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Abstract 

Background:  The sublingual microcirculation presumably exhibits disease-specific changes in function and mor-
phology. Algorithm-based quantification of functional microcirculatory hemodynamic variables in handheld vital 
microscopy (HVM) has recently allowed identification of hemodynamic alterations in the microcirculation associ-
ated with COVID-19. In the present study we hypothesized that supervised deep machine learning could be used to 
identify previously unknown microcirculatory alterations, and combination with algorithmically quantified functional 
variables increases the model’s performance to differentiate critically ill COVID-19 patients from healthy volunteers.

Methods:  Four international, multi-central cohorts of critically ill COVID-19 patients and healthy volunteers 
(n = 59/n = 40) were used for neuronal network training and internal validation, alongside quantification of functional 
microcirculatory hemodynamic variables. Independent verification of the models was performed in a second cohort 
(n = 25/n = 33).

Results:  Six thousand ninety-two image sequences in 157 individuals were included. Bootstrapped internal valida-
tion yielded AUROC(CI) for detection of COVID-19 status of 0.75 (0.69–0.79), 0.74 (0.69–0.79) and 0.84 (0.80–0.89) for 
the algorithm-based, deep learning-based and combined models. Individual model performance in external vali-
dation was 0.73 (0.71–0.76) and 0.61 (0.58–0.63). Combined neuronal network and algorithm-based identification 
yielded the highest externally validated AUROC of 0.75 (0.73–0.78) (P < 0.0001 versus internal validation and individual 
models).

Conclusions:  We successfully trained a deep learning-based model to differentiate critically ill COVID-19 patients 
from heathy volunteers in sublingual HVM image sequences. Internally validated, deep learning was superior to the 
algorithmic approach. However, combining the deep learning method with an algorithm-based approach to quantify 
the functional state of the microcirculation markedly increased the sensitivity and specificity as compared to either 
approach alone, and enabled successful external validation of the identification of the presence of microcirculatory 
alterations associated with COVID-19 status.
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Introduction
Assessment of the sublingual microcirculation has been 
shown to display disease-specific functional alterations 
and provide insight into the success of resuscitation 
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measures in critically ill patients [1, 2]. Recently devel-
oped algorithms such as MicroTools to automati-
cally analyze handheld vital microscopy (HVM) image 
sequences of the sublingual microcirculation have intro-
duced the possibility to quantify the determinants of 
hemoglobin transport to the tissue, making it possible 
to objectively measure microcirculatory function. Func-
tional capillary density (FCD) [3] and capillary hema-
tocrit (cHct) [2, 4, 5] as measures of microcirculatory 
diffusion capacity, and red blood cell velocity (RBCv) [3] 
as measure of microcirculatory convection capacity, have 
been shown to differentiate all relevant forms of circula-
tory shock from baseline, and differentiate the effects of 
interventions to recruit the microcirculation [1]. How-
ever, disease-specific functional alterations may include 
information besides the variables related to the oxygen 
delivery capacity of the microcirculation.

Neuronal networks are complex series of mathemati-
cal models mimicking the interplay of biological neurons 
in the central nervous system. When aimed at advanced 
image analysis [6], they are increasingly being adopted 
for their potential to complement dedicated algorithms, 
augmenting them with their ability to identify unknown 
features in decision support for the diagnosis of medi-
cal conditions [7]. The aim of the present study was to 
determine if deep learning using a convolutional neu-
ronal network has the capacity to differentiate critically 
ill COVID-19 patients from healthy individuals by analy-
sis of the sublingual microcirculation images better than 
conventional statistics such as the use of a logistic regres-
sion model employing algorithm-derived functional 
hemodynamic variables of the microcirculation. Our 
hypotheses were that (I) supervised training of a two-
dimensional convolutional neuronal network with HVM 
image sequences of the sublingual microcirculation dif-
ferentiates critically ill COVID-19 patients from healthy 
volunteers, and that (II) the combination of a two-dimen-
sional convolutional neuronal network designed for 
recognition of COVID-19-associated microcirculatory 
alterations with algorithmically quantified microcircula-
tory hemodynamic variables provides an increased per-
formance of the model as compared to either method 
alone.

