenotypes.

Results:  99 patients were included. Using 12 variables, a two-class LCA model was identified as best fitting. Subphe-
notype 2 (recruitable) was characterized by a lower PaO2/FiO2, lower normally aerated lung volume and lower compli-
ance as opposed to a higher non-aerated lung mass and higher mechanical power when compared to subpheno-
type 1 (non-recruitable). Patients with subphenotype 2 had more decrease in non-aerated lung mass in response to a 
standardized recruitment manoeuvre (p = 0.024) and were mechanically ventilated longer until successful extubation 
(adjusted SHR 0.46, 95% CI 0.23–0.91, p = 0.026), while no difference in survival was found (p = 0.814).

Conclusions:  A recruitable and non-recruitable subphenotype were identified in patients with COVID-19-related 
ARDS. These findings are in line with previous studies in non-COVID-19-related ARDS and suggest that a combina-
tion of imaging and clinical respiratory parameters could facilitate the identification of recruitable lungs before the 
manoeuvre.

Keywords:  COVID-19, ARDS, Latent class analysis, Phenotypes, Recruitment, Respiratory parameters, Radiological 
data, Mechanical ventilation

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Patients with novel coronavirus disease 2019 (COVID-
19) frequently develop acute respiratory distress 
syndrome (ARDS) and require invasive mechanical venti-
lation [1]. ARDS has a high mortality and is characterized 
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by acute diffuse inflammatory lung injury, leading to 
increased pulmonary vascular permeability, increased 
lung weight and loss of aerated lung tissue [2, 3]. How-
ever, not all patients have similar injury mechanisms 
and patterns, resulting in biological and physiological 
heterogeneity, possibly explaining the lack of effective 
treatments in unselected ARDS patients [4–7]. A better 
understanding of ARDS heterogeneity can help to pro-
vide more targeted treatments, for example, by only pro-
viding a higher positive end-expiratory pressure (PEEP) 
strategy to patients with recruitable lung tissue [8, 9].

Patients with COVID-19-related ARDS (COVID-
ARDS) show substantial heterogeneity in response to 
recruitment manoeuvres, but this difference can only be 
observed after the manoeuvre has been performed [10]. 
In patients with ARDS not related to COVID, two sub-
phenotypes were identified using latent class analysis 
(LCA) of data on computed tomography (CT) measures 
of lung tissue, respiratory parameters and gas exchange 
measures [11]. These subphenotypes responded differ-
ently to recruitment manoeuvres and might therefore 
require another PEEP strategy. The recruitable subphe-
notype demonstrated a lower respiratory system compli-
ance and PaO2/FiO2, a higher fraction of dead space and a 
more inhomogeneous lung parenchyma injury compared 
to the non-recruitable subphenotype. However, it remains 
unclear whether the recruitable and non-recruitable sub-
phenotypes established in non-COVID-19-related ARDS 
(non-COVID-ARDS) can be extended to COVID-ARDS.

The aim of our study is to identify respiratory subphe-
notypes within COVID-ARDS by using LCA on respira-
tory parameters, gas and tissue volumes derived from 
CT, blood gas analysis and routine laboratory results. We 
hypothesize that the recruitable and non-recruitable sub-
phenotypes within non-COVID-ARDS are also observ-
able in patients with COVID-ARDS.

Methods
Study design, patients and ethics
A retrospective cohort study was conducted of patients 
admitted to the intensive care unit (ICU) of a large uni-
versity hospital; the Amsterdam University Medical 
Centres, location AMC between April 2020 and April 
2021. We analysed all patients who (1) were intubated 
for COVID-ARDS, defined according to the Berlin crite-
ria [2], and (2) received CT scans at 10 cmH2O and 20 
cmH2O PEEP, with a recruitment manoeuvre between 
scans. Per hospital protocol, each patient with COVID-
ARDS who underwent a CT scan was imaged at those 
two PEEP levels with a recruitment manoeuvre in 
between. These recruitment manoeuvres were performed 
as part of standard practice to inform the physician 
about the recruitability of consolidated lung tissue. The 

institutional review board approved the study protocol 
and waived the need of informed consent.

