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Abstract 

To ensure neuronal survival after severe traumatic brain injury, oxygen supply is essential. Cerebral tissue oxygena‑
tion represents the balance between oxygen supply and consumption, largely reflecting the adequacy of cerebral 
perfusion. Multiple physiological parameters determine the oxygen delivered to the brain, including blood pressure, 
hemoglobin level, systemic oxygenation, microcirculation and many factors are involved in the delivery of oxygen 
to its final recipient, through the respiratory chain. Brain tissue hypoxia occurs when the supply of oxygen is not 
adequate or when for some reasons it cannot be used at the cellular level. The causes of hypoxia are variable and can 
be analyzed pathophysiologically following “the oxygen route.” The current trend is precision medicine, individualized 
and therapeutically directed to the pathophysiology of specific brain damage; however, this requires the availability 
of multimodal monitoring. For this purpose, we developed the acronym “THE MANTLE,” a bundle of therapeutical 
interventions, which covers and protects the brain, optimizing the components of the oxygen transport system from 
ambient air to the mitochondria.

Keywords  Brain oxygenation, Cerebral oxygenation monitoring, Brain hypoxia, Cerebral ischemia, Traumatic brain 
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Introduction
Oxygen (O2) is vital for neuronal survival [1]. Since 
the brain cannot store O2, it needs its constant supply 
to maintain its main energy source, which is adeno-
sine triphosphate [1]. Two requirements are essential 
to ensure the availability of O2 to the brain (DO2): suf-
ficient cerebral blood flow (CBF) and adequate arterial 
oxygen content (CaO2) [1, 2]. Under physiological con-
ditions, the brain utilizes only 33% of the O2 received, 
being able to increase extraction when DO2 is compro-
mised in any of its determinants [1, 2]. The achievement 
of oxygen final metabolism, in the mitochondria, starts 
from ambient air or a gaseous mixture provided by 
non-invasive O2 supplemental techniques or mechani-
cal ventilator. This requires a good functioning of the 
respiratory, cardiovascular (including microcirculation) 
and hematological systems, all regulated by the state of 
the internal steady [1, 2]. When DO2 is inadequate or 
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the mitochondria cannot use the supplied O2, ‘‘cerebral 
tissue hypoxia’’ (CTH) occurs, which constitutes a sec-
ondary insult that magnifies the primary brain injury 

and worsens clinical outcomes, especially in severe 
traumatic brain injured patients [2]. DO2 is the result 
of CBF x CaO2, which does not allow the detection of 

A

B

Fig. 1  A Oxygen, O2 route. From atmospheric air or the gaseous mixture supplied by mechanical ventilation, O2 travels following concentration 
gradients. Cerebral O2 transport (CerO2t) depends on the product of CBF and arterial O2 content (CaO2), determined by the following equation: 
CaO2 = (Hgb × 1.34 x SaO2) + (PaO2 × 0.003), where: Hgb: concentration in gr/dl; 1.34: number of ml transported by each gram of Hgb; SaO2: 
arterial O2 saturation; PaO2: arterial pressure of O2. The affinity of oxygen for Hgb is expressed by analyzing the Hgb-oxygen saturation curve. The 
CBF is mainly determined by the cerebral perfusion pressure (CPP) and the radius of the cerebral resistance vessels (autoregulation curve). B O2 
diffusion at cellular level. If the physiological variables interact harmoniously, oxygen reaches the microcirculation at 98 mmHg, then diffuses into 
the cell through the interstitial space (PO2i = 20–40 mmHg). Inside the cell, the O2 pressure is 1.5 mmHg. The distance that the 02 must travel varies 
between 20 and 60 microns



Page 3 of 8Godoy et al. Critical Care           (2023) 27:13 	

local tissue or microcirculatory abnormalities that limit 
the local supply of O2 at the tissue level (Fig.  1A and 
B). CTH is common and prevalent in neurocritical ill 
patients, and in most cases, it is due to changes in basic 
physiological parameters [3]. The etiologies of CTH 
are multiple [4] (Table 1), and can be pathophysiologi-
cally approached and investigated following the oxygen 
route [5] (Fig.  1A and B). However, monitoring of cer-
ebral oxygenation in traumatic brain injured patients is 

not routinely applied, it has some limitations, and the 
evidence-based support is not so solid [6, 7]. Even in 
developed countries, O2 tissue pressure (PtiO2) moni-
toring rates do not exceed 19% of centers [8]. A recent 
study suggests that only 8.6% of centers use routinely 
PtiO2, 1.3% use  venous saturation of the jugular bulb 
(SvjO2) and 1.7% near infrared spectroscopy (NIRS) [9]. 
Determinants of cerebral oxygenation are multifactorial, 
and a personalized clinical approach depends on the 