Methods
This study was performed using an international, multi-
central dataset of critically ill COVID-19 patients treated 
in four tertiary intensive care units between March 2020 
and June 2021, located in the University Hospital of 
Zurich, Switzerland, Erasmus Medical Center, Rotter-
dam, The Netherlands, the Haga Hospital, The Hague, 
The Netherlands, and the Leiden University Medical 
Center, Leiden, The Netherlands. The first measurements 

within this cohort have been described in an earlier study 
[2]. Two separate cohorts of healthy volunteers served as 
control groups [8]. Informed consent for study participa-
tion and publication of anonymized data was obtained 
from each subject prior to enrollment. The study was 
approved in the respective centers by the ethics commit-
tee of the University of Zurich (BASEC–ID2020–00,646), 
the Erasmus Medical Center medical ethics committee 
(MEC2018–1572), the ethics committee of the Hamburg 
Medical Association (PV5635), the Leiden University 
Medical Center (Coco2021–018), and the University of 
Bern (KEK–226/12). The study was conducted in accord-
ance with the Declaration of Helsinki.

Dataset and study design
Overall, sublingual microcirculatory measurements were 
taken in 84 critically ill COVID-19 patients and com-
pared to 73 healthy volunteers. Inclusion criteria for the 
critically ill COVID-19 patients were a laboratory-con-
firmed SARS-CoV-2 infection by nucleic acid amplifica-
tion according to the WHO-issued testing guidelines, and 
severe manifestation of COVID-19 requiring treatment 
in an ICU [9, 10]. The measurements from 59 COVID-
19 patients treated in Zurich, Rotterdam and The Hague, 
and 40 healthy volunteers enrolled in Hamburg (Table 1), 
were used to train a convolutional neuronal network to 
differentiate critically ill COVID-19 patients from healthy 
volunteers after random assignment to the training or 
internal validation dataset with a ratio of 0.9/0.1 strati-
fied by the disease state (Fig.  1A). Functional microcir-
culatory hemodynamic variables, namely FCD, cHct 
and RBCv, were additionally calculated from all image 
sequences using the MicroTools algorithm [3], and these 
were used to calculate a logistic regression model for 
the algorithm-based identification of the disease state 
(Fig.  1B). The internal validation dataset was then used 
to validate both the trained deep learning-based, and 
the algorithm-based model using a bootstrap process. A 
combined logistic regression model was then calculated 
based on the results from the deep learning-based and 
algorithm-based models in the internal validation dataset 
via an independent bootstrap process (Fig.  1C). Finally, 
to test the generalizability of the method, the deep learn-
ing methodology we developed was applied alongside 
the algorithm-based and combined models, to a com-
pletely new COVID-19 cohort consisting of 25 critically 
ill COVID-19 patients treated at Leiden University Medi-
cal Center, plus a new volunteer set 33 healthy volunteers 
measured in Zurich (Table 1, Fig. 1D). The bootstrapped 
area under the receiver operating characteristic curve 
(AUROC) distributions were used to compare the perfor-
mance of all three model types, and the results obtained 
from the internal and external validation cohorts.
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Measurement of the sublingual microcirculation 
and algorithm‑based analysis
At least three HVM image sequences of four seconds 
duration were recorded during each measurement time-
point in all patients and volunteers according to current 
guidelines [11] using the CytoCam handheld incident 
dark field video microscope (Braedius Medical, Huizen, 

The Netherlands). In order to be able to perform a deep 
learning analysis, image sequences were obtained and 
treated individually. HVM image sequences were digi-
tally recorded, cropped along the time axis, stabilized 
via the CCtools software (Braedius Medical, Huizen, The 
Netherlands) and quality graded according to strict appli-
cation of Massey’s criteria [12]. They were selected for 

Table 1  Characteristics of the critically ill COVID-19 patients and healthy volunteers included in the present study

Values are given as mean ± SD or median (interquartile range), as appropriate. FiO2, inspiratory oxygen fraction; ICU, intensive care unit; PaO2, arterial oxygen partial 
pressure; PEEP, positive end-expiratory pressure