CT scan and data collection
Non-enhanced chest CT scans were acquired at 10 
cmH2O PEEP (PEEP before recruitment) and after a 
recruitment manoeuvre at a PEEP level of 20 cmH2O 
(PEEP after recruitment). Both scans were acquired in 
the end-expiratory phase. In-between the two CT scans, 
a Hamilton C2 ventilator was used to deliver 3 sustained 
inflations lasting 10  s by an inspiratory hold, increasing 
the airway pressure to 40 cm H2O for the entire hold.

Shortly before the CT scans, clinically available res-
piratory parameters and blood gas results were collected. 
Formulas used to calculate additional respiratory param-
eters and more details on data collection are listed in the 
supplementary materials. Besides that, routine laboratory 
results and patient demographics were collected.

CT Quantitative analysis
Lung tissue in the CT scans was segmented by an open-
source artificial intelligence algorithm [12] and then 
manually adjusted using ITK-Snap [13]. Segmentation 
consisted of drawing the outline of the lungs in each CT 
slice, excluding hilar vessels, the main bronchi, and if pre-
sent pleural effusions, pneumothorax and pneumomedi-
astinum areas. The segmentation method depended on 
the available slice thickness: for the patients with a CT 
scan composed of 3-mm slices, all slices were segmented. 
For patients with a CT scan consisting of 1-mm slices, 
a reduced number of slices were extrapolated and seg-
mented in order to make the quantitative analysis more 
efficient. This was done similar to previous studies that 
validated the use of a reduced amount of slices for an 
accurate evaluation of lung aeration [14, 15]. The distance 
between the 1-mm slices was set at 20 mm, as previously 
suggested [16].

The determination of gas and tissue volumes was per-
formed by analysing CT numbers of all lung voxels in 
Hounsfield units (HU). Lung regions were classified as 
normally aerated (from − 900 to − 501 HU), poorly aer-
ated (from − 500 to − 101 HU), non-aerated (from − 100 
to 100 HU) and hyper-inflated (from − 1000 to − 901 
HU) to allow for comparison with previous ARDS litera-
ture [3].

To calculate lung volume, the number of lung voxels 
was multiplied by the volume of one voxel in millilitres 
to form the total volume of the lung irrespective of aera-
tion of the tissue. As lung tissue is assumed to be a com-
position of air (− 1000 HU) and lung parenchyma with a 
similar density to water (0 HU), lung weight could be cal-
culated using the tissue fraction of the lung derived from 
CT numbers [16, 17]. End-expiratory lung volume was 
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calculated using the gas fraction of the lung. Recruitment 
was defined as the decrease in non-aerated lung weight 
after the recruitment manoeuvre, divided by total lung 
weight before the recruitment manoeuvre.

Subphenotype identification
LCA was applied on clinically available respiratory 
parameters, blood gas analysis, CT-derived gas and tis-
sue volumes (at PEEP before recruitment) and routine 
laboratory results. Outcomes and demographics were not 
considered during model design and LCA.

Variables that correlated considerably (Spearman 
correlation coefficient > 0.7 and p value < 0.05) or were 
mathematically coupled were excluded from the LCA, 
as variables are assumed to be locally independent and 
a violation of that assumption could introduce bias [18, 
19]. Data used in the LCA were imputed (supplemen-
tary materials) and transformed to resemble a normal 
distribution, which was verified using histograms, Q–Q 
plots and the Shapiro–Wilk test. Variables were scaled by 
subtracting the mean and dividing by the standard devia-
tion. The best fitting latent model in terms of number of 
latent classes was evaluated by the Bayesian information 
criterion (BIC) score and Lo–Mendell–Rubin adjusted 
likelihood ratio test (LMR-LRT) [20]. Entropy, median 
class assignment probabilities and the amount of class 
assignment probabilities above 90 per cent were calcu-
lated. During model design and LCA, key steps and con-
siderations described by Sinha et al. [19] were taken into 
account. Subphenotype characteristics were displayed 
using a profile plot containing standardized mean dif-
ferences (SMDs) of subphenotype defining variables. To 
perform the LCA, open-source package ‘Flexmix’ was 
used with model driver ‘FLXMCmvcombi’ which allows 
for both binary and Gaussian indicators as input.

