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Abstract 

Background:  The delayed diagnosis of acute kidney injury (AKI) episodes and the lack of specificity of current single 
AKI biomarkers hamper its management. Urinary peptidome analysis may help to identify early molecular changes in 
AKI and grasp its complexity to identify potential targetable molecular pathways.

Methods:  In derivation and validation cohorts totalizing 1170 major cardiac bypass surgery patients and in an 
external cohort of 1569 intensive care unit (ICU) patients, a peptide-based score predictive of AKI (7-day KDIGO clas‑
sification) was developed, validated, and compared to the reference biomarker urinary NGAL and NephroCheck and 
clinical scores.

Results:  A set of 204 urinary peptides derived from 48 proteins related to hemolysis, inflammation, immune cells traf‑
ficking, innate immunity, and cell growth and survival was identified and validated for the early discrimination (< 4 h) 
of patients according to their risk to develop AKI (OR 6.13 [3.96–9.59], p < 0.001) outperforming reference biomarkers 
(urinary NGAL and [IGFBP7].[TIMP2] product) and clinical scores. In an external cohort of 1569 ICU patients, perfor‑
mances of the signature were similar (OR 5.92 [4.73–7.45], p < 0.001), and it was also associated with the in-hospital 
mortality (OR 2.62 [2.05–3.38], p < 0.001).

Conclusions:  An overarching AKI physiopathology-driven urinary peptide signature shows significant promise 
for identifying, at an early stage, patients who will progress to AKI and thus to develop tailored treatments for this 
frequent and life-threatening condition. Performance of the urine peptide signature is as high as or higher than that 
of single biomarkers but adds mechanistic information that may help to discriminate sub-phenotypes of AKI offering 
new therapeutic avenues.
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Background
Acute kidney injury (AKI) is a life-threatening dis-
ease with an incidence of 13.5 million patients and an 
estimated 1.7 million deaths per year worldwide [1]. 
In survivors, the risk of chronic kidney disease (CKD) 
increases ninefold [2]. Worldwide, more than 850 mil-
lion people suffer from AKI and CKD or require renal 
replacement therapy (RRT) [1]. There is a clear need 
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for early detection (< 12  h after the injury) to reduce 
the severity of the AKI. However, despite recent and 
intensive efforts, AKI is still detected at a late stage [1 
to 3 days after the injury]. In addition, although treat-
ments exist to reduce the impact of full-blown AKI, 
they are not specific and do not focus on the molecu-
lar mechanisms of AKI. The International Society of 
Nephrology has formally recognized this alarming situ-
ation of AKI as a major challenge and has launched the 
“0by25” objective, to eliminate preventable deaths from 
AKI by 2025 in low- and high-income countries [1], 
echoed by the European Renal Association [3].

The late detection of AKI is largely related to the 
assessment of kidney dysfunction by serum creati-
nine, which is inherently downstream of advanced AKI, 
rather than based on earlier signs of kidney damage 
[4–8]. Furthermore, even the recently discovered indi-
vidual molecular markers of kidney injury (e.g., FGF-23, 
NGAL, IL-18, KIM-1, [TIMP-2].[IGFBP7]) detect AKI 
optimally at 12–24  h post-injury, when often irrevers-
ible damage is already present [4–7, 9]. These individ-
ual biomarkers are mainly dependent on the injury to 
a specific tubular segment, appear non-specific, and 
do not provide information on the timing and mecha-
nisms of kidney injury [4–8]. To grasp the molecular 
complexity of AKI, high-throughput strategies using 
multi-dimensional molecular markers should therefore 
be proposed, as already employed in other acute condi-
tions such as acute respiratory distress syndrome, acute 
heart failure, or sepsis [10–16].

Urinary peptidomics has emerged as a powerful 
method to noninvasively assess characteristics of the 
kidney parenchyma [17, 18] and to stratify patients 
according to their risk of progressing to kidney fibro-
sis [19–21], but also to assess specific risks of systemic 
diseases, including acute life-threatening conditions 
such as COVID-19 [22]. In the context of AKI, early 
preliminary studies using a small number of patients 
(n = 80–120) have shown the feasibility of using urinary 
peptidome analysis to predict the development of AKI, 
outperforming NGAL (neutrophil gelatinase-associated 
lipocalin) and KIM-1 (kidney injury molecule-1) [23, 
24]. However, the samples were collected at a late stage 
after kidney injury.

In the current study, we determined whether uri-
nary peptide signatures can identify, at an early stage, 
patients developing AKI in different at-risk clinical set-
tings including cardiac bypass (CBP) surgery and after 
admission to the intensive care unit (ICU) and grasp 
the molecular complexity of AKI to identify potential 
targetable pathways.

Methods
Study design
A multi-step strategy was developed to identify a poten-
tial urinary peptide signature of AKI after CBP surgery. 
First, clinical characteristics were assessed in a deriva-
tion cohort of patients referred for cardiac surgery with 
cardiac bypass and used to identify clinically derived 
predictive factors of AKI. Urinary peptidomes were then 
characterized using mass spectrometry, and differentially 
abundant peptides between AKI and non-AKI patients 
with a significant Benjamini–Hochberg adjusted Wil-
coxon signed-rank testing were identified. The link of 
one of the peptides to the AKI pathophysiology was con-
firmed by studying the full-length protein (calprotectin) 
in urine, in an animal AKI model and in vitro. A set of 
sequenced peptides was used to build a support vector 
machine-based predictor. Results were extracted as a cal-
ibrated score based on the derivation and then tested in 
two validation cohorts of patients referred for CBP sur-
gery or admitted to the general ICU.

