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Abstract 

Background:  Acute kidney injury (AKI) is a common complication in sepsis. However, the trajectories of sepsis-
induced AKI and their transcriptional profiles are not well characterized.

Methods:  Sepsis patients admitted to centres participating in Chinese Multi-omics Advances In Sepsis (CMAISE) from 
November 2020 to December 2021 were enrolled, and gene expression in peripheral blood mononuclear cells was 
measured on Day 1. The renal function trajectory was measured by the renal component of the SOFA score (SOFArenal) 
on Days 1 and 3. Transcriptional profiles on Day 1 were compared between these renal function trajectories, and a 
support vector machine (SVM) was developed to distinguish transient from persistent AKI.

Results:  A total of 172 sepsis patients were enrolled during the study period. The renal function trajectory was clas-
sified into four types: non-AKI (SOFArenal = 0 on Days 1 and 3, n = 50), persistent AKI (SOFArenal > 0 on Days 1 and 3, 
n = 62), transient AKI (SOFArenal > 0 on Day 1 and SOFArenal = 0 on Day 3, n = 50) and worsening AKI (SOFArenal = 0 on 
Days 1 and SOFArenal > 0 on Day 3, n = 10). The persistent AKI group showed severe organ dysfunction and prolonged 
requirements for organ support. The worsening AKI group showed the least organ dysfunction on day 1 but had 
higher serum lactate and prolonged use of vasopressors than the non-AKI and transient AKI groups. There were 2091 
upregulated and 1,902 downregulated genes (adjusted p < 0.05) between the persistent and transient AKI groups, 
with enrichment in the plasma membrane complex, receptor complex, and T-cell receptor complex. A 43-gene SVM 
model was developed using the genetic algorithm, which showed significantly greater performance predicting 
persistent AKI than the model based on clinical variables in a holdout subset (AUC: 0.948 [0.912, 0.984] vs. 0.739 [0.648, 
0.830]; p < 0.01 for Delong’s test).

Conclusions:  Our study identified four subtypes of sepsis-induced AKI based on kidney injury trajectories. The 
landscape of host response aberrations across these subtypes was characterized. An SVM model based on a gene 
signature was developed to predict renal function trajectories, and showed better performance than the clinical 
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Take home message
The study identified four subtypes of sepsis-induced AKI 
based on the kidney injury trajectories. The landscape 
of the host response aberrations across these subtypes 
was characterized. An SVM model based on gene signa-
ture was developed to predict renal function trajectories, 
which showed higher performance than the clinical var-
iable-based model in the holdout subset. Future studies 
are warranted to validate the gene model in distinguish-
ing persistent from transient AKI.

Background
Acute kidney injury (AKI) is a common complication 
of sepsis and a well-known risk factor for adverse clini-
cal outcomes, including increased mortality, prolonged 
length of stay in the intensive care unit (ICU), and 
development of chronic kidney disease (CKD) [1, 2]. 
Strenuous efforts have been made for management of 
sepsis-induced AKI, aiming to reduce the risks of these 
adverse clinical outcomes. Kidney Disease: Improving 
Global Outcomes (KDIGO) suggests comprehensive 
interventions to improve AKI outcomes, including pro-
tocol-based management of haemodynamic and oxy-
genation parameters, energy intake of 20–30  kcal/kg/d, 
protein intake restriction, and monitoring of aminogly-
coside drug levels [3, 4]. However, the effects of these 
interventions are less than satisfactory due to the heter-
ogenous AKI population [3, 5, 6]. Responses to certain 
interventions can differ based on the cause of AKI. Thus, 
it would be better to explore AKI based on the underly-
ing causes.