Statistical analysis
Continuous data were expressed as mean with the stand-
ard deviation or median with the interquartile range 
according to statistical distribution. Categorical data 
were presented as numbers with percentages. Demo-
graphical parameters, clinical parameters, CT-derived 
lung volumes and weight and outcomes were compared 
between subphenotypes. Differences in mean, median 
and proportion between subphenotypes were tested 
using t-test, Wilcoxon signed-rank test or chi-squared 
test as appropriate. Tests were two-sided with a type I 
error set at 5%.

For a simplified subphenotype identification, a nested 
parsimonious model was created considering all LCA 
variables and tested for subphenotype prediction capac-
ity. To create the nested model, all variables were entered 
in a LASSO regression, while tuning its λ parameter in 

order to arrive at a 4 variable model. Next, these vari-
ables were entered in a generalized linear model (GLM) 
validated with fivefold cross-validation. Finally, to quan-
tify, assess and compare the subphenotype prediction 
performance of the nested models, areas under the 
receiver operating characteristics curve (AUROC) and 
bootstrapped confidence intervals were calculated [21]. 
An additional nested parsimonious model excluding CT-
derived parameters was also created and tested, as well as 
standard ICU severity scores PaO2/FiO2, Apache II and 
SOFA.

Survival was visualized using Kaplan–Meier curves and 
analysed using a Cox proportional hazards model. Time 
until successful extubation and survival was analysed in 
a Fine and Gray competing risks regression model and 
displayed in a cumulative incidence function plot. The 
subdistribution hazard ratio (SHR) was calculated repre-
senting time until successful extubation in the presence 
of diverging survival. Both the survival and the compet-
ing risk analysis were corrected for predefined confound-
ers: age, gender and Apache II [22] score. Survival and 
time until successful extubation were treated as right-
censored data, with censoring representing having left 
the ICU alive or completing the 60-day follow-up period.

All analyses were performed with R through the R-stu-
dio interface, version 4.0.3.

Results
Population
A total of 99 mechanically ventilated COVID-ARDS 
patients were included in the analysis (Fig.  1). Base-
line characteristics are presented in Table  1. The mean 
age was 63  years (SD ± 10), and most patients were 

Fig. 1  Flowchart of the inclusion process
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male (68.7%). The median time between ICU admission 
and CT scans was 5  days [IQR: 1–11] and 43 out of 99 
patients died in the ICU (50.6%).

Latent class analysis
A total of 25 variables were considered for the LCA. 
After discarding correlated and mathematically cou-
pled variables, 12 variables were used in the LCA (Fig. 2 
and Additional file  1: Fig. S1). Table  2 shows model-
fitting statistics for LCA models consisting of one to 
five classes. The LMR-LRT, which tests if a model with 
n classes provides an improved fit compared to a model 
with n-1 classes, showed a p value lower than 0.001 for 
all numbers of classes. BIC was lowest for a two-class 
model, implying that another number of classes would 
not increase the distinction of the classes without also 
overfitting them. Because of these findings and small size 

of the subsets in a three-class solution, a two-class latent 
model was judged as most suitable.

1.3% of LCA variables were missing. The mean impu-
tation effect on subphenotype identification (i.e. patients 
that switched between classes) was 3%, while out-
comes and subphenotype characteristics were compa-
rable between the imputation models (Additional file  1: 
Table S1, Fig. S2). Between the complete case analysis and 
the first imputation model, a subphenotype misclassifica-
tion of 7 (8%) was found, with comparable subphenotype 
characteristics, outcomes and recruitability (Additional 
file  1: Table  S1, Figs. S3 and S4). Therefore, the results 
used in the article were based on the first imputation set 
while additionally validating all outcomes using the com-
plete case analysis.