Patients
CBP surgery patients were prospectively recruited at 
the University Hospital of Toulouse, France, during two 
distinct time periods (March 2016–January 2017 for the 
derivation cohort (n = 509) and January 2019–March 
2020 for the validation cohort n = 661). All patients with 
CBP surgery were eligible. Patients under 18, that under-
went unscheduled CBP surgery or who required chronic 
dialysis before surgery were excluded.

A third cohort of patients admitted to the general ICU 
were also studied to obtain external validation of the pep-
tide signature. Detailed clinical characteristics of this 
European multicenter cohort that included 1569 patients 
admitted to the ICU for sepsis, heart failure, cardiac arrest, 
or urgent surgery were already reported in previous studies 
(FROG-ICU) [25–27]. Urine samples were collected dur-
ing the first 24 h following admission. AKI KDIGO clas-
sification [7 days period] was used to define AKI severity.

Characteristics, definitions, and endpoints
Pre-, per-, and postoperative clinical data were gathered 
retrospectively for all patients based on hospital records. 
Baseline estimated glomerular filtration rate (eGFR) was 
estimated using the CKD-EPI formula based on standard-
ized creatinine measurement (IDMS) before cardiac surgery 
[28]. EuroSCORE-II was calculated as recommended [29].

Surgery was divided into coronary artery bypass (CAB), 
valvular surgery (valvuloplasty or replacement), combined 
CAB and valvular surgery, surgery with replacement of 
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the ascending aorta with or without CAB (aortic surgery); 
surgery that directly affects the cardiac myocardial wall, 
such as interatrial communication, interventricular com-
munication, ventricular aneurism, or cardiac transplanta-
tion (myocardium).

The main endpoint, AKI, was defined according to the 
AKI kidney disease/improving global outcome (KDIGO) 
2012 criteria [30] evaluated during the first 7 days after 
surgery. Briefly, AKI was defined as a significant increase 
in serum creatinine (> 1.5 times baseline or > 26.5 μmol/L 
increase) or a reduced urine output (< 0.5  mL/kg/h for 
at least 6  h) or RRT requirement. In the external ICU 
cohort (FROG-ICU cohort), AKI definition only relied 
on the serum creatinine criteria [25, 26].

CSA-AKI, Ng, Cleveland, AKICS, and SRI scores were 
calculated as described [31–35]. Some parameters were 
approximated as follows: History of congestive heart fail-
ure was approximated as left ventricular ejection frac-
tion (LVEF) < 60%; preoperative capillary glucose was 
assimilated with diabetic status regardless of the treat-
ment received; central venous pressure was considered 
the maximum pressure during the first 24 h after surgery; 
and low cardiac output was defined as the need for vaso-
pressive or inotropic drugs.

Urinary peptidome analysis
In the CBP surgery cohorts, urine samples were collected 
2.5 to 4 h after surgery and immediately frozen (− 20 ℃) 
before subsampling and re-frozen for long-term conser-
vation (−  80 ℃). In the external ICU validation cohort, 
urine was collected in the first 24 h of admission to the 
ICU, immediately frozen (−  20 ℃) before subsampling 
and re-frozen for long-term conservation (− 80 °C).

Peptide extraction and CEMS processing were per-
formed as previously described (the extended methodol-
ogy is given in Additional file 1: S1) [36].

Development of peptide‑based score
For peptidome analysis, among the 5862 peptides, only 
peptides with less than 70% of missing data in at least one 
group were considered for analysis, resulting in a set of 
1255 peptides. For those peptides, missing values were 
replaced by 0 before further analysis. Univariate testing 
between AKI and non-AKI patients was performed using 
the Wilcoxon signed-rank test, followed by Benjamini–
Hochberg false discovery rate adjustment. Correlations 
were performed according to the Pearson method.

For score derivation, all patients from the CBP surgery 
discovery cohort with available peptidome data were 
considered (n = 446). A set of 328 differentially abun-
dant peptides with a significant Benjamini–Hochberg 
adjusted Wilcoxon signed-rank testing was identified in 
this cohort. The amino acid sequence could be obtained 

for 204 peptides of the 328 peptides. These 204 pep-
tides were used to build a support vector machine-based 
predictor (MosaCluster software [37]). Results were 
extracted as a calibrated score based on derivation. Score 
performances in the CBP surgery derivation cohort were 
estimated using the leave-one-out procedure. Score vali-
dation was then obtained in the CBP surgery validation 
cohort in patients with available peptidome data; n = 480. 
External validation in the ICU context was obtained on 
all patients from the FROG-ICU cohort with available 
AKI status and peptidome data (n = 1569).

Additional statistical analyses, including scores com-
parisons and the use of genetic algorithms, are described 
in Additional file 1: text S1.

Urine NGAL, IGFBP7, TIMP2, calprotectin, and creatinine 
measurement
Urine samples were centrifuged for 10 min at 2500 rpms. 
NGAL was measured using ELISA (Human Lipocalin-2/
NGAL DuoSet ELISA, R&D, DY1757) in diluted superna-
tant (1/10 or 1/100) according to the manufacturer’s pro-
tocol. Calprotectin was measured using ELISA (Human 
S100A8/S100A9 Heterodimer DuoSet ELISA, DY8226-
05) according to the manufacturer protocol. Creatinine 
was measured using the QuantiChrom Creatinine Assay 
Kit (BioAssay Systems, DICT 500) according to the 
manufacturer protocol. Creatinine-normalized NGAL 
and creatinine-normalized calprotectin concentra-
tions (microg/g) were used for performance evaluations. 
TIMP-2/IGFBP7 was measured in urine supernatants 
using the VITROS NephroCheck immunoassay on a 
VITROS 5600 Integrated System (Ortho Clinical Diag-
nostics) according to the manufacturer’s instructions. 
The Vitros NephroCheck Test result is a single numeri-
cal, which is a product of the measured concentrations of 
the two analytes in the sample divided by 1000.

Certified laboratory technicians blinded to clinical data 
performed the analyses.