Training and internal validation cohort External validation cohort

COVID-19 patients 
(Zurich / Rotterdam/The 
Hague cohorts) n = 59

Healthy volunteers 
(Hamburg cohort) 
n = 40

P value COVID-19 patients 
(Leiden cohort) 
n = 25

Healthy volunteers 
(Zurich cohort) 
n = 33

P value

Characteristics at study inclusion

Age 59.5 ± 10.6 24.1 ± 1.8 < 0.0001 60.8 ± 10.7 45.8 ± 12.1 < 0.0001

Sex [male] 43/54 (80%) 17/40 (42.5) < 0.0001 18/25 (72%) 15/33 (55%) < 0.0001

Body mass index [kg m−2] 29.0 ± 6.0 22.8 ± 2.9 < 0.0001 30.0 ± 6.0 23.1 ± 4.5 < 0.0001

Duration of COVID 
symptoms before inclusion 
[days]

17 (12–27) – – 10 (9–11) – –

Days from ICU admission 
to inclusion [days]

7 (4–12) – – 2 (1–3) – –

Physiological status at study inclusion

O2 saturation [%] 93 ± 3 – – 92 ± 10 98 ± 1 0.0006

PaO2 [mmHg] 77 ± 24 – – 84 ± 21 95 ± 8 < 0.0001

FiO2 [%] 48 ± 17 21 ± 0 < 0.0001 51 ± 18 21 ± 0 < 0.0001

PaO2/FiO2 ratio 178 ± 79 – – 187 ± 67 454 ± 38 < 0.0001

PEEP [cmH2O] 15.7 ± 6.9 – – 11.5 ± 4.1 – –

pH 7.39 ± 0.08 – – 7.39 ± 0.07 7.44 ± 0.02 < 0.0001

Lactate [mmol L−1] 1.2 ± 0.4 – – 2.1 ± 0.7 0.8 ± 0.2 < 0.0001

Hemoglobin [g L−1] 97 ± 18 – – 127 ± 14 148 ± 9 < 0.0001

Systemic hematocrit [%] 31 ± 5 – – 39 ± 4 43 ± 3 < 0.0001

Heart rate [bpm] 92 ± 19 69.3 ± 12.1 < 0.0001 69 ± 17 59.2 ± 5.3 0.001

Mean arterial pressure 
[mmHg]

85 ± 12 85.8 ± 8.19 0.32 80 ± 11 89.6 ± 9.6 0.0001

ICU course and outcome

Full anticoagulation 23/42 (55%) 0/40 (0%) < 0.0001 7/21 (33%) 0/33 (0%) < 0.0001

Prophylactic anticoagula-
tion

19/42 (45%) 0/40 (0%) < 0.0001 14/21 (67%) 0/33 (0%) < 0.0001

Pulmonary embolism or 
macro-thrombosis during 
ICU stay

19/39 (49%) – – 4/19 (21%) – –

ICU mortality 10/44 (23%) – – 7/21 (33%) – –

Microcirculatory hemodynamic variables

Total vessel density, TVD 
[mm mm−2]

21.8 ± 5.2 19.2 ± 4.1 < 0.0001 22.6 ± 3.7 19.1 ± 4.3 < 0.0001

Functional capillary den-
sity, FCD [mm mm−2]

21.2 ± 4.9 18.2 ± 3.8 < 0.0001 21.6 ± 3.6 18.3 ± 4.1 < 0.0001

Red blood cell velocity, 
RBCv [μm s−1]

349 ± 41 325 ± 49 < 0.0001 336 ± 35 316 ± 52 < 0.0001

Capillary hematocrit, cHct 
[%]

5.17 ± 1.21 5.18 ± 0.87 < 0.0001 5.21 ± 0.81 4.62 ± 0.83 < 0.0001
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inclusion if the Massey score was below ten. The Cyto-
Cam incident dark field handheld video microscope cov-
ers a substantially larger field of view than the previous 
gold standard (providing a final resolution of 2208 × 1648 
px versus 716 × 572 px) [13], often resulting in discard-
ing relevant parts of this additional information in cur-
rent analysis pathways. Thus, in the present study, the 
image sequences were split into four equally sized quad-
rants for analysis. The image sequences were processed 
and analyzed using the MicroTools advanced computer 
vision algorithm (Active Medical, Leiden, The Nether-
lands) as described in detail elsewhere [14]. In short, the 
algorithm employs contrast-limited adaptive histogram 
equalization after calculating per-pixel time-based mean 
values, alongside per-frame, temporal non-local means 
denoising technique, to prepare the image sequence data 
for analysis and quantification of capillary FCD, RBCv 
and cHct. Capillaries were defined as vessels with a 
diameter < 20 μm.