Fig. 2  The MANTLE mnemonics. Jugular venous saturation of oxygen, SvjO2; brain tissue oxygen pressure, PTiO2; cerebral perfusion pressure, 
CPP; systolic arterial blood pressure, SABP; tidal volume, Vt; respiratory rate, RR; Plateau pressure, PP; driving pressure, DP; mechanical power, MP; 
intracranial pressure, ICP; oxygen pressure at half arterial oxygen pressure, p50; optic nerve sheath diameter, ONSD; pulsatility index, PI; Computed 
Tomography, CT

Table 1  Causes and types of cerebral hypoxia

CBF: cerebral blood flow; PtiO2: brain oxygen pressure; LPR: lactate/pyruvate ratio; OEF: oxygen extraction fraction

CBF PtiO2 LPR OEF Pathophysiology

Ischemic ↓ ↓ ↑ ↑ Inadequate CBF

Low extraction  ≅  ↓ ↑  ≅  Low arterial partial pressure of oxygen, PaO2 (hypox‑
emic hypoxia)

Low hemoglobin concentration (anemic hypoxia)

Low half-saturation pressure P50 (high- affinity hypoxia)

Shunt ↑  ≅  ↑ ↓ Arteriovenous shunting (microvascular shunt)

Diffusion  ≅   ≅  ↑ ↓ Diffusion barrier (intracellular or interstitial edema)

Uncoupling  ≅   ≅  ↑ ↓ Mitochondrial dysfunction

Hypermetabolic ↑ ↓ ↑ ↑ Increased demand
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individual pathophysiological causes. To keep in mind 
in a practical and simple way the physiological vari-
ables involved in the transport and utilization of O2, and 
help decreasing the occurrence of episodes of cerebral 
hypoxia, we have created the mnemonic ’’THE MAN-
TLE,’’ which can be a useful  tool at bedside to remind 
the factors that protect and optimize cerebral oxygena-
tion in severe traumatic brain injured patients (Fig. 2).

Temperature: “To avoid hyperthermia is fundamental”
Hyperthermia is highly prevalent in neurocritical 
patients [10–12]. During the initial phase of brain 
injury, temperature elevation is commonly attributed 
to the acute phase response, with inflammatory activa-
tion and increased sympathetic activity. Direct damage 
to the hypothalamic thermoregulatory centers can also 
cause hyperthermia [10–12]. The brain is warmer than 
the body, and the difference between brain and central 
temperature may be up to 2ºC [10, 11]. The presence 
of fever at ICU admission or during the first hours of 
evolution constitutes a secondary insult that is associ-
ated with the severity of the injury, negatively impact-
ing the final outcomes [10, 11]. Hyperthermia exerts 
its deleterious effects through various mechanisms: 
increased levels of excitatory amino acids and free oxy-
gen radicals, inhibition of proteolytic enzymes, rupture 
of the blood–brain barrier and increased ischemic area 
in vulnerable regions [10, 11]. Hyperthermia can also 
yield to cerebral hypoxia due to increased metabolism. 
Therefore, it is desirable to maintain central tempera-
ture levels between 36 and 37ºC [10–12].

Hemoglobin (Hgb): ‘‘To keep and maintain good quality 
and quantity of transporter is essential’’
Hgb transports more than 95% of the O2 in the blood [1, 
13]. Physiologically, each unit decrement in Hgb levels 
reduces O2 transport capacity (anemic hypoxia), while 
oxygen delivery does not increase when Hgb values are 
higher (> 12 gr/dl) [1, 13, 14]. Transfusions do not ensure 
the correction of cerebral hypoxia due to multiple vari-
ables, including amount of blood transfused, and age of 
donor [3]. The optimal levels of Hgb remain unknown; 
however, it seems reasonable to reach and maintain Hgb 
values between 7 and 9 gr/dl [13]. Blood stored for long 
periods of time decreases its component of 2,3 diphos-
phoglycerate, which further increases the affinity of Hgb 
for O2, restricting cell availability [1, 14].