Mouse model of ischemic AKI
Ischemic AKI was induced in C57Bl6 male mice using 
warm renal ischemia/reperfusion (bilateral clamping of 
renal arteries for 20 min) (see Additional file 1: text S1). 
Kidney samples were analyzed and blood urea nitrogen 
was measured at 6, 24, and 48 h.

Animal experiments were approved by the local and 
national ethical committees (CREFRE Inserm/UPS, 
agreement C31 55,507; Protocol APAFIS#122–2015-23).

Cell culture
MCT cells were grown under standard conditions (21% O2, 
5% CO2, 37 °C) and submitted to hypoxia for 48 h or TNFα 
or IL-1β exposure for 8 h. mRNA of KIM1 and calprotectin 
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was quantified in each condition using quantitative poly-
merase chain reaction (see Additional file 1: Text S1).

Statistics
Statistical analyses were performed with the R (v4.0.3) 
software using RStudio interface with additional pack-
ages caret [38], pROC [39], ROCR [40], mgcv [41], and 
GA [42]. Detailed statistical procedures can be found in 
the Additional file 1: text S1.

Study approval: All the patients were orally informed of 
the inclusion during the anesthetic consultation performed 
during the weeks before surgery and the non-opposition of 
the patients to being included in the clinical and biologi-
cal collection of the University Hospital of Toulouse was 
obtained before inclusion (agreement number French 
national ethical committee DC-2008–463). The study 
was performed according to the Declaration of Helsinki, 
as revised in 2004. Patients in the external ICU validation 
cohort were included in the Frog-ICU cohort [25–27].

Results
Cardiac surgery cohorts and AKI incidence
We prospectively included a total of 1170 patients 
(mean age 66.7 ± 12.0  years) referred for CBP surgery 
in a single center (Toulouse, France). Inclusion was per-
formed during two different time periods resulting in 

two independent cohorts: a derivation cohort (n = 509) 
with patients included between March 2016 and Janu-
ary 2017 and a validation cohort (n = 661) with patients 
included between January 2019 and March 2020 
(Fig. 1).

Patient characteristics are summarized in Table  1. 
Patients from the validation cohort had better baseline 
kidney function (eGFR 77.6 ± 20.6 vs. 70.3 ± 20.2  mL/
min/1.73m2, p < 0.001), were more frequently affected by 
hypertension (p = 0.029) and chronic obstruction pulmo-
nary disease (COPD) (p < 0.001) and had more frequently 
undergone previous cardiac surgery (p = 0.022). Due to 
anesthetic procedure changes between the two inclusion 
periods, the number of red blood cell (RBC) transfusions 
during surgery was lower (p = 0.001) and the use of vaso-
active agents was more frequent (p = 0.003) in the vali-
dation cohort. During the postoperative period, patients 
included in the validation cohort received iodine contrast 
agents less frequently (p = 0.001) and had a shorter length 
of stay within the ICU (p < 0.0001). However, this did not 
lead to significant differences in AKI incidence between 
the derivation and validation cohort (~ 23%, KDIGO 
stage 1–3). Severe AKI (KDIGO stage 2 or 3) was iden-
tified in 42 (8.3%) and 93 (14.0%) patients, respectively. 
Eighteen (3.5%) and 14 (2.1%) patients required RRT in 
the derivation and validation cohorts, respectively.

Derivation cohort 
(03/2016 to 01/2017)

n=509

No AKI
n=355

AKI
n=91

Excluded n=63

Urinary peptidome analysis

Validation cohort
(01/2019 to 03/2020)

n=661

No AKI
n=352

AKI
n=128

Excluded n=181

204 peptides-based score

External validation cohort
(07/2011 to 12/2013)

n=2087

No AKI
n=936

AKI
n=633

Excluded n=518

204 peptides-based score

Predictive model
(Support vector machine)

204 peptides signature

CBP-Surgery ICU

Fig. 1  Patient flowchart for the identification and validation of a predictive AKI urinary peptide signature. Three independent cohorts were used: a 
derivation CBP surgery cohort (n = 509), a validation CBP surgery cohort (n = 661)—both recruited in the University Hospital of Toulouse (France), 
but during different time periods—and an external ICU cohort (external ICU validation multicenter cohort [25], n = 2087). Sixty-three patients from 
the derivation and 181 from the validation CBP surgery cohorts were excluded because of missing urine samples or failure of the urinary peptidome 
analysis pipeline. Five hundred eighteen patients from the external ICU validation cohort were excluded because of missing urine samples, failure 
of the urinary peptidome analysis pipeline, or missing information with respect to the development or presence of AKI. CBP surgery, cardiac bypass 
surgery; ICU, intensive care unit
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Table 1  Characteristics of patients included in the derivation and validation CBP cohorts

This table presents the clinical characteristics and outcome of all CBP patients irrespective of the availability of a urine sample.

BMI Body mass index, PAOD Peripheral artery obliterans disease, COPD Chronic obstructive pulmonary disease, LVEF Left ventricular ejection fraction, eGFR Estimated 
glomerular filtration rate, CBP Cardiac bypass, RBC Red blood cells, SD Standard deviation, AKI Acute kidney injury, KDIGO Kidney disease/improving global outcome 
classification

Parameters CBP cohort Derivation (n = 509) Validation (n = 661) Adjusted 
univariate p 
value