Convolutional neuronal network training and validation
Image sequence data were pre-processed using the 
MicroTools algorithm to generate an input matrix con-
sisting of 50.15⋅106 data points for deep learning analy-
sis. In the training dataset, the input matrix was used 
for supervised training of a convolutional neuronal net-
work optimized for two-dimensional feature recognition, 
consisting of an iterative stack of two-dimensional con-
volutional, batch normalization, maximum pooling and 

dropout layers converging into flatten and dense layers 
(Additional file 1: Table S1). The convolutional neuronal 
network contained 12.87 × 106 trainable parameters. 
Rectifier linear units were employed as activation func-
tions for the convolutional and intermediate dense layers. 
The final dense layer was activated by a softmax function 
and its output interpreted as categorical data. Accuracy 
and loss were monitored during each training epoch via 
an in-training validation subset that was split at random 
from the training dataset with a ratio of 0.8/0.2. Model 
training was terminated to avoid a decrease of in-train-
ing accuracy and increase of loss, effectively avoiding 
overtraining. The final model parameters were recorded 
alongside the neuronal network structure at the end of 
training to obtain a reproducible deep learning-based 
model.

Statistical analysis
Patient characteristics in the COVID-19 and control 
groups constituting the internal and external validation 
cohorts were reported as mean ± SD, median(IQR) or 
proportions, as appropriate. Comparisons between both 
groups were made using linear mixed model analysis 
with cohort status entered as fixed effects and intercepts 
for subjects and per-subject random slopes representing 
the effect on the dependent variables entered as random 
effects. Calculation of the deep learning and algorithm-
based models was performed by treating each image 
sequence independently. The trained deep learning-based 

Fig. 1  Sublingual handheld vital microscopy (HVM) image sequences recorded in four international, multi-central cohorts of critically ill COVID-19 
patients and healthy volunteers were used for neuronal network training, model generation and internal validation, and two separate cohorts were 
used for external validation. Each dataset consisted of the neuronal network input matrix derived from the HVM image sequences, the functional 
microcirculatory variables derived from the image sequences by algorithm, and the reference COVID-19 disease state categorization. The training 
dataset was used to train the neuronal network, yielding the deep learning-based model (A), and to calculate the algorithm-based model (B). 
Both models were evaluated in the internal validation dataset in a bootstrapped process to identify the presence of microcirculatory alterations 
associated with COVID-19 disease state, and a combined model was calculated and internally validated in a separate, bootstrapped process (C). All 
models were then externally validated in an independent dataset (D). The results provided by all three models in the internal and external validation 
dataset were used to calculate the area under the receiver operating characteristic curve in a bootstrapped model, to quantify and compare their 
performance for identification of the presence of microcirculatory alterations associated with COVID-19 disease state in sublingual microcirculation 
HVM image sequences. HVM, handheld vital microscopy
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and algorithm-based models to identify the presence of 
COVID-19 disease state were validated by determining 
the area under the receiver operating characteristic curve 
in a 102.7-fold bootstrap approach within both the inter-
nal and external validation datasets. Combined models 
were calculated via an independent 102.7-fold bootstrap 
process and validated in the internal and external vali-
dation datasets. AUROC and 95% confidence intervals 
(CI) are reported as measure of performance for all mod-
els. The bootstrapped AUROC were compared between 
the models using two-factor linear regression analysis, 
with the model type and the validation cohort entered 
into the model as independent variables. A two-sided 
p-value < 0.05 was considered statistically significant. 
Neuronal network training and all statistical analysis 
were performed using the R environment for statistical 
computing, v4.1.1 [15] with the R-libraries Keras v2.3.0 
and TensorFlow v2.2.0 [16], and Python v3.6, Keras v2.7.0 
and TensorFlow v2.2.0 as backend. Further R-libraries 
used were boot v1.3–28 [17] for bootstrap analysis, 
pROC v1.17.0.1 [18] for receiver operating characteristic 
analysis and ggplot2 v2.2.1 [19] for graphical output.