Sepsis is the consequence of uncontrolled inflamma-
tory responses to infection, leading to multiple organ 
dysfunction. Since the kidney is one of the most fre-
quently affected organs, sepsis-induced AKI has been 
extensively explored in the literature [7, 8]. Sepsis-
induced AKI has been reported to follow different renal 
function trajectories [9]. KDIGO defines persistent AKI 
as renal dysfunction beyond 48 h from AKI onset; other-
wise, AKI is considered transient [10]. The characteristics 
of these renal function trajectories have been described 
in the literature [9, 11, 12]. However, the current AKI 
definition criteria cannot fully capture AKI progression 
on subsequent days. There is evidence showing that the 
initial AKI severity has limited performance for predict-
ing kidney disease progression [13, 14]. Furthermore, the 
KDIGO criteria involve 48 h or more to define persistent 

or transient AKI, and it is clinically relevant to explore 
whether it is feasible to predict the renal function trajec-
tory as early as possible.

Quantification of more novel transcripts and non-cod-
ing RNAs is possible with the development of in-depth 
next-generation RNA sequencing (RNA-Seq) technol-
ogy [15, 16]. Studies in other fields have shown that such 
novel transcripts assist in identifying more potential 
mechanisms driving disease development and improve 
the accuracy of subtype prediction [17]. However, it is 
unknown whether gene signatures can be developed to 
predict the renal function trajectory. In this study, we 
first classified trajectories of sepsis-induced AKI by the 
renal component of the SOFA score, and then, transcrip-
tional profiles between different renal function trajecto-
ries were characterized. Finally, we developed a simplified 
support vector machine classifier to distinguish transient 
from persistent AKI with genes filtered by genetic algo-
rithms. We hypothesized that gene signatures measured 
on Day 1 can accurately predict subsequent renal func-
tion trajectories.

Methods
Study setting and patient enrolment
This study was conducted under the Chinese Multi-
omics Advances In Sepsis (CMAISE) consortium from 
November 2020 to December 2021, involving 17 Chi-
nese hospitals. The study protocol was registered at 
Chinese Clinical Trial Registry (http://​www.​chictr.​org.​
cn/; ChiCTR2000040446). The English version of the 
registration website is https://​www.​chictr.​org.​cn/​enInd​
ex.​aspx. Patients were considered eligible if they met the 
Sepsis-3.0 criteria (suspected or documented infection 
plus acute increase in Sequential Organ Failure Assess-
ment (SOFA) score > 2 points) on admission to the Emer-
gency Department (ED) [18]. Subjects were excluded if 
they met one of the following criteria: (1) end-stage cir-
rhosis with Child‒Pugh C; (2) concomitant malignancy 
or autoimmune disease; (3) do-not-resuscitate order; (4) 
pregnancy; (5) sepsis onset > 48  h or treatment at other 
hospitals when presenting to CMAISE member hospi-
tals; (6) immunosuppression, such as long-term use of 
immunosuppressive agents, chemotherapy, corticoster-
oids, radiotherapy or HIV infection; (7) acute myocardial 
infarction and/or pulmonary embolism; and (8) preex-
isting chronic kidney disease (CKD). CKD was defined 
as the presence of one or more kidney damage markers 

variable-based model. Future studies are warranted to validate the gene model in distinguishing persistent from 
transient AKI.

Keywords:  Sepsis, Acute kidney injury, Support vector machine, RNA-seq, Genetic algorithms

http://www.chictr.org.cn/
http://www.chictr.org.cn/
https://www.chictr.org.cn/enIndex.aspx
https://www.chictr.org.cn/enIndex.aspx


Page 3 of 10Zhang et al. Critical Care          (2022) 26:398 	

for over 3  months: albuminuria (albumin excretion 
rate > 30  mg/24  h; albumin-to-creatinine ratio > 30  mg/g 
[> 3 mg/mmol]); urine sediment abnormality; electrolyte 
and other abnormality due to tubular disorders; abnor-
malities detected by histology; structural abnormalities 
detected by imaging; history of kidney transplantation; or 
GFR < 60 ml/min/1.73 m2. The study was approved by the 
ethics committee of Sir Run Run Shaw Hospital (approval 
number: 20201014-39). Informed consent was obtained 
from the patients or their next of kin surrogates.