Preoperative features

Male, n (%) 381 (74.9) 501 (75.8) 0.836

Age (years), mean ± SD 67.6 ± 11.4 66.1 ± 12.4 0.071

BMI (kg/m2), mean ± SD 26.9 ± 4.4 26.8 ± 4.7 0.811

Diabetes, n (%) 127 (25) 179 (27.1) 0.571

Hypertension, n (%) 269 (52.8) 399 (60.4) 0.029

PAOD, n (%) 49 (9.6) 59 (8.9) 0.836

Stroke, n (%) 33 (6.5) 57 (8.6) 0.312

COPD, n (%) 29 (5.7) 97 (14.7)  < 0.001

EuroSCORE-II, mean ± SD 2.4 ± 2.6 2.7 ± 4.3 0.150

LVEF (%), mean ± SD 55.9 ± 11.3 56.1 ± 11 0.844

Serum Creatinine (μmol/L), mean ± SD 98.3 ± 41.2 88.3 ± 30.1  < 0.001

eGFR (mL/min.1.73m2), mean ± SD 70.3 ± 20.2 77.6 ± 20.6  < 0.001

Kidney graft recipients, n (%) 7 (1.4) 6 (0.9) 0.771

Per-operative features

Surgery

 CAB, n (%) 196 (38.5) 245 (37.1)

 Valvular, n (%) 175 (34.4) 199 (30.1) 0.220

 Combined, n (%) 71 (13.9) 105 (15.9)

 Thoracic aorta, n (%) 58 (11.4) 87 (13.2)

 Myocardium, n (%) 9 (1.8) 25 (3.8)

Previous cardiac surgery, n (%) 23 (4.5) 57 (8.6) 0.022

CBP time (min), mean ± SD 85.3 ± 36.2 88.5 ± 36.5 0.246

RBC transfusion, n (%) 91 (17.9) 59 (8.9)  < 0.001

 Number, mean ± SD 0.4 ± 0.9 0.2 ± 0.8 0.001

Vasoactive agents, n (%) 456 (89.6) 627 (94.9) 0.003

Postoperative features

RBC transfusion, n (%) 151 (29.7) 155 (23.4) 0.045

 Number, mean ± SD 0.8 ± 1.8 0.7 ± 1.9 0.368

Vasoactive agents, n (%) 277 (54.4) 445 (67.3)  < 0.001

 Duration (day), mean ± SD 1.2 ± 2.1 1.6 ± 2.6 0.004

Infection, n (%) 83 (16.3) 112 (16.9) 0.858

Iodinated contrast agents, n (%) 25 (4.9) 7 (1.1) 0.001

Mechanical ventilation duration (d), mean ± SD 19.5 ± 77.2 12.4 ± 42.6 0.122

ICU stay duration (day), mean ± SD 5.6 ± 6.7 4.2 ± 5.2  < 0.001

Outcomes

AKI KDIGO

 0, n (%) 389 (76.4) 486 (73.5)

 1, n (%) 78 (15.3) 82 (12.4) 0.005

 2, n (%) 23 (4.5) 69 (10.4)

 3, n (%) 19 (3.7) 24 (3.6)

In-hospital mortality, n (%) 15 (2.9) 26 (3.9) 0.571
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Table 2  Predictive factors of AKI after CBP surgery (derivation cohort, n = 509)

BMI Body mass index, PAOD Peripheral artery obliterans disease, COPD Chronic obstructive pulmonary disease, LVEF Left ventricular ejection fraction, eGFR Estimated 
glomerular filtration rate, CBP Cardiac bypass, RBC Red blood cells, SD Standard deviation, AKI Acute kidney injury, KDIGO Kidney disease/improving global outcome 
classification

Parameters (derivation CBP cohort) Overall (n = 509) Acute kidney injury

No (n = 389) Yes (n = 120) Adjusted 
univariate p value

Multivariate 
odds ratio (95% 
CI)

Preoperative features

Male, n (%) 381 (74.9) 295 (75.8) 86 (71.7) 0.504 –

 Age (years), mean ± SD 67.6 ± 11.4 66.7 ± 12 70.3 ± 9.1 0.002 1.03 [1.00–1.05]

 BMI (kg/m2), mean ± SD 26.9 ± 4.4 26.8 ± 4.2 27.5 ± 5.1 0.237 –

 Diabetes, n (%) 127 (25) 93 (23.9) 34 (28.3) 0.492 –

 Hypertension, n (%) 269 (52.8) 194 (49.9) 75 (62.5) 0.033 1.55 [0.98–2.50]

 PAOD, n (%) 49 (9.6) 32 (8.2) 17 (14.2) 0.116 1.34 [0.63–2.72]

 Stroke, n (%) 33 (6.5) 25 (6.4) 8 (6.7) 1.000 –

 COPD, n (%) 29 (5.7) 23 (5.9) 6 (5) 0.911 –

 EuroSCORE-II, mean ± SD 2.4 ± 2.6 2.1 ± 2.2 3.4 ± 3.3  < 0.001 –

 LVEF (%), mean ± SD 55.9 ± 11.3 56 ± 11.4 55.7 ± 11.2 0.902 –

 Serum Creatinine (μmol/L),  mean ± SD 98.3 ± 41.2 92.5 ± 25.1 117.4 ± 68.7 0.001 –

 eGFR (mL/min.1.73m2),  mean ± SD 70.3 ± 20.2 72.9 ± 18.3 61.8 ± 23.7  < 0.001 0.80 [0.71–0.91]

 Kidney graft recipients, n (%) 7 (1.4) 1 (0.3) 6 (5) 0.002 18.75 [2.64–385.1]

Per-operative features

Surgery 0.504 –

 CAB, n (%) 196 (38.5) 156 (40.1) 40 (33.3)

 Valvular, n (%) 175 (34.4) 135 (34.7) 40 (33.3)

 Combined, n (%) 71 (13.9) 50 (12.9) 21 (17.5)

 Thoracic aorta, n (%) 58 (11.4) 41 (10.5) 17 (14.2)

 Myocardium, n (%) 9 (1.8) 7 (1.8) 2 (1.7)

Previous cardiac surgery, n (%) 23 (4.5) 13 (3.3) 10 (8.3) 0.062 1.23 [0.39–3.65]