Results
Six thousand ninety-two HVM image sequences of the 
sublingual microcirculation obtained in 157 individu-
als were included in the analysis. Of these, 1240 image 
sequences in 59 critically ill COVID-19 patients (age 
59.5 ± 10.6  years, 80% male, BMI 29.0 ± 6.0  kg m−2) 
and 2476 image sequences in 40 healthy volunteers (age 
24.1 ± 1.8 years, 42.5% male, BMI 22.8 ± 2.9 kg m−2) were 
included in the training and internal validation cohort. 
A further 1896 HVM image sequences in 25 critically 
ill COVID-19 patients (age 60.8 ± 10.7  years, 72%male, 
BMI 30.0 ± 6.0  kg m−2) and 480 image sequences in 33 
healthy volunteers (age 23.1 ± 4.5  years, 55% male, BMI 
23.1 ± 4.5  kg m−2) independently obtained in separate 
cohorts consisting of patients treated in different hos-
pitals were included in the external validation cohort 
(Table  1, representative examples are shown in Fig.  2). 
A total of 601 image sequences were assigned a Mas-
sey score greater of equal than 10 and were not included 
in the study (Additional file  1: Table  S2). Multiple sets 
of image sequences were obtained per measurement 
timepoint and longitudinally at different timepoints in 
the COVID-19 ICU cohorts, resulting in a consistent 

distribution of image sequences per patient and meas-
urement timepoint across all cohorts (median 8–16, 
Additional file  1: Table  S2). The COVID-19 patients, in 
contrast to the healthy volunteers, presented with a prev-
alence of pre-existing cardiovascular and pulmonary dis-
ease between 14 and 46%, and between 14 and 47% were 
regularly taking respective medication, with similar char-
acteristics in the internal and external validation cohorts 
(Additional file 1: Table S3). At the time of measurement, 
they were mechanically ventilated, mildly hypoxemic, 
and 70% of them needed vasopressor support. Overall 
intensive care unit (ICU) mortality among the COVID-
19 patients was 26% (Table 1). Congruent with previous 
findings [2], the critically ill COVID-19 patients’ micro-
circulatory hemodynamic variables indicated an elevated 
functional state as compared to the healthy volunteers 
in both the internal and the independent external vali-
dation cohorts in the present study (P = 0.005 for FCD, 
P < 0.0001 for RBCv and cHct, Table 1).

Neuronal network training and validation
For neuronal network training, 3344 image sequences 
randomly assigned to the training dataset were again 
randomly split into 2676 image sequences used to gen-
erate the training input matrix and 668 image sequences 
used for in-training validation of the neuronal network 
parameters (Fig. 1). During iterative training, in-training 
accuracy reached a peak of 0.75 after 275 training epochs 
without occurrence of overfitting according to in-train-
ing validation (Additional file  1: Fig. S1). The training 
was thereafter terminated, and the final model param-
eters were recorded. Bootstrapped evaluation of the fit-
ted deep learning-based model in the internal validation 
dataset consisting of 372 image sequences, yielded an 
AUROC(CI) of 0.75 (0.69–0.79) for the identification of 
the presence of microcirculatory alterations associated 
with COVID-19 status (Fig.  3, Table  2). Bootstrapped 
evaluation of the same model in the external validation 
dataset consisting of 2260 image sequences recorded 
in different centers, yielded an AUROC(CI) of 0.61 
(0.58–0.63).