The two-class latent model assigned 62 (62.6%) 
patients to subphenotype 1 and 37 (37.4%) to subpheno-
type 2. Entropy, a measure indicating class distinction 

Table 1  Baseline characteristics

Data are shown for the entire cohort and stratified for the two subphenotypes identified by the latent class analysis. BMI Body mass index, COVID-19 coronavirus 
disease 2019, ICU intensive care unit, IBW ideal body weight, PEEP positive end-expiratory pressure

All patients Subphenotype 1 (non-
recruitable)

Subphenotype 2 
(recruitable)

p value

n 99 62 37

Demographics

 Age (years) 63 (10) 65 (9) 60 (10) 0.008

 Gender = Male (%) 68 (69) 45 (73) 23 (62) 0.391

 BMI (kg m−2) 29.18 (6.29) 28.57 (5.37) 30.19 (7.55) 0.218

 COVID symptoms duration (days) 9 [5, 12] 8 [5, 10] 10 [7, 14] 0.027

 COVID ICU stay at inclusion (days) 5 [1, 11] 5 [1, 9] 7 [0, 12] 0.633

Respiratory parameters

 Respiratory rate (min−1) 25 (7) 24 (7) 28 (7) 0.003

 Tidal volume (mL) 444 (131) 440 (123) 451 (144) 0.681

 Tidal volume / IBW (mL kg−1) 6.47 [5.67, 7.90] 6.36 [5.69, 7.63] 6.76 [5.67, 7.90] 0.395

 Arterial pH 7.37 [7.30, 7.43] 7.38 [7.34, 7.44] 7.32 [7.26, 7.42] 0.005

 PEEP before recruitment (cmH2O) 10 [8, 12] 10 [8, 11] 10 [10, 12] 0.008

 Driving pressure (cmH2O) 12 [8, 17] 10 [7, 13] 15 [12, 20]  < 0.001

 Ventilatory ratio 1.57 [1.23, 2.40] 1.43 [1.12, 1.92] 2.40 [1.38, 3.05] 0.001

 Compliance of respiratory system (cmH2O) 33 [24, 58] 42 [28, 73] 29 [21, 39] 0.004

Severity

 Apache II score 15 [11.5, 20.5] 20 [12, 21.75] 12 [10, 20] 0.042

 PaO2/FiO2 (mmHg) 106 [80, 138] 130 [98, 158] 81 [72, 103]  < 0.001

ARDS category (%)  < 0.001

 Mild 6 (6.2) 6 (10) 0 (0)

 Moderate 47 (48.5) 36 (60) 11 (29.7)

 Severe 44 (45.4) 18 (30) 26 (70.3)

Outcomes

 Duration of mechanical ventilation (days) 16 [9, 27] 15 [7.5, 25.5] 16 [12, 27] 0.189

 Duration of ICU stay (days) 18 [11, 31] 18 [10, 30.5] 17.5 [13, 32.5] 0.266

 Successfully extubated (%) 39 (46) 27 (53) 12 (35) 0.168

 ICU mortality (%) 43 (51) 23 (45) 20 (59) 0.308
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without correcting for overfitting, of 0.75 was accepted 
in light of the number of variables used in the LCA and 
the sample size. The median class assignment prob-
ability was 98.5% [IQR: 89.7–100] for subphenotype 1 
and 99.6% [IQR: 95.4–100%] for subphenotype 2. The 
number of patients with a class assignment probabil-
ity above 90% was 46 (74%) in subphenotype 1 and 29 
(78%) in subphenotype 2.