Variables and definitions
Baseline variables such as age, sex, height, and weight 
were recorded on admission. Laboratory variables 
including C-reactive protein, serum creatinine, urine 
output, procalcitonin, and coagulation profiles were 
obtained on Days 1, 3, and 5. In contrast to the conven-
tional AKI definition, our study defined renal function 
trajectories by the renal component of the SOFA score 
(SOFArenal). Conventional definitions of AKI, such as the 
RIFLE, AKIN, or KDIGO criteria, are suitable for identi-
fying AKI on admission but not for measuring the trajec-
tory of changes in kidney function on consecutive days 
[19]. For instance, these criteria require baseline creati-
nine in the prior 2 or 7 days, which are not available for 
most emergency patients [20]. Furthermore, AKI grad-
ing requires > 24  h to define the severity of renal injury, 
which is not easy to use for trajectory definition.

The included subjects were classified into four types 
according to renal function trajectory. Cases without the 
development of AKI (SOFArenal = 0) from Day 1 to Day 3 
were considered as “non-AKI”. Those with SOFArenal > 0 
on Day 1 and SOFArenal = 0 on Day 3 were considered 
transient AKI; those with SOFArenal = 0 on Day 1 and 
SOFArenal > 0 on Day 3 were considered worsening AKI, 
and those with SOFArenal > 0 on Days 1 and 3 were con-
sidered persistent AKI.

RNA‑seq quantifications
Blood samples were obtained on Day 1, and peripheral 
blood mononuclear cells (PBMCs) were isolated by using 
density-gradient centrifugation according to a standard 
protocol. Total RNA was extracted and purified using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) fol-
lowing the manufacturer’s procedure and then stored 
at − 80  °C. All samples were sent for library preparation 
and gene expression quantification (LC-Bio Technolo-
gies (Hangzhou) Co., LTD.). Differential gene expression 
analysis was performed by using the DESeq2 pipeline 
[21]. Genes with less than 100 counts in all samples were 
removed. We calculated a variance stabilizing transfor-
mation (VST) from the fitted dispersion-mean relation(s) 
and then transformed the count data (normalized by 

division by the size factors or normalization factors), 
yielding a matrix of values that are now approximately 
homoscedastic (having constant variance along the range 
of mean values). The transformation also normalizes con-
cerning library size [22]. Batch effects that might result 
from different institutions were removed using a design 
matrix including a term describing the sample source. 
The function fitted a linear model to the data, including 
both batches and types of AKI, and then removed the 
component due to the batch effects. Differential gene 
expression between transient versus persistent AKI, as 
well as worsening versus non-AKI was visualized using 
volcano plots. To facilitate biological interpretations, GO 
term enrichment of over-expressed genes was assessed 
[23].

Gene signature for prediction of renal function trajectory
A prediction model based on the transcriptomic profile 
was trained by using the genetic algorithm (GA). The pur-
pose of developing the prediction model is (1) to identify 
important biomarkers at the transcriptome level to indi-
cate future studies and (2) to develop a simplified model 
to predict AKI progression as early as possible. GAs are 
variable search procedures based on the principle of evo-
lution by natural selection. The procedure operates by 
evolving sets of variables (chromosomes) that fit certain 
criteria from an initial random population via cycles of 
differential replication, recombination, and mutation of 
the fittest chromosomes. Accuracy was used as the metric 
for the fitness function, and an accuracy > 0.9 was the goal 
to stop evolution. A total of 1000 cycles of evolution were 
run to select the best-fit chromosome (Additional file 1: 
methods) [24]. SVM with C-classification was trained to 
distinguish persistent from transient AKI [25]. The radial 
basis exp(−gamma*|u−v|2) was used as the kernel. Two 
hyperparameters gamma and cost were tuned by the grid 
search method. The cost is the ‘C’-constant of the regu-
larization term in the Lagrange formulation. Threefold 
cross-validation was employed to estimate accuracy for 
a given chromosome. This approach involves randomly 
dividing the set of observations into 3 groups, or folds, 
of approximately equal size. The first fold is treated as a 
validation set, and the method is fit on the remaining 2 
folds. A representative model was developed by using a 
forward selection strategy (Additional file 1: methods).

An SVM was also developed based on clinical variables 
(Additional file 1: Table E1), which was then compared to 
the gene model in the holdout subset that was generated 
by random sampling with a 1:2 ratio.