Combination with algorithm‑based analysis 
and between‑model comparison
In the training dataset including the training and in-
training validation subsets, algorithm-based quantitative 

Fig. 2  Representative examples of time-based mean images of the sublingual microcirculation obtained via handheld vital microscopy in healthy 
volunteers (A) and critically ill COVID-19 patients (B), and comparison of functional microcirculatory hemodynamic variables in both groups (C). 
Critically ill COVID-19 patients display disseminated intravascular coagulation (arrow, B left image) and red blood cell microaggregates (arrow, B 
right image) as previously described [2], representing examples for disease-specific morphological changes with respect to the healthy volunteers. 
FCD, functional capillary density; RBCv, red blood cell velocity; cHct, capillary hematocrit. Units are [mm mm−2] for FCD, [μm s−1] for RBCv and [%] 
for cHct

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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analysis of the HVM image sequences using MicroTools 
revealed in the healthy volunteers versus COVID-19 
patients a FCD of 18.2 ± 3.8 versus 21.2 ± 5.0 mm mm−2, 
RBCv of 325 ± 49 versus 349 ± 44  μm s−1, and cHct of 
5.18 ± 0.87 versus 5.17 ± 1.21% (Table  1, Fig.  2C). In a 

logistic regression model calculated from these 3344 
image sequences, all three variables contributed to the 
model (Additional file 1: Table S4). Bootstrapped evalu-
ation of the fitted algorithm-based model in the inter-
nal validation dataset consisting of 372 image sequences 
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Fig. 3  The performance of the algorithm-based, deep learning-based and combined models is demonstrated by the ROC curves for detection of 
COVID-19 status (A) and the density distributions resulting from the bootstrapped models for AUROC (B). Acceptable AUROC are shown even in 
the external validation in addition to the high sensitivity and specificity of the models in the internal validation. Dashed gray lines represent the 
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yielded an AUROC(CI) of 0.74 (0.69–0.79) for identi-
fication of the presence of microcirculatory alterations 
associated with COVID-19 status (Fig.  3, Table  2). A 
combined logistic regression model calculated via a boot-
strap process within the internal validation dataset, based 
on the COVID-19 status anticipated by the deep learn-
ing and algorithm-based models, yielded in the internal 
validation an AUROC(CI) of 0.84 (0.80–0.89) for iden-
tification of the presence of microcirculatory alterations 
associated with COVID-19 status. The external valida-
tion dataset, similarly to the internal validation dataset, 
also displayed an increased functional microcirculatory 
hemodynamic status in the COVID-19 patients as com-
pared to healthy volunteers (Table  1, Fig.  2C). Applied 
to the external validation dataset via bootstrapping, the 
algorithm-based and combined models both displayed 
lower performance in comparison to the internal vali-
dation (P < 0.0001), but sensitivity and specificity were 
maintained above 70% with the algorithm-based model 
AUROC(CI) at 0.73 (0.71–0.76), and the combined 
model at 0.75 (0.73–0.78). Comparison of the deep learn-
ing-based, algorithm-based, and combined models dem-
onstrated a mean difference (CI) in AUROC of −  0.03 
(0.03–0.03) and 0.06 (0.06–0.06) for the deep learning-
based and combined model (P < 0.0001).

Discussion
The present study demonstrates the successful training 
of a two-dimensional convolutional neuronal network to 
differentiate critically ill COVID-19 patients from healthy 
volunteers using HVM image sequences of the sublin-
gual microcirculation. The deep learning-based model 
performed better that a model built from the main deter-
minants of microcirculatory function determined using 
the MicroTools algorithm to recognize the COVID-19 
patients in internal validation, which was reversed in 
external validation. In both cases, a combination of the 
deep learning-based with the algorithm-determined 

functional hemodynamic measurements, achieved the 
best performance to detect COVID-19 patients in meas-
urements of the sublingual microcirculation.

Handheld vital microscopy image sequences as basis 
for neuronal network training
Deep learning and other machine learning methodol-
ogy has shown encouraging results in interpreting the 
large amount of commonly collected clinical data in 
an ICU environment to provide decision support [20]. 
However, new measurement methods must comple-
ment this optimized combination of clinical data, to 
further increase the useful information emerging from 
such endeavors and provide deeper insight into the 
physiological processes associated with critical illness 
[21]. In the present study, we successfully applied deep 
learning methodology to dark field microscopy image 
sequences, a measurement method that has previously 
been shown to yield detailed information not only on 
the most important determinants of oxygen delivery 
to the tissues, but also on changes effected by disease 
processes that alter the morphology of the microves-
sels, the red blood cell configurations, and the move-
ment patterns contained within them [1, 3, 4, 22]. The 
use of image sequences of the sublingual microcir-
culation in a deep learning-based approach expands 
on previous studies employing neuronal networks to 
detect abnormalities such as the diabetic changes [23] 
or changes related to other cardiovascular risk factors 
[7], in the retinal microvessels. The present study adds 
two new perspectives. First, the successful recogni-
tion of COVID-19 patients demonstrates the viability 
of a deep learning-based approach to gain informa-
tion on the state of the systemic microcirculation that 
may be relevant for the diagnosis of a specific disease 
state. Second, by showing that the combination of deep 
learning-based analysis and algorithm-based quanti-
fication of functional microcirculatory hemodynamic 