Subphenotype characteristics and identification
Subphenotype 2 had a higher non-aerated lung mass and 
a higher mechanical power as opposed to a lower nor-
mally aerated lung volume, a lower compliance and lower 
PaO2/FiO2 when compared to subphenotype 1 (Fig.  2, 
Table  1 and Additional file  1: Table  S2). Subphenotype 
2 showed a higher percentage of recruitable lung when 
compared to subphenotype 1; 12.56% [IQR: 6.72, 18.17] 

Fig. 2  Profile plot of the two subphenotypes identified by the LCA. All variables used in the latent class analysis are plotted on the x-axis, with the 
y-axis displaying the standardized mean difference (SMD) of the corresponding variables in both of the LCA derived subphenotypes. SMDs are 
calculated by standardizing the variable to a mean of 0 and a standard deviation of 1. The variables on the x-axis are ordered by the y-value of the 
recruitable subphenotype in a descending way. TV Tidal volume, IBW ideal body weight, PEEP positive end-expiratory pressure

Table 2  Model-fit statistics for different numbers of latent classes

BIC Bayesian information criterion. LMR-LRT Lo–Mendell–Rubin adjusted likelihood ratio test

Classes No. of patients per class BIC LMR-LRT LMR-LRT p value Entropy

1 99 3469.681 – – –

2 62, 37 3444.222 130.8  < 0.001 0.75

3 53, 19, 27 3454.702 97.3  < 0.001 0.88

4 18, 43, 35, 13 3484.582 79.2  < 0.001 0.91

5 36, 22, 13, 14, 14 3539.557 55.9  < 0.001 0.93
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versus 8.95% [IQR: 3.68, 14.25], respectively (p = 0.024, 
Figs.  2 and 3, Additional file  1: Tables S1, S2). Because 
of these findings, we further refer to subphenotype 2 as 
recruitable and subphenotype 1 as non-recruitable. CT-
derived lung volumes and weights before and after the 
recruitment manoeuvre are displayed in the supplemen-
tary materials (Additional file  1: Table  S2, Figs. S5 and 
S6).

In terms of simplified subphenotype prediction, the 
LASSO regression arrived at a four variable nested model 
consisting of PaO2/FiO2, normally aerated lung volume, 
non-aerated lung mass and mechanical power (Addi-
tional file 1: Tables S3 and S4). This model had excellent 
diagnostic accuracy for subphenotype identification, 
with an AUROC of 0.93 (95% CI 0.88–0.98, Additional 
file  1: Table  S5, Fig. S7) [21]. The predictive capacity of 
the additional subphenotype prediction model excluding 
CT-derived parameters was also excellent (AUROC 0.87, 
95% CI 0.79–0.91), while separate ICU severity scores 

showed poor to good AUROCs: SOFA score 0.51 [95% 
CI 0.34–0.58], Apache II score 0.62 [95% CI 0.48–0.72] 
and PaO2/FiO2 0.79 [95% CI 0.48–0.72] (Additional file 1: 
Tables S3–S5, Fig. S7).

Outcome differences between subphenotypes
ICU mortality, ICU length of stay, duration of mechani-
cal ventilation (MV) and successful extubation rate 
were individually not different between subphenotypes 
(Additional file 1: Fig. S1). In a survival analysis, no dif-
ference was found between subphenotypes (HR = 1.08, 
95% CI 0.58–1.98, p = 0.814, Additional file 1: Tables S1, 
S6 and S7, Figs. S8 and S9) and adjusting for confound-
ers (age, gender, Apache II) did not alter those results. 
When analysing duration of MV until successful extuba-
tion with mortality as a competing risk, the non-recruita-
ble subphenotype showed a reduced duration of MV 
until successful extubation after correcting confounders 
(adjusted SHR = 0.46, 95% CI 0.23–0.91, p = 0.026, Fig. 4, 

Fig. 3  Non-aerated lung mass before and after the recruitment manoeuvre. Data are stratified and coloured by subphenotype. The y-axis shows 
non-aerated lung mass in grams, derived by quantitative CT analysis. Corresponding patient data points are connected by a line. The p values 
before and after recruitment (bottom p values) compare relative amounts (grams/total grams) by the recruitment manoeuvre and are derived by 
Wilcoxon signed-rank tests. The p value between subphenotypes (upper p value) compares the changes in relative amounts by the recruitment 
manoeuvre (change in grams/total grams) between subphenotypes and is derived by a Mann–Whitney U test (Additional file 1: Table S2)
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Additional file 1: Table S6). Outcomes were similar in the 
complete case analysis (Additional file  1: Table  S8, Figs. 
S10 and S11).