Statistical analysis
Clinical and laboratory variables were compared 
between sepsis-induced renal function trajectories using 
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conventional statistical methods. The chi-square test was 
used to compare categorical data. Normality in data dis-
tributions was assessed using the Anderson‒Darling test 
[26]. Analysis of variance was employed for normally dis-
tributed numeric data, and the Kruskal‒Wallis rank sum 
test for nonnormally distributed data. All statistical anal-
yses were performed in R (version 4.1.1).

Results
Study population and clinical characteristics
A total of 172 patients were included in the study (Fig. 1). 
Kidney injury severity grades were generally consistent 
between the renal component of the SOFA score and 
the RIFLE criteria (Additional file  1: Table  E2). There 
were four subtypes of sepsis based on renal function 
trajectories: non-AKI (n = 50), persistent (n = 62), tran-
sient (n = 50) and worsening AKI (n = 10). The renal 
function trajectory measured by SOFArenal was unstable 
across Days 1, 3, and 5 after hospital admission (Fig. 2A). 
There were more state transitions from Day 1 to 3 than 
from Day 3 to 5. Consistent with the definition for renal 
function trajectories, persistent AKI showed the highest 
serum creatinine and lowest urine output from Days 1 to 
5 (Fig.  2B). The persistent AKI group exhibited greater 
severity of organ dysfunctions and prolonged require-
ment of organ support. Persistent AKI was related to 
the highest SOFA on Day 1 (9 [7, 11]; p < 0.001), longer 

days on mechanical ventilation (5.5 [0.25, 10.75] days; 
p = 0.003) and vasopressors (4.5 [1, 9]; p = 0.002). 
Although the worsening AKI group showed the least 
organ dysfunction on Day 1, this group had higher serum 
lactate levels and prolonged use of vasopressors than the 
non-AKI and transient AKI groups (Table 1), indicating 
delayed involvement of the kidney in this subtype.

Transcriptomic profiles of renal function trajectories
Differential gene expression analysis was performed 
between the worsening AKI versus non-AKI groups 
and the persistent versus transient AKI groups (Fig.  3). 
A total of 27,746 genes were filtered and tested for dif-
ferential expression between the groups. There were 
3,993 DEGs (adjusted p < 0.05) between the transient 
and persistent AKI groups, including 2091 upregulated 
and 1,902 downregulated genes (Fig. 3). The upregulated 
genes were enriched in biological pathways such as the 
plasma membrane complex, receptor complex, and T-cell 
receptor complex. There were 1,553 DEGs (adjusted 
p < 0.05) between the worsening and the non-AKI group, 
including 709 upregulated and 844 downregulated genes 
(Fig. 3). The upregulated genes were enriched in biologi-
cal pathways such as adaptive immune response, humoral 
immune response, lymphocyte-mediated immunity, and 
immunoglobulin production (Fig. 3D).

Genetic algorithm for developing an SVM to distinguish 
transient versus persistent AKI
GA identified a 43-gene SVM model to distinguish per-
sistent from transient AKI. The top-ranked genes were 
WFDC2, GTF2H5, ACCS, RGS5-AS1, TXNDC8, and 
RPL23AP22 (Additional file  1: Figure E1 to E3). Some 
non-coding RNAs with low expression were found to 
be important in predicting renal function trajectories, 
such as LINC00578, MIR3163, MIR4672, and AC068768 
(Fig. 4A). Indeed, these selected genes were able to dis-
tinguish the two types of AKI in a heatmap plot (Fig. 4B). 
Hyperparameter tuning for the SVM showed that the 
best combination of gamma and cost was 0.024 and 0.61, 
respectively (Fig.  4C). We further fit an SVM based on 
clinical variables collected on Day 1 and found that these 
variables had moderate discriminating power to distin-
guish persistent versus transient AKI (AUC = 0.739; 95% 
CI: 0.648 to 0.830), which was significantly lower than the 
gene model (AUC = 0.948; 95% CI: 0.912 to 0.984). The 
model performance was evaluated using the holdout sub-
set of data.