Electrolytes and acid basic status: ‘‘Physiological balance 
is the cornerstone’’
Homeostasis of the cellular exterior environment is a key 
factor to ensure physiology of the transport and cession 

of O2 to the cells. This plays an essential role in avoiding 
shifts in the Hgb dissociation curve [1, 2, 10]. Both the 
increase in temperature and carbon dioxide (CO2) and 
tissue acidosis, product of cellular metabolism, facilitate 
the transfer of O2 to the tissues by shifting the O2/Hgb 
dissociation curve to the right. In contrast, hypothermia, 
hypocapnia, and alkalosis increase the affinity of Hgb 
for O2 (shift to the left), which makes it more difficult to 
transfer the necessary O2 to the cell [1]. Acidosis, hyper-
capnia, and hyperthermia dilate cerebral resistance blood 
vessels, increasing cerebral blood volume and intracranial 
pressure, while hypocapnia, by causing vasoconstriction, 
facilitates cerebral ischemia [1]. In order to ensure that 
Hgb dissociation curve remains within functional ranges 
(p50 = 26–28  mmHg), to  reduce the risk of cerebral 
ischemia and intracranial hypertension, the following 
goals should be achieved: a) pH: 7.35–7.45; b) normocap-
nia; c) central temperature (T°): 36–37.5 °C [1, 10]. On 
the other hand, to minimize or treat cerebral edema, it 
is crucial to maintain a slight hyperosmolar state (serum 
Na+ 140—150 mEq/L) and to avoid hypotonic fluids [15].

Metabolism: ‘‘If metabolism is accelerated, O2 demands 
increase’’
Brain metabolism is the main determinant of the rate of 
cerebral O2 consumption. In some cases of hypoxia, O2 
demands exceed supply. For this reason, all those situ-
ations that increase the neuronal demand for O2, such 
as inadequate level of sedation and analgesia (pain, agi-
tation), seizures, fever, sepsis, and paroxysmal sympa-
thetic hyperactivity syndrome, should be investigated and 
quickly corrected [1, 13, 16]. The cerebral oxygenation 
goals to be achieved depend on the available resources 
and the technique employed. Oxygen pressure of the brain 
parenchyma locally reflects the balance between the sup-
ply and consumption of O2 and should be maintained at 
values above 18  mmHg. The venous oxygen saturation 
obtained from the jugular bulb (SvjO2), globally represents 
the O2 that returns to the general circulation after being 
consumed by brain cells and should be maintained at val-
ues > 55%. Both variables depend on adequate CBF, which 
in turn requires appropriate CPP. When advanced and 
specialized technology is available, such as microdialysis 
or a specific software for the continuous evaluation of the 
autoregulatory phenomenon, it is recommended to main-
tain the lactate/pyruvate ratio < 25 and pressure reactivity 
index (Prx) or oxygen reactivity index (Orx) < 0.2. Orx and 
Prx are the correlation coefficients between CPP and PtiO2 
and ICP, respectively. Both parameters are related to cer-
ebral oxygenation, as high ICP reduces oxygen tolerance.
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Arterial blood pressure: ‘‘Arterial hypotension 
is apocalyptic for injured brain’’
One of the main determinants of CBF is CPP, which is 
the result of mean arterial blood pressure (MABP) minus 
intracranial pressure (ICP), and depends on the diameter of 
small cerebral blood vessels (50–150 microns) [13]. These 
parameters interact giving rise to the cerebral autoregula-
tion curve, an intrinsic phenomenon of resistance in blood 
vessels that allows, by changing their diameter, to main-
tain constant CBF [13]. This property is not unlimited, and 
when autoregulation is impaired, CBF may passively follow 
the CPP above or below the limits. For years, it has been 
considered that CBF does not change despite fluctuations 
in CPP in the range of 50 to 150  mmHg [17]. Recently, 
physiological studies have challenged this assertion, show-
ing that the phenomenon of cerebral autoregulation is more 
’’passive’’ and the ’’plateau’’ phase of the autoregulation 
curve is considerably narrower in brain injured patients 
[18]. CBF can vary and even become pressure dependent 
even in physiological situations where blood pressure (BP) 
varies abruptly such as exercise [18]. Cerebral autoregula-
tion (CAR)  is critical to maintain proper  brain  perfusion 
and oxygenation. PtiO2 is a surrogate of CBF [19, 20]. CAR 
can be easily monitored by transcranial Doppler [21] or by 
an invasive way through MABP manipulation [22] or the 
utilization of specific software that established the corre-
lation between brain tissue oxygenation and CPP [19, 20]. 
Orx is an index that evaluates CAR through the relation-
ship between CPP and PtiO2. Orx may vary between − 1 
and + 1. When PtiO2  passively follows CPP, autoregula-
tion is compromised, so a positive correlation exists [19, 
20]. When autoregulation is intact, PtiO2 is not affected by 
changes in CPP so there is inverse correlation between both 
parameters and Orx [19, 20].In turn, MABP depends on 
different hemodynamic variables such as systemic vascu-
lar resistance and cardiac output. In traumatic brain injury, 
arterial hypotension is one of the factors with the greatest 
negative impact on the final outcome and can contribute to 
the development of ischemic hypoxia, and therefore must 
be urgently prevented and corrected [5, 13].