Discussion
In this study, we showed that mechanically ventilated 
COVID-ARDS patients can be divided into two distinct 
subphenotypes based on respiratory parameters, blood 
gas analysis, CT measurements and routine laboratory 
results. The two subphenotypes have a different response 
to a standardized recruitment manoeuvre, identifying 
them as recruitable and non-recruitable. Recruitable sub-
phenotype patients had a longer duration of mechanical 
ventilation until successful extubation, while no differ-
ence between the subphenotypes was found in terms of 
survival. The recruitable subphenotype was characterized 
by a lower PaO2/FiO2 ratio, lower normally lung volume 
on CT scans, lower compliance, but higher mechanical 
power and higher mass of non- and poorly aerated lung 
tissue on CT scans.

The subphenotype characteristics in COVID-ARDS 
patients are in line with the recruitable and non-recruita-
ble subphenotypes in non-COVID-ARDS patients [11]. 
Only minor differences were found between the two 

studies, with the most prominent being the increased 
significance of mechanical power in the non-recruitable 
COVID-ARDS subphenotype [11]. The similar charac-
teristics between non-COVID-ARDS and present study 
are welcome as it improves the external validity of the 
already existing subphenotypes and implies resemblance 
between non-COVID-ARDS and COVID-ARDS. The 
subphenotype characteristics of present study are also 
consistent with the H-type and L-type COVID-ARDS 
phenotype hypothesis, which suggest an association 
between high lung weight on CT, high lung elastance 
(i.e. low compliance) and high recruitability [23]. We 
here present a data-driven, multi-dimensional identifica-
tion of recruitment subphenotypes not solely dependent 
on lung weight and compliance as parameters to define 
recruitability.

We did not observe a difference in mortality between 
patients with a recruitable and non-recruitable subphe-
notype in patients with COVID-ARDS, which is in con-
trast to previous findings in non-COVID-ARDS [11]. The 
direction of effect, with a higher mortality rate in patients 
with a recruitable subphenotype, however, was consist-
ent between the studies and the lack of significance may 
be contributed to the sample size. Indeed, the likelihood 

Fig. 4  Cumulative incidence function curves of ‘survival’ and ‘time until successful extubation’. Data are stratified and coloured by subphenotype. 
Time in days is displayed on the x-axis and the probability of an event on the y-axis. The annotated subdistribution hazard ratios (SHRs) compare 
successful extubation between subphenotypes in the presence of survival and are derived by means of a Fine and Gray competing risk analysis. 
Crude SHR and adjusted (age, gender and Apache II) SHR are presented, with the 95% confidence interval displayed between parentheses
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of successful extubation was lower in patients with the 
recruitable subphenotype in the present study, an out-
come that was not studied in non-COVID-ARDS. Taken 
together, the aggregated data suggest that recruitable 
subphenotype is more severely ill, and that the lower like-
lihood of successful extubation is independent of several 
important confounders.

To independently reproduce and extend the non-
COVID-ARDS subphenotypes to COVID-ARDS, present 
study conducted an LCA instead of solely using proposed 
non-COVID-ARDS prediction models [19]. Nonetheless, 
there are some important methodological differences 
between present study and the previously mentioned 
non-COVID-ARDS study. First, the present study 
assesses recruitment between PEEP levels of 10 cmH2O 
and 20 cmH2O, while the non-COVID-ARDS cohort 
assesses it between PEEP 5cmH2O and plateau pressure 
of 45 cmH2O, possibly explaining the lower recruitabil-
ity percentage found in present study. Second, this study 
uses only respiratory parameters before recruitment and 
can therefore not confirm the large improvement of oxy-
genation and compliance that was found in non-COVID-
ARDS. Finally, in non-COVID-ARDS patients dead space 
has shown to be an important subphenotype character-
istic, but that is only directly estimated with volumetric 
capnography of which measurements were not available 
in our study. However, ventilatory ratio has shown to be 
a surrogate for dead space and was included in our study 
[24]. Consistent with non-COVID-ARDS, it was higher 
in the recruitable subphenotype.