Discussion
Our study describes the transcriptional landscape of dif-
ferent types of sepsis-induced renal function trajectories. 
Four subtypes of sepsis were identified according to the 

Fig. 1  Flowchart of subject enrollment. ED = emergency 
department; CKD = chronic kidney disease; ICU = intensive care unit; 
AKI = acute kidney injury
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renal function trajectory: non-AKI, transient, persistent, 
and worsening AKI. Persistent AKI was the most criti-
cally ill group, as represented by the highest SOFA score 
and prolonged use of MV and vasopressors. There were 
hundreds to thousands of DEGs between these subtypes 
and pathways involving the adaptive immune response, 
humoral immune response, and lymphocyte-mediated 
immunity might explain the development of different 
renal function trajectories. We further developed SVM 

models comprising clinical or gene features, with features 
selected by genetic algorithms. The results showed that 
the clinical model had moderate discriminating power to 
distinguish persistent from transient AKI; in contrast, the 
gene signature model showed high accuracy.

The worsening subtype of AKI described in our study 
has not yet been formally defined in the consensus report 
of Acute Disease Quality Initiative (ADQI) 16 Work-
group [10]. This subtype involved normal renal function 
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on admission but declining kidney function on the fol-
lowing days. Although this subtype comprised a minority 
of the sepsis population, important clinical implications 
were noted. Compared to the non-AKI group (i.e. both 
showed normal renal function on admission), the wors-
ening AKI group had prolonged use of vasopressors, 
higher initial lactate levels, and longer hospital length 
of stay. Interestingly, the worsening AKI group showed 
remarkable host response aberrations on Day 1 com-
pared to those without AKI. There were 709 upregulated 
and 844 downregulated genes compared with the non-
AKI group. Pathways involving these DEGs are potential 

targets for the prevention of AKI development. DSCAM 
was significantly upregulated in the worsening group 
(log2FC = 5.24; adjusted p = 0.034). This gene has been 
found to mediate activation of MAPK8 and MAP kinase 
p38 [27, 28]. Consistent with our findings, p38 MAPK is 
involved in the development of sepsis-related multiple 
organ failure, including AKI [29–31]. It would be reason-
able to hypothesize that inhibition of this pathway may 
protect against AKI. More importantly, there is sufficient 
time to implement preventive measures during a hospital 
stay. The “worsening” group had the lowest mortality rate 
and never required CRRT. This finding can be explained 

Table 1  Comparison of clinical variables across different renal function trajectories

Q1 first quartile, Q3 third quartile, HR heart rate, SAP systolic arterial pressure, SD standard deviation, BUN blood urea nitrogen, CRP C-reactive protein, MV mechanical 
ventilation, CRRT​ continuous renal replacement therapy

Variables Total (n = 172) Non-AKI (n = 50) Persistent (n = 62) Transient (n = 50) Worsening (n = 10) p

Age (years), Median 
(Q1, Q3)

72 (59.75, 81) 69.5 (52.25, 78.75) 73.5 (63, 81) 74 (62.5, 82) 72.5 (68.75, 81.75) 0.13

Sex, Male (%) 109 (63) 25 (50) 39 (63) 39 (78) 6 (60) 0.033

SOFA, Median (Q1, Q3) 8 (5, 10) 5.5 (4, 7) 9 (7.25, 11) 8 (6, 9) 4 (2.25, 7)  < 0.001

HRmax (/min), 
Mean ± SD

115.94 ± 22.31 110.3 ± 21.37 119.87 ± 24.81 117.1 ± 19.35 114 ± 21.14 0.149

SAPmin (mmHg), 
Mean ± SD

86.89 ± 18.89 89.22 ± 20.27 85.05 ± 20.85 86.55 ± 15.98 88.4 ± 11.64 0.702

Tmax (℃), Median (Q1, 
Q3)

38 (37.1, 38.95) 37.85 (37.2, 39) 38 (36.82, 39.27) 38 (37.2, 38.5) 38.3 (37.62, 38.92) 0.774

Creatinine (mmol/L), 
Median (Q1, Q3)