CBP time (min), mean ± SD 85.3 ± 36.2 79.3 ± 30.8 104.8 ± 44.8  < 0.001 1.02 [1.01–1.03]

RBC transfusion, n (%) 91 (17.9) 56 (14.4) 35 (29.2) 0.001 0.50 [0.003–3.33]

 Number, mean ± SD 0.4 ± 0.9 0.3 ± 0.8 0.7 ± 1.2 0.003 1.34 [0.61–2.93]

Vasoactive agents, n (%) 456 (89.6) 345 (88.7) 111 (92.5) 0.403 –

Postoperative features

RBC transfusion, n (%) 151 (29.7) 90 (23.1) 61 (50.8)  < 0.001 –

 Number, mean ± SD 0.8 ± 1.8 0.5 ± 1.1 1.8 ± 2.9  < 0.001 –

Vasoactive agents, n (%) 277 (54.4) 194 (49.9) 83 (69.2) 0.001 –

 Duration (day), mean ± SD 1.2 ± 2.1 0.9 ± 1.3 2.2 ± 3.6 0.001 –

Infection, n (%) 83 (16.3) 44 (11.3) 39 (32.5)  < 0.001 –

Iodinated contrast agents, n (%) 25 (4.9) 12 (3.1) 13 (10.8) 0.003 –

Mechanical ventilation

 Duration (d), mean ± SD 19.5 ± 77.2 11.1 ± 35.1 46.9 ± 143.4 0.014 –

ICU stay duration (day), mean ± SD 5.6 ± 6.7 4.6 ± 3.8 8.8 ± 11.4 0.001 –

In-hospital mortality, n (%) 15 (2.9) 1 (0.3) 14 (11.7)  < 0.001 –
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Pre‑ and per‑operative clinical parameters are moderate 
predictors of AKI after CBP surgery
In the 509 patients of the derivation cohort, the univari-
ate analysis identified several clinical features that were 
associated with the development of AKI (Table 2). These 
included preoperative (age, hypertension, kidney trans-
plantation, baseline eGFR) and per-operative (CBP sur-
gery length, RBC transfusion) parameters. The majority 

remained significantly associated with the development 
of AKI after multivariate logistic regression adjustment.

These parameters, both used as single markers (e.g., 
eGFR) or included in more complex, previously pub-
lished scores (i.e., CSA-AKI [31], Ng [32], Cleveland 
[33], AKICS [34] or SRI [35] scores) had poor discrimi-
native power (area under the received operating curves 
(AUC) of 0.64–0.70 in the validation cohort) (Fig. 2). We 

Parameters Coefficients P-values
Age

(years) Ca = 0.024424 < 0.001

Hypertension Ch = 0.528207 0.048

eGFR
(mL/min.1,73m2) Cg = - 0.023903 < 0.001

Kidney graft recipient Ck = 3.205660 0.006

Valvular surgery Cs = 0.714751 0.007

CPB duration (min) Cc = 0.022803 < 0.001

Intercept I = - 3.911913 < 0.001

Fig. 2  AKI prediction in CBP surgery patients based on clinical pre- and per-operative features. A. ROC curves and corresponding AUROC [95% 
confidence interval] of published clinical scores for the prediction of AKI (KDIGO 1, 2, or 3) in the CBP surgery validation cohort. B. Parameters and 
associated coefficients of a local clinical model defined in the derivation cohort. The clinical score is calculated as follows: logit(p(AKI)) = Ca x Age 
(Years) + Ch x Hypertension (0/1) + Cg x eGFR (mL/min.1.73m2) + Ck x Kidney Graft Recipient (0/1) + Cs x Valvular Surgery (0/1) + Cc x CPB Duration 
(min) + I. C. Association of the local clinical score with the development of AKI in the validation cohort (all stages, left; according to KDIGO stages, 
right). * p < 0.05; ** p < 0.01; *** p < 0.001. D. ROC curves and corresponding AUROC [95% confidence interval] of the local clinical score compared 
to baseline eGFR for the prediction of all stages of AKI in the validation cohort. The AUROCs of the local clinical score and eGFR were significantly 
different (Delong test; p value = 0.007). ROC, receiver operating characteristic curve; AUROC, area under the receiver operating characteristic curve; 
CI, confidence interval; AKI, acute kidney injury; CBP, cardiac bypass; eGFR, estimated glomerular filtration rate
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therefore built a local clinical score using six pre- and 
per-operative variables identified by stepwise selection 
in the derivation cohort (age, hypertension, eGFR, kid-
ney transplantation, valvular surgery, and CBP surgery 
length) (Fig.  2). However, although there was a clear 
difference in the local score of patients developing AKI 
(p < 0.001), this score was not significantly better than the 
previously established scores (p > 0.1 for all). It is there-
fore evident that complementary strategies are needed to 
improve the prediction of patients developing AKI fol-
lowing CBP surgery at an early stage.

AKI leads to early changes in the urinary peptidome
We analyzed for the first time at a very early stage (< 4 h 
after CBP surgery) the urinary peptide content in this 
large CBP surgery cohort to identify candidate bio-
markers predictive of AKI that could help with clinical 
decision-making and stratifying patients for further inter-
ventional studies. Using the 509 patients in the derivation 
cohort, 204 displayed a significantly different abundance 
(Benjamini–Hochberg adjusted Wilcoxon univariate test-
ing (p < 0.05)) in the urine of patients developing AKI 
(up-regulated n = 102; down-regulated n = 102; Fig.  3). 
Peptides associated with AKI were derived from 48 pro-
teins, including 16 collagens and 32 non-collagenous 
proteins. Interestingly, when ranked according to their 
adjusted univariate p values, top differential peptides 
were mainly derived from non-collagenous proteins 
(Fig.  3). These non-collagenous proteins were related to 
hemolysis (e.g., hemoglobin α and β-subunit), inflamma-
tion (e.g., S100A9 (a calprotectin subunit), SERPINA1 
(α1-antitrypsin), B2M (β2-microglobulin)), immune cell 
trafficking and activation (i.e., CD99, CX3CL1, PIGR), 
innate immunity (e.g., complement factor B), kidney 
epithelium (e.g., UMOD (uromodulin), FXYD2) and cell 
growth and survival (e.g., ACTG1).