Recommended blood pressure targets include systolic 
blood pressure > 100–110  mmHg; normal volemia, diu-
resis > 30  ml/h, preserved peripheral perfusion, central 
venous pressure: 6–10 cmH2O [5, 7, 13]. Acceptable CPP 
levels do not ensure normal brain oxygenation, since there 
is evidence that brain tissue hypoxia can occur even with 
normal MABP and ICP values [5]. Furthermore, the con-
cept of personalization of treatment is gaining interest, 
based on the concept that clinicians should not only con-
sider a common pathophysiological pathway independently 
from specific brain damage but should adapt the thera-
peutic management to specific needs [23–26]. For exam-
ple, one parameter to be considered could be the volume 

of the contusion [19]. In the presence of a small contusion, 
the blood brain barrier (BBB) is closed in most of the brain. 
In this case: 1) the osmolarity is the main driving force for 
edema formation; 2) autoregulation is efficient (increas-
ing pressure decreases cerebral blood volume); so, 3) the 
first line treatment may  include cerebral fluid drainage, 
increase in the CPP and osmotherapy [26]. When the con-
tusion volume is greater, the BBB is at least partially open, 
so: 1) higher osmolarity and pressure may worsen edema; 
2) vasogenic edema should be prevented in the contusion 
area; 3) the first line treatment includes cerebral fluid drain-
age, deep sedation and perhaps hypothermia [26].

Nutrition and glucose: ‘‘Glucose, essential fuel 
for the damaged brain’’
Glucose is an essential nutrient and energy substrate to 
maintain mitochondrial functionality [27]. The injured 
brain increases its avidity for glucose, and as there is no 
storage of glucose, no more than 2 min of glucose dep-
rivation are necessary to deplete the scarce cerebral 
reserves [27]. The consequences of the  little availability 
of glucose to the brain are the main reasons for metabo-
lism compromise. Glycemia levels < 110 mg/dl may cause 
non-ischemic metabolic crises [28]. In contrast, hyper-
glycemia > 180 mg/dl causes neurotoxic cascades (inflam-
mation, micro thrombosis, edema) and disturbs the 
homeostasis of the internal environment (hyperosmo-
larity, dehydration), compromising the immune status, 
among other alterations [27]. In addition, neuroglycope-
nia can contribute to mitochondrial dysfunction (uncou-
pling hypoxia) [28].

Target of oxygenation: ‘‘Both extremes of systemic 
oxygenation are deleterious’’
Systemic oxygenation strictly depends on lung function, 
and the variables that determine gas exchange, especially 
the ventilation/perfusion ratio and its extremes (dead 
space and shunt) must be within physiological limits [13]. 
The increase in dead space causes a decrease in alveolar 
ventilation, which causes CO2 retention and hypoxemia. 
On the other hand, the increase in the shunt fraction gen-
erates hypoxemia because mixed venous blood perfuses 
large non-ventilated areas, not allowing arterial blood to 
become enriched in O2. Markers of this type of hypox-
emic hypoxia are the decrease in arterial oxygen pressure 
(PaO2) and arterial oxygen saturation (SaO2), bearing in 
mind that PaO2 represents dissolved O2, that affects only 
3–4% of the total of oxygen transport capacity [1].