Table 2  Comparison of area under the curve for identification of the presence of microcirculatory alterations associated with COVID-
19 status between the algorithm-based, deep learning-based and combined models in internal and external validation

AUROC bootstrap area under the receiver operating characteristic curve, CI 95% confidence interval, S.E. standard error

Model type AUROC (CI) for identification of COVID-
19 status

Linear regression estimates as mean 
difference ± S.E. (CI)

T statistic and P value

Internal validation 
cohort

External validation 
cohort

Between-model 
comparison

Between-cohort 
comparison

Between-model 
comparison

Between-cohort 
comparison

Algorithm-based 
model

0.74 (0.69–0.79) 0.73 (0.71–0.76) –  − 0.10 ± 0 .00 
(− 0.10 to − 0.10)

–  − 61.88, < 0.0001

Deep learning-
based model

0.81 (0.76–0.86) 0.61 (0.58–0.63)  − 0.03 ± 0.00 (− 0.03 
to − 0.03)

 − 15.04, < 0.0001

Combined model 0.84 (0.80–0.89) 0.75 (0.73–0.78) 0.06 ± 0.00 (0.06–0.06) 30.20, < 0.0001
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variables is superior to either method, it may pave the 
way toward a better understanding of disease-associ-
ated changes in the sublingual microcirculation.

Improved identification of microcirculatory alterations 
associated with disease state through combined functional 
and disease‑specific assessment
Previous attempts at using deep learning-based 
approaches to detect COVID-19 disease state have 
mainly focused on the analysis of chest x-ray and com-
puted tomography data. Recent studies employing vari-
ous deep learning techniques have been described to 
reach a sensitivity and specificity of 60–90% [24–26], 
with values in the higher end of the range for computed 
tomography [27, 28], while nucleic acid amplification 
tests in nasopharyngeal swabs, which are regarded as 
the clinical gold standard for diagnosis of SARS-CoV-2 
infection, have previously reported sensitivities between 
60 and 95% alongside a specificity > 95% in the presence 
of symptoms for later positivity [29]. The use of the sub-
lingual microcirculation to obtain diagnostic information 
on the presence of a specific disease, as opposed to organ-
specific imaging or specific tests to detect the presence 
of antigens, provides the unique opportunity to assess 
the state of functional physiological adaptation mecha-
nisms alongside disease-specific features. In critically ill 
COVID-19 patients, such specific morphological features 
could include disseminated intravascular coagulation and 
red blood cell microaggregates as previously identified 
[2] and shown in Fig.  2. The function of the sublingual 
microcirculation, on the other hand, directly reflects the 
oxygen delivery capacity to the tissue, and has previously 
been shown to tightly correlate with the outcome in criti-
cally ill patients [30, 31]. The increased microcirculatory 
functional capacity found in the present study is consist-
ent with previous findings [2, 32, 33] and has been shown 
to persist until the occurrence multi-organ failure [2, 32] 
or severe endothelial dysfunction [34, 35]. However, in 
contrast to previous measurement methods of micro-
circulatory function such as subjective classification of 
image sequences and assignment of mean flow index 
(MFI) categories, the quantitative, fully automated, algo-
rithm-based image sequence analysis enabled by Micro-
Tools and used in the present study, allowed for accurate 
quantification of the functional microcirculatory hemo-
dynamic variables, as well as the elimination of inter-
observer bias introduced by subjective grading [3]. At the 
same time, RBCv as measured by Microtools has previ-
ously been demonstrated to differentiate all relevant MFI 
categories [3]. Our results demonstrate that the com-
bination of both functional and morphological feature 
detection enables the differentiation of image sequences 
recorded in critically ill COVID-19 patients and healthy 