To confirm the relevance of the urinary signature, we 
measured the expression of S100A9, alone or combined 
in the form of calprotectin (S100A8/S100A9) in in  vitro 
and in vivo models of epithelial injuries, as well as in the 
urine of CBP surgery patients. As shown in Additional 
file  1: Fig. S1, following cardiac surgery, calprotectin 
was increased in the urine of patients who will develop 
AKI (Fig. S1A). In C57Bl/6 mice, 20-min bilateral renal 
ischemia/reperfusion injury induced AKI characterized 
by increased BUN. In mice, AKI was associated with the 
upregulation of renal S100A9 mRNA expression as well 
as S100A9 protein expression within the kidney cortico-
medullary junction (Fig. S1B-E). Renal expression of the 
kidney injury molecule Kim1 was also increased in this 
model (Fig. S1D). Finally, in mouse proximal tubule cells 
(MCT cell line), 48  h of hypoxia and/or 8  h exposure to 

the pro-inflammatory cytokine tumor necrosis factor-α or 
interleukin-1β induced S100a9 and Kim1 mRNA expres-
sion (Fig. S1G-J).

A urinary peptide‑based signature predicts 
CBP‑surgery‑induced AKI and significantly outperforms 
clinical parameters.
Next, the 204 peptides were included using machine 
learning in a support vector machine-based mathemati-
cal model that was trained on the derivation cohort and 
applied in the validation cohort. In the validation cohort, 
the signature clearly identified patients developing AKI 
(p < 0.001), with an increase in AKI risk at a higher pep-
tide-based score (p < 0.001; Fig. 4).

Pre- and per-operative characteristics (diabetes mel-
litus, COPD, baseline eGFR, surgery indication, redux 
surgery, CBP surgery length) partly correlated with the 
peptide-based score (Additional file 1: Table S1). However, 
the urinary peptide signature contained complementary 
information with respect to the clinical characteristics, as 
evidenced by (i) an adjusted R-squared of the multivari-
ate model of 0.246, (ii) the significant correlation between 
AKI development and the peptide score after adjustment 
for baseline eGFR (p < 0.001), clinical score (p < 0.001) and 
individual clinically significant covariates (p < 0.001 for 
all), (iii) the significantly higher AUC of the peptide score 
(0.78 [0.73–0.83]) compared to that of the local clinical 
score (p < 0.001) or the baseline eGFR (p < 0.001), and (iv) 
the lack of improved performance when combining clini-
cal and peptides-based scores (see below and Fig. S2). A 
peptide-based score above the threshold was associated 
with an increased risk of AKI (OR = 6.13 [3.95–9.59], 
p < 0.001; positive and negative predictive value 0.59 and 
0.81, respectively, and positive net reclassification index 
(0.19) compared to clinical score Fig. 4), even after adjust-
ment for the local clinical score or preoperative clinical 
features. Performances were also superior to the reference 
urinary biomarkers NGAL (0.70 [0.65–0.75], p = 0.004) 
and similar to the [IGFBP7]*[TIMP2] product (0.74 [0.68–
0.79], p = 0.14). However, a [IGFBP7]*[TIMP2] product 
over the recommended cutoff of 0.3 was associated with 
an increased risk of AKI but with a lower prediction com-
pared to the peptide-based score (OR 3.55 [2.28–5.65], 
p < 0.001). The urinary peptide score was also significantly 
associated with severe AKI stage 2 or 3, similarly to the 
[IGFBP7]*[TIMP2] product (AUC 0.74 [0.68–0.80] vs. 
0.73 [0.67–0.79], respectively, p = 0.6), and outperformed 
NGAL (0.67 [0.61–0.74], p = 0.04).

The combination of the local clinical and the peptide-
based scores did not significantly improve overall per-
formances compared to the peptide-based score alone 
(Fig. 4). Last, the initial signature of 204 peptides could 
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Fig. 3  Urinary peptidome changes during CBP-surgery-induced AKI. A. Peptides with significantly different abundances in AKI patients. The 
volcano plot displays log10-transformed and adjusted univariate p values as a function of log2-transformed fold changes of urinary peptides 
amplitudes. Sequenced peptides with differential abundances (significant after Benjamini–Hochberg adjusted Wilcoxon univariate testing 
(p < 0.05)) are represented in color (more abundant: red; less abundant: blue). B. Peptides with significantly different abundances (in respect to 
distribution frequency and amplitude signal) derived from non-collagenic proteins (y position), log2 fold changes (x position), and –log10 adjusted 
p values (color scale). The brown dashed line represents log2 fold change = 0. Peptides are ranked according to their functional role during the 
AKI progression (inflammation, epithelium, blood component, other non-collagenic proteins). C. Peptides with significantly different abundances 
derived from collagenic proteins (y position), log2 fold changes (x position), and –log10 adjusted p values (color scale). The brown dashed line 
represents log2 fold change = 0. D. Collagenic and non-collagenic proteins-derived peptides proportions among top differential peptides 
according to the Benjamini–Hochberg adjusted p value ranking. The red line corresponds to non-collagen and the blue line to collagen-derived 
peptides
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be reduced to 17 peptides using advanced feature selec-
tion methods such as genetic algorithms, with similar 
performances compared to the full 204 peptide signa-
ture in the validation cohort (AUC = 0.77 [0.72–0.82], 
p = 0.676 for comparison between the two AUC; 
OR = 5.67 [3.68–8.82], p < 0.001) (Additional file 1: Fig. 
S2 and Additional file 1: Table S2).