123.4 (80.6, 174.5) 73.65 (58.6, 89) 184 (133.25, 239) 131.3 (112, 163.6) 97 (79.17, 101.07)  < 0.001

PaO2 (mmHg), Median 
(Q1, Q3)

91.3 (74.15, 113.93) 88 (73.75, 111) 87.2 (72.42, 111.5) 93.8 (75.15, 115.47) 94.5 (89.5, 118.65) 0.596

ABE (mmol/L), Median 
(Q1, Q3)

−4.6 (−7.9, −0.7) −2 (−6.38, 1.55) −5.9 (−10.28, −2.25) −3.7 (−6.68, −0.43) −5.05 (−6.97, −4.4) 0.007

BUN (mg/dl), Median 
(Q1, Q3)

9.94 (7.5, 14.5) 7.5 (5.7, 9.5) 13.48 (9.77, 17.12) 11.86 (8.55, 14.02) 8.13 (7.72, 8.8)  < 0.001

CRP (mg/dl), Median 
(Q1, Q3)

139.35 (55.7, 200) 143.6 (76.32, 183.58) 159.06 (53.94, 209.56) 125.85 (48.42, 203.1) 84.2 (32.4, 120.2) 0.491

Potassium (mmol/L), 
Mean ± SD

3.84 ± 0.66 3.79 ± 0.59 3.87 ± 0.67 3.86 ± 0.7 3.88 ± 0.82 0.91

Lactate (mmol/L), 
Median (Q1, Q3)

2.8 (1.62, 4.65) 1.91 (1.4, 3.1) 3.95 (2.4, 6.89) 2.85 (1.92, 4.35) 3.23 (2.28, 3.48)  < 0.001

Fluid intake (ml), 
Median (Q1, Q3)

2831 (1959, 4358.38) 2948.5 (2037.25, 
4237.75)

2955 (2046, 4813) 2419 (1662, 4030) 2825 (2070.25, 
4116.48)

0.238

Fluid output (ml), 
Median (Q1, Q3)

1400 (762, 2235) 1675 (1362.5, 2620) 1060 (560, 1905) 1140 (650,1887) 1447.5 (1092.25, 
1854.5)

0.004

Urine (ml), Median 
(Q1, Q3)

1050 (502.5, 1742.5) 1425.5 (1002.5, 2240) 800 (210, 1270) 1000 (400, 1650) 1122.5 (962.5, 1457.5)  < 0.001

Mortality, n (%) 19 (11) 2 (4) 14 (23) 3 (6) 0 (0) 0.008

MV days, Median (Q1, 
Q3)

3 (0, 7) 1 (0, 3.75) 5.5 (0.25, 10.75) 1.33 (0, 6) 0 (0, 5.75) 0.003

CRRT days, Median 
(Q1, Q3)

0 (0, 0) 0 (0, 0) 0 (0, 3.75) 0 (0, 0) 0 (0, 0)  < 0.001

Days on vasopressors, 
Median (Q1, Q3)

2 (0, 5.86) 1 (0, 3) 4.5 (1, 9) 2 (0, 5) 2.5 (0.5, 3) 0.002

Hospital days, Median 
(Q1, Q3)

13 (8.95, 21.04) 12.65 (8.77, 18.86) 11.76 (9.13, 22.51) 13.75 (8.47, 21.39) 16.08 (8.63, 19.5) 0.902
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by the small sample size of this group, and the mortal-
ity or CRRT rate comparisons are subject to random 
variation.

Clinical and transcriptional alterations between per-
sistent and transient AKI have been explored in the lit-
erature. Uhel F and colleagues compared transient and 
persistent AKI in a large cohort of sepsis [9]. Consistent 
with our findings, the persistent group had higher disease 
severity scores. However, minimal differences in tran-
scriptional alterations between transient and persistent 
AKI were found, while our study identified more DEGs. 
Most likely, the advantages of RNA-Seq over microarray-
based RNA quantification assisted us in identifying more 
biomarkers to distinguish between persistent and tran-
sient AKI. These advantages include the ability to detect 

novel transcripts (such as AC068768 and AC022107), 
lower noise signals, increased sensitivity in detecting dif-
ferential expression, and the ability to quantify a large 
dynamic range of expression levels [32–34]. A machine 
learning model has been developed for the prediction of 
persistent or transient AKI using clinical data alone [11, 
12]; the model performance was moderate, with an AUC 
below 0.80, which was consistent with our study. Never-
theless, the gene model was able to increase accuracy by 
a large magnitude owing to the sensitivity of RNA-Seq to 
identify novel and lowly expressed genes.