volunteers, and that these noninvasive recordings of the 
sublingual microcirculation allow such differentiation in 
a manner comparable to that of chest x-ray, computed 
tomography, and even nucleic acid amplification tests. 
The comparison of critically ill COVID-19 patients and 
healthy volunteers as employed in the present study, 
however, does not differentiate between changes specific 
to COVID-19 and changes induced by critical illness in 
general. As a first study employing this methodology, 
the results obtained encourage the application of deep 
learning-based methods to the analysis of the sublingual 
microcirculation for comparison of different cohorts of 
critically ill patients, for example, critically ill COVID-19 
patients and septic patients, and to expand the method-
ology not only for diagnostic purposes, but also to guide 
therapy as previously suggested for the algorithm-based 
approach [1, 4]. Further, the finding that the deep learn-
ing-based model demonstrated a higher performance 
than the algorithm-based model in the internal validation 
dataset originating from the same cohort as the training 
dataset, but a lower performance in the external valida-
tion dataset, implies as expected that the characteristics 
identified by the neuronal network may be less general-
izable than the functional adaptation. At the same time, 
this finding underscores the remarkable robustness of the 
algorithm-based analysis also in external validation. The 
combination of both methodologies in the present study 
thus contributed to a mitigation, resulting in a model 
with high sensitivity and specificity. In the future, further 
refined neuronal networks and adapted pathways for data 
pre-processing, alongside new developments in meas-
urement methodology such as multi-wavelength micro-
scopes [36], may help to increase the generalizability of 
the deep learning approach to the analysis of the sublin-
gual microcirculation.

Limitations
The present study has several limitations. First, while 
both internal and external validation of a deep learn-
ing model to identify the presence of microcircula-
tory alterations associated with COVID-19 status in 
the sublingual microcirculation were demonstrated in 
critically ill COVID-19 patients and healthy volunteers, 
further studies are needed to discern characteristics 
associated with critical illness in general as opposed to 
COVID-19 specific abnormalities. The generalizabil-
ity of the current findings is strengthened by using an 
international, multi-central dataset originating from 
ICUs with different treatment algorithms and measure-
ments obtained by different researchers, and by the col-
lection of the measurements before the emergence of 
virus variants of concern with markedly different mani-
festation of critical illness [10, 37] and major changes 
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in treatment regimens [10, 38]. The bootstrapped mod-
els further increase the generalizability of the analysis 
within the respective datasets [17]. Also, the algorithm-
based pre-processing of the HVM image sequences for 
use in the convolutional neuronal network has largely 
mitigated potential technical differences such as in 
contrasting or illumination between the different data-
sets, focusing the remaining distinctions between the 
datasets on differences that could result from varia-
tion in patient population or ICU management. Sec-
ond, the algorithm-based pre-processing of HVM 
image sequence data for the application in neuronal 
network training and the neuronal network structure 
as applied in the present study can be subjected to fur-
ther development, namely, to include additional aspects 
of microcirculatory function. The present study, by 
combining the results from a neuronal network with 
algorithm-based functional microcirculatory hemody-
namic assessments, emphasizes the promise associated 
with such developments. Lastly, due to treating each 
image sequence independently, the association of each 
image sequence to an individual patient or measure-
ment timepoint is not taken into account, representing 
a potential source of bias. However, as shown in Addi-
tional file 1: Table S2, a consistent distribution of image 
sequences per patient and per measurement timepoint 
across all cohorts included in the present study, and 
also of absolute image sequences per patient within the 
training and internal validation, and the external valida-
tion datasets, ensures to minimize such potential bias.

Conclusion
In conclusion, the present study demonstrated the suc-
cessful use of a convolutional neuronal network to derive 
a deep learning-based model differentiating critically 
ill COVID-19 patients from heathy volunteers in HVM 
image sequences recorded sublingually. The combination 
with an algorithm-based approach to quantify the func-
tional state of the microcirculation markedly increased 
the sensitivity and specificity as compared to either 
approach alone and enabled successful internal and 
external validation of the identification of the presence 
of microcirculatory alterations associated with COVID-
19 status. Further studies are warranted to expand these 
findings to other etiologies of critical illness.
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