Validation in an external cohort of patients admitted 
to the ICU
CBP surgery AKI is considered a standardized at-risk set-
ting of conditions with the potential to induce AKI. To 
study the potential generalization of the use of peptide 
signatures in AKI, we also evaluated the performance of 
the urinary peptide signature in 1569 patients admitted 

Fig. 4  Independent validation of the predictive value of the urinary peptide signature for early AKI diagnosis after CBP surgery. A Association 
of the urinary peptide-based score with the development of AKI (all stages, left; according to KDIGO stages, right) in the CBP surgery validation 
cohort (n = 480). *** p < 0.001. B Spline plot of the association between the peptide-based score and the risk of developing AKI. A univariate logistic 
generalized additive model was used. The black line indicates the estimated risk of AKI with respective 95% confidence intervals. The spikes show 
the distribution of the peptide-based scores. C ROC curves with corresponding AUROC and 95% confidence intervals for the 204 peptides-based 
score, the local clinical score (and reference urinary AKI biomarkers NGAL and TIMP2*IGFBP7 for the prediction of AKI (all stages) in the validation 
cohort. D Odds ratios and corresponding 95% confidence intervals in the validation cohort using a multivariate logistic regression model including 
the local clinical score, reference urinary AKI biomarkers NGAL and TIMP2*IGFBP7, the 204 peptides-based score or a combination of the local 
clinical and peptide-based scores as a qualitative value according to the selected threshold (optimal Youden index in the derivation cohort). ROC, 
receiver operating characteristics curve; AUROC, area under the receiver operating characteristics curve; CI, confidence interval; Thr, threshold
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to an intensive care unit (ICU), with various causes of 
AKI, including sepsis, unplanned surgery, and trauma 
(FROG-ICU cohort) [25–27].

Interestingly, the urinary peptide-based signature 
assessed in patients at their admission in the ICU was 
significantly associated with the development of AKI 
(Fig. 5), and its performance characteristics were equal to 
those obtained in the case of CBP surgery AKI (AUC 0.79 
[0.77–0.81] versus 0.78 [0.73–0.83], p = 0.634; OR = 5.92 
[4.73–7.45], p < 0.001). These findings were confirmed 
when patients were stratified according to the time until 

AKI diagnosis: diagnosis of AKI at admission AUC 0.77 
[0.75–0.80]; AKI within 7  days of admission AUC 0.79 
[0.76–0.81]. Subgroup analysis, according to the under-
lying disease that justified ICU admission, showed quite 
good performances among groups, despite some hetero-
geneity. The best AUCs were obtained in patients admit-
ted after surgery (n = 146; AUC 0.86 [0.80–0.92]), for 
sepsis (n = 378; 0.78 [0.74–0.83]) or for impaired hemo-
dynamic status (n = 193; AUC 0.81 [0.75–0.88]) (Addi-
tional file 1: Table S3).

Fig. 5  External validation of the predictive value of the urinary peptide signature for AKI diagnosis in an intensive care unit (ICU) cohort of 1,569 
patients. A Peptide-based score according to AKI status (all stages (left part); according to KDIGO stages, right part) in the external ICU validation 
cohort. *** p < 0.001. B Spline plot of the association between the peptide-based score and the risk of developing AKI in the external ICU cohort. A 
univariate logistic generalized additive model was used. The black line indicates the estimated risk of AKI with respective 95% confidence intervals. 
The spikes show the distribution of the peptidome-based scores. C ROC curves and corresponding AUROC 95% confidence intervals of the 204 
peptides-based score in the external ICU validation cohort, according to the time until AKI diagnosis. D ROC curves and corresponding AUROC 95% 
confidence intervals of the 204 peptides-based score and reference urinary biomarker NGAL in the external ICU validation cohort
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When compared with reference urinary AKI biomarkers, 
such as NGAL, those performances were broadly equivalent 
(AUC = 0.78 [0.75–0.80], p = 0.426, Fig. 5) for both AKI at 
admission and AKI within seven days of admission (Addi-
tional file  1: Fig. S3). Evaluation of the [IGFBP7]*[TIMP2] 
product was not available in this cohort. It is worth noting 
that the reduced 17 peptide signature exhibited a signifi-
cantly decreased performance compared to the full 204 pep-
tide signature in this ICU setting of mixed AKI etiologies 
(AUC = 0.75 [0.73–0.78], p < 0.001).

The urinary peptide‑based AKI signature provides insights 
on early mortality
Among the 1170 patients of the CBP surgery cohort, 41 
(3.5%) died during hospitalization, including 30 (2.5%) 
during the first month. The development of AKI was 
strongly associated with in-hospital mortality (OR 16.2 
[7.5–40.1]; p < 0.001), even after adjustment of the pre-
operative mortality score (EuroSCORE-2: OR 13.8 [6.3–
34.5]; p < 0.001) or after multivariate adjustment using 
a propensity score (OR 5.6 [2.4–14.8]; p < 0.001) (Addi-
tional file 1: Fig S4). In both the derivation and validation 
cohorts, the peptide-based score obtained in samples col-
lected < 4 h after the surgery was associated with higher 
in-hospital mortality (AUC 0.77 [0.66–0.88]; p < 0.001; 
OR when peptidome score was above threshold: 6.2 [2.6–
16.2]; p < 0.001). Similarly, in the external ICU validation 
cohort, the peptide-based score assessed at admission 
was also associated with the in-hospital mortality (OR 
2.62 [2.05–3.38], p < 0.001).