Contrary to our findings, a previous large COVID-
ARDS study did not find respiratory subphenotypes in 
the first 4  days of mechanical ventilation when using a 
LCA comparable to present study [25]. This is most likely 
explained by the different variables used in the LCA (e.g. 
present study used CT-derived parameters and routine 
laboratory results) or our median ventilation duration of 
5  days at inclusion. However, the previously mentioned 
study used a longitudinal LCA (an analysis not used in 
this study) and found two longitudinal subphenotypes. 
Remarkably, the main discriminatory variables of those 
longitudinal subphenotypes (mechanical power, minute 
ventilation, ventilatory ratio) overlap with present study’s 
subphenotype defining characteristics.

The main strengths of our study include the usability 
of the results during routine practice, as only clinically 
available data before recruitment were used to create the 
subphenotypes on a homogeneous and easily recogniza-
ble ARDS cohort thanks to a single detectable underlying 
cause. Besides that, CT scans were analysed in a quan-
titative manner that has high validity and reliability and 
is therefore considered the gold standard for assessing 
aeration of lung tissue [26]. The present study also knows 

several limitations. Selection bias might have occurred 
as the decision to perform a CT scan was not predefined 
but at the discretion of the treating physician. Another 
plausible risk for selection bias was the single-centre 
retrospective study design in a large university hospital. 
Because of the COVID-19 pandemic, however, COVID-
ARDS patients were redistributed evenly throughout the 
country minimizing this bias. Considering the LCA, the 
sample size was relatively small, increasing the possible 
influence of missing variables. Multiple imputation sets 
were included in the study which demonstrated a mini-
mal effect on subphenotype identification. Finally, some 
patients were ventilated using pressure support mode 
which limits the interpretation of respiratory parameters 
in these patients.

The recruitable and non-recruitable subphenotypes 
may aid clinicians in identifying COVID-ARDS patients 
that likely respond to a recruitment manoeuvre in 
terms of re-aeration, which is relevant as a recruitment 
manoeuvre may improve oxygenation in recruitable 
patients, whereas it might cause damage in non-recruita-
ble patients [9, 27, 28]. However, the effect of recruitment 
manoeuvres on physiological measures such as compli-
ance, ventilatory ratio and oxygenation has not been 
addressed in the present study, and it remains speculative 
whether improvement of these physiological measures 
would lead to a better outcome. Nonetheless, we found 
that the subphenotypes can easily be identified using a 
combination of PaO2/FiO2 ratio, mechanical power, non-
aerated lung mass and normally aerated lung volume 
at clinical PEEP levels. A practical disadvantage of the 
described subphenotyping approach is the need for a CT 
scan, which might be unavailable due to limited resources 
or problematic transport of hypoxic patients. In those 
cases, lung ultrasound (LUS) can be an alternative as it 
is widely available and a recent study showed that it can 
accurately estimate non-aerated and well-aerated lung 
tissue [29, 30]. Additionally, the present study established 
a prediction model without CT-derived parameters that 
only had a modest loss in accuracy for subphenotype 
prediction.

Conclusion
In conclusion, mechanically ventilated COVID-ARDS 
patients can be divided into subphenotypes that are 
similar to the recruitable and non-recruitable non-
COVID-ARDS subphenotypes. COVID-19 patients 
with the recruitable subphenotype had a longer dura-
tion of mechanical ventilation until successful extuba-
tion, while no difference was found in terms of survival. 
The recruitable and non-recruitable subphenotypes are 
promising for identification of recruitable patients in 
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future clinical practice as they can be classified with only 
a few commonly available parameters.
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