In this context, a common and rational practice would 
be to increase the fraction of inspired O2 (FiO2); how-
ever, this measure does not solve the underlying problem 
without an exhaustive analysis of the situation, since even 
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with supranormal levels of PaO2 (normobaric hyperoxia) 
hidden cerebral hypoxia can still occur; on the other side, 
recent evidence suggested that even hyperoxia can be 
harmful [29].

If these variables are compromised, measures must be 
taken to achieve PaO2 80–120 mmHg, and SaO2 > 95% [30].

Lung protective ventilation: ‘‘Protecting the lungs protects 
the brain’’
The concept of lung protective ventilation is challenging 
in brain injured patients. In fact, the combination of low 
tidal volume (to keep low plateau pressure and driving 
pressure) with high intrathoracic pressures and reduced 
venous outflow induced by positive end expiratory pres-
sure (PEEP) might favor an increase in carbon dioxide 
value. For these reasons, traditionally, this population of 
patients has been excluded from the major trials investi-
gating protective strategies in the general ICU population, 
and no strong evidence is available on this topic [30, 31].

However, over the last years, the concept of lung pro-
tective ventilation is gaining interest even in brain injured 
patients, as it can reduce pulmonary complications and 
therefore be associated with improved outcomes [30, 31].

Optimizing mechanical ventilator strategies means 
optimizing lung function and systemic and cerebral 
oxygenation, but at the same time reducing the risk 
of ischemic hypoxia secondary to vasoconstriction 
(hypocapnia) and intracranial hypertension for vasodila-
tation (hypercapnia) [3, 5, 7].

According to available evidence, it seems prudent to 
start lung protective ventilation with a controlled mode, 
tidal volumes between 6 and 8  ml/ kg, minimum res-
piratory rates to ensure levels of PaCO2 between 35 and 
45 mmHg, and FiO2 and PEEP necessary to achieve sys-
temic oxygenation targets as we mentioned above [30, 
31]. To prevent mechanical ventilation induced lung 
injury (barotrauma, biotrauma, volutrauma) plateau pres-
sure should be kept < 2 cmH2O, driving pressure < 13 cm 
H2O [30, 31] and mechanical power below 17 J/min [32]. 
It is recommended not to use routinely hyperventilation 
and to maintain PaCO2 levels between 35 and 45 mmHg 
[7]. Lower targets can be used as strategies to control 
intracranial hypertension [22]. In life threatening situa-
tions, such as herniation syndromes, plateau waves type 
A or intracranial hypertension secondary to hyperemia, 
moderate and controlled hyperventilation can be used 
[33, 34].

Edema and ICP control: ‘‘Brain swollen, brain on the ledge’’
Cerebral edema contributes to the development of cer-
ebral tissue hypoxia through two mechanisms. On one 
hand, it can cause ischemic hypoxia by increased ICP 

with consequent decrease in CPP; on the other hand, it 
contributes to the development of hypoxia by reduc-
ing diffusion of O2  to the cells [35, 36], Fig. 2. Achieve-
ment of appropriate levels of sodium is essential to 
minimize cerebral edema [15]. Also, the application of 
established intracranial hypertension management pro-
tocol is recommended to treat intracranial hyperten-
sion [22, 37–40]. The recommended main targets to be 
achieved should be the following: a) ICP < 22  mmHg; 
b) CPP: 55–70  mmHg; c) optic nerve sheath diameter 
(ONSD) < 5.8  mm; d) pulsatility index (PI) < 1.2; and e) 
Cerebral CT scan without edema signs.

Conclusion
CTH is not uncommon in severe traumatic brain injury 
and independently predicts poor outcomes. Knowledge 
of the physiology and kinetics of O2 and of the various 
causes of hypoxia, together with clinical reasoning and 
personalized treatment can help to minimize the inci-
dence of CTH and its direct and dangerous consequences 
even without advanced and specific neuromonitoring.
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