Discussion
In this study that included > 2400 patients, we identified a 
urinary peptide signature that predicts the development 
of AKI as early as 3–4 h after the initial insult in a vari-
ety of high-risk clinical situations, including CBP surgery 
and ICU admission. Cardiac surgery with cardiac bypass 
is the prototypical cause of AKI, with a pathophysiology 
based on various interrelated mechanisms (inflamma-
tion, ischemia, hemolysis, oxidative stress, tubular cell 
injury) [43]. The nature of the peptides identified can be 
clearly linked to these different mechanisms [8, 43–47] 
and potentially explains the good performance of the uri-
nary peptide signature in predicting future AKI at this 
early stage. Furthermore, these mechanisms are shared 
by various other etiologies of AKI [8, 44–47], which may 
account for the excellent transferability of the urinary 
peptide signature to the ICU setting. Hence, our findings 
highly suggest that such an omic signature may help to 
refine, a posteriori, the molecular pathways that may pre-
dict the response to a dedicated therapeutic.

In the CBP surgery setting, the urine peptide signature 
outperformed all clinical parameters and urinary NGAL, 
while the predictive value of the peptide signature was 
similar to NGAL in an ICU setting. This is most likely 
due to differences in the time window of the initial event 
leading to the development of AKI. While in the CBP 
surgery cohort all samples were obtained at the latest 4 h 
after the initial injury, in the ICU validation cohort, urine 
samples were collected within 24 h after ICU admission. 
In addition, a number of ICU patients had already full-
blown AKI on admission to the ICU [25, 27]. This more 
advanced stage of AKI in the ICU cohort may explain the 
comparable performance of the urine peptide signature 
and NGAL in this setting.

In the ICU cohort, the performance of the urine pep-
tide signature was associated with a diagnosis warrant-
ing admission to ICU. As expected, because the peptides 
were identified in the CBP surgery setting, excellent per-
formances were observed in the postoperative subgroup 
of ICU patients, but surprisingly also in the groups with 
hemodynamic failure or sepsis. In contrast, performance 
was poorer after cardiac arrest and respiratory failure, 
probably due to the involvement of other pathophysi-
ological mechanisms.

A number of peptides in the signature can readily be 
linked to the pathophysiology of AKI (e.g., alpha-1-antit-
rypsin (SERPINA1), calprotectin (S100A9), serum amyloid 
A (SAA) for inflammation, uromodulin (UMOD), albumin 
(ALB)). However, some other peptides, including thymo-
sin β4 (TMSB4X), CD99, and Na–K-ATPase γ-subunit 
(FXYD2), are not currently known to be involved in AKI 
pathophysiology and may represent good candidates for 
further exploration of their role in AKI. Finally, the iden-
tified peptides also suggest candidate targets for specific 
treatment of AKI. For example, the increased urinary 
abundance of the complement factor B (CFB)-derived 
peptide in AKI argues for targeting the alternative com-
plement pathway with recently developed complement 
inhibitors [48, 49]. We also observed here that calprotectin 
is dramatically induced in kidney after epithelial injury in 
a preclinical model. Targeting calprotectin signaling with 
paquinimod demonstrated beneficial effects to prevent 
the development of ischemic AKI [50]. This exemplifies 
the fact that such a urinary peptide-based strategy may, 
in addition to detecting at an early stage patients who will 
develop AKI, also furnish druggable targets.

The limitations of the direct clinical application of the 
peptide signature in this context of AKI are the specific 
equipment currently required (capillary electrophoresis 
coupled with mass spectrometry (CEMS)) and the time 
needed for the sample preparation and analysis (currently 
about 12 h). Future improvements on sample preparation, 
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by avoiding the 6-h-long lyophilization step and reducing 
instrument time, should allow the analysis time window 
to be reduced to a few hours, compatible with the timely 
decision-making necessary in patients at risk for AKI. 
Alternatively, peptides could also be measured using strat-
egies such as multiplex ELISA, if peptide abundance cor-
relates with the parental protein abundance. Targeted mass 
spectrometry (e.g., multiple reaction monitoring) is another 
alternative [51]. However, such strategies require a signifi-
cant reduction in the number of peptides. We observed 
that reducing the signature from 204 to 17 peptides is pos-
sible without significant loss of performance in the CPB 
cohort, but it led to a significant reduction in the efficiency 
of AKI prediction in the ICU cohort. This may be due to the 
fact that the overall signature of 204 peptides incorporates 
information that is redundant in CBP-surgery-induced 
AKI, but is essential in other risk situations encountered in 
the ICU. As some peptides correlate well with clinical fea-
tures (data not shown), one way to further reduce the size 
of the signature would be to identify a score complemen-
tary to the readily available clinical information. Finally, 
further improvement in the prediction and reduction in the 
number of urinary peptides could come from future studies 
focusing on the discovery of novel molecular markers in, 
for example,  plasma, characterization of immune cell pop-
ulations, and genetic predisposition for AKI in CBP surgery 
patients. Strong and complementary molecular markers 
identified from those sources could help, using machine 
learning, to further reduce the signature but also further 
improve the efficacy of the prediction.

Other limitations included the lack of assessment of 
the urinary [IGFBP7]*[TIMP2] product in all cohorts 
that would have allowed to robustly compare it to the 
peptide signature in clinical settings beyond CBP sur-
gery. Also, we did not assess other single biomarkers 
like KIM-1 or L-FABP. However, the aim of our study 
was not only to test the AKI predictive value of urinary 
peptides but also to test whether this approach may 
identify new, targetable, molecular players of AKI to 
ultimately develop personalized medicine.

In conclusion, we have identified and validated a 
urine peptide signature predictive of AKI in a variety 
of situations at risk. This overarching signature, which 
contains numerous peptides directly associated with 
the pathophysiology of AKI, holds great promise for 
identifying patients developing AKI early after injury 
and developing tailored treatment.
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