Several limitations must be acknowledged in the study. 
First, the study population was recruited from multi-
ple centres in China, and there were potential batch 
effects in the RNA quantification performed. Regardless, 
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Fig. 3  Differentially expressed genes between different trajectories of sepsis-induced AKI. A Volcano plot showing the differentially expressed 
genes between persistent and transient AKI groups. Genes with adjusted p value < 0.05 and log2 fold change > 1.5 were colored red and some 
example genes were labelled. B Enrichment of DEGs between persistent and transient AKI groups on GO terms by the overrepresentation method. 
C Volcano plot showing the differentially expressed genes between worsening and non-AKI groups. Genes with adjusted p value < 0.05 and log2 
fold change > 1.5 were colored red and some example genes were labelled. D Enrichment of DEGs between worsening and non-AKI groups on GO 
terms by the overrepresentation method. AKI = acute kidney injury; FC = fold change; DEG = differential expressed gene; NS = non-significant
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we removed the batch effects with regression models, 
thereby minimizing the impact of such unwanted effects. 
Second, although our gene model showed high discrimi-
nating power in predicting persistent versus transient 
AKI, the model was not externally validated and was still 
subject to model overfitting. However, the study did iden-
tify many novel DEGs, which provided a more compre-
hensive transcriptional landscape for future mechanistic 
studies of sepsis-induced AKI. Third, prior measurement 
of kidney function may not be performed for some 
patients, making differentiation between CKD and AKI 

challenging. However, prior measurement of renal func-
tion was not carried out for only 5 patients, and only 2 
of them showed elevated renal function on admission. 
Thus, we believe that the bias caused by the lack of prior 
renal function measurements in the study was minimal. 
Finally, the sample size of the worsening AKI group was 
relatively small compared with the other subtypes, lim-
iting further in-depth characterization of this subgroup. 
Because AKI onset was delayed in this group, there is an 
opportunity to take measures to prevent AKI occurrence.

Fig. 4  Development of a support vector machine model using genetic algorithms. A Stability of gene ranks over the 1000 evolution cycles. The 
plot shows the stability of the rank of the top 50 genes, which is designed to aid in the decision to stop or continue the process once the top 
ranked genes are stabilized. When genes have many changes in ranks, the plot show different colours; hence the rank of these genes is unstable. 
Commonly the top 2 “black” genes are stabilized quickly, in 50 to 200 solutions (evolutions), whereas low ranked “grey” genes would require many 
thousands of solutions to be stabilized. B heatmap plot showing the scaled gene expression abundance grouped by AKI groups. The genes 
displayed were selected by classical forward selection method, adding one gene at the time starting from the most frequent to the least frequent. 
C Hyperparameter tuning for training the SVM for the gene model. Contour plot shows the hyperparameter tuning process by the grid search 
method. Cost and gamma are two hyperparameters of the SVM model. The plot shows the accuracy of the SVM model (denoted by color) at each 
combination of cost (vertical axis) and gamma (horizontal axis), and the combination of the hyperparameters at the highest accuracy is used to 
train the final model. D Comparisons of the SVM models based on clinical variable and gene features. The gene model outperformed clinical model 
as indicated by significantly higher values of AUC​
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Conclusions
Our study identified four subtypes of sepsis-induced 
AKI based on the renal function trajectory. The land-
scape of host response aberrations across these subtypes 
was characterized. An SVM model based on a gene sig-
nature was developed to predict renal function trajecto-
ries, which showed higher performance than the clinical 
variable-based model in the holdout subset. Future stud-
ies are warranted to validate the gene signature in distin-
guishing persistent from transient AKI.
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