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Acute kidney injury‑associated delirium: 
a review of clinical and pathophysiological 
mechanisms
Haoming Pang1, Sanjeev Kumar2, E. Wesley Ely3, Michael M. Gezalian1† and Shouri Lahiri4*† 

Abstract 

Acute kidney injury is a known clinical risk factor for delirium, an acute cognitive dysfunction that is commonly 
encountered in the critically ill population. In this comprehensive review of clinical and basic research studies, we 
detail the epidemiology, clinical implications, pathogenesis, and management strategies of patients with acute kidney 
injury-associated delirium. Specifically addressed are the pathological roles of endogenous toxin or drug accumula-
tion, acute kidney injury-mediated neuroinflammation, and acute kidney injury-associated volume overload as dis-
crete potential biological mechanisms of the condition. The optimization of clinical contributors and normalization of 
renal function are reviewed as pragmatic management strategies in addition to potential and emerging therapeutic 
approaches.
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Introduction
Delirium occurs in approximately 60% of patients with 
acute kidney injury (AKI) [1]. Substantial clinical evi-
dence suggests a direct pathological role for AKI in 
delirium. Studies demonstrate that the risk of delir-
ium in patients with AKI significantly increases with 
worsening renal function [2, 3]. Although the underly-
ing mechanisms for AKI-associated delirium remain 
largely unknown, several pathobiological processes 
have been proposed, including accumulation of neu-
rotoxins or deliriogenic drugs due to impaired renal 
clearance, upregulation of systemic cytokine-mediated 
neuroinflammatory processes, and volume overloaded 
conditions.

The goal of this article is to provide a comprehensive 
review of the breadth of human and animal investigations 

that examine the clinical and pathophysiological contri-
butions of AKI to delirium. This topic is of particular rel-
evance as AKI affects up to half of critically ill patients [4] 
and may confer a tenfold increased risk of delirium [5], 
a condition known to increase morbidity and mortality, 
prolong hospital stay, and accelerate long-term cogni-
tive decline [6, 7]. We further identify critical knowledge 
gaps in understanding of underlying biological mecha-
nisms and clinical contributors to inform design of future 
studies that address novel preventative and therapeutic 
discoveries.

Background and epidemiology
AKI‑associated delirium: clinical burden, long‑term 
outcomes, and risks factors
AKI is estimated to affect more than 10 million people 
worldwide annually and confer a 1.7–6.9-fold increased 
risk of hospital mortality [8, 9]. Over half of all critically 
ill patients develop AKI within 48 h of admission to the 
intensive care unit (ICU) [4], with mounting preclini-
cal evidence suggesting that AKI often precipitates or 
exacerbates secondary injury to other organ systems 
including the brain, heart, and lungs [10–13]. The most 
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common clinical manifestation of AKI-associated acute 
brain injury is delirium, which presents as an acute or 
fluctuating impairment in attention, executive, function, 
or short-term memory [3, 14–18]. In the short term, 
delirium is well known to be strongly associated with 
increased mortality, prolonged hospitalization, and need 
for intensive medical interventions [1], while persistent 
cognitive decline is a feared long-term sequela [19].

The Bringing to Light the Risk Factors and Incidence 
of Neuropsychological Dysfunction in ICU Survivors 
(BRAIN-ICU) study found that patients with delirium 
who survived their hospital course developed long-term 
cognitive impairment including 20% of patients whose 
cognition was similar to that of Alzheimer’s disease [20]. 
Longer duration of delirium was also found to be an inde-
pendent risk factor for worse global cognition [20, 21]. 
In terms of the public health impact, delirium accounts 
for significant societal and health care costs, with the 
national burden of delirium on the health care system 
costing up to $152 billion each year in the USA [22] as 
a result of prolonged hospital stay, increased treatment 
costs, and long-term acute care requirements [6]. It is 
now understood that delirium independently contributes 
to long-term cognitive decline [19], rather than merely an 
unmasking of a vulnerable brain substrate.

Several studies have identified AKI as a principal 
risk factor for delirium. In a prospective study of 1487 
patients, Zipser et  al. found that AKI conferred a ten-
fold increased risk of delirium (OR 10.01, CI 1.13–88.73, 
p = 0.039) [5], while the BRAIN-ICU study found that 
AKI was present in 50% of study days when patients 
were delirious [23]. Several studies have reported on 
a direct relationship between AKI severity and delir-
ium risk. In one such study, AKI severity, as measured 
using the Kidney Disease: Improving Global Outcomes 
(KDIGO) creatinine criteria, was associated with a 
significantly increased risk of delirium. Specifically, a 
1.5-fold increased risk of delirium was observed with 
KDIGO stage 2 (OR 1.55; 95% CI, 1.07–2.26) and a 2.5-
fold increased risk of delirium with stage 3 (OR 2.56; 
95% CI, 1.57–4.16) AKI, while KDIGO stage 1 was not 
significantly associated with delirium (OR 1.13, 95% CI 
0.91–1.41) [2]. Concordant data were reported in a ret-
rospective study that analyzed the medical records of 919 
medical ICU patients of whom 41.6% developed AKI and 
found a higher incidence of delirium with KDIGO stage 2 
(66.7%) and stage 3 (66.9%) AKI compared with KDIGO 
stage 1 (53.6%) [1]. Another prospective cohort study of 
304 patients aged 60 or older found elevated creatinine 
level of > 2  mg/dL (OR 2.1, 95% CI 1.1–4.0) as one of 4 
admission risk factors for delirium along with dementia, 
receipt of benzodiazepines before ICU admissions, and 
low arterial pH [24].

Further clinical evidence of AKI’s potential role in 
contributing to delirium was provided by Wan et  al. 
who conducted a single-center case control study in 
a 30-bed mixed ICU in the UK with 142 cases and 142 
matched controls to evaluate AKI-associated hyperac-
tive delirium, a subtype of delirium. In this study, patients 
with KDIGO stage 3 AKI were five times more likely to 
develop hyperactive delirium (OR 5.40, 95% CI 2.33–
12.51) than those without AKI and that less severe stages 
of AKI, i.e., KDIGO stage 1 or 2 AKI, were not indepen-
dently associated with hyperactive delirium [25]. Over-
all, the dose-dependent relationship between severity of 
AKI and delirium identified by these studies suggests a 
direct pathological role, though causality cannot be rea-
sonably established with clinical studies that may be sus-
ceptible to the presence of multiple confounding factors 
including, but not limited to, heterogeneities in use of 
analgosedation, identification of patients with increased 
susceptibility to delirium, such as those with preexisting 
cognitive impairment, and varied environmental trig-
gers of delirium. Furthermore, additional challenges may 
be posed in differentiating between the more clinically 
apparent hyperactive from the often-missed hypoactive 
delirium phenotypes [26], which complicates clinical 
investigations on risk factors and mechanisms. Future 
studies should consistently report whether the investi-
gated mechanisms or risk factors relate to hypoactive, 
hyperactive, or both delirium phenotypes.

A summary of clinical studies that have evaluated AKI 
as a risk factor in the development of delirium is pre-
sented in Table 1.

Pathophysiology of AKI‑associated delirium
Several studies have suggested AKI as a key contributor 
to distal organ dysfunction, not only affecting the brain, 
but also the heart, lungs, and liver [15, 27]. As with other 
organs affected by AKI, the pathogenesis of AKI-associ-
ated delirium is multifactorial, and hypothesized to be 
due to direct and indirect pathways, mediated by toxin 
and drug accumulations [25], electrolyte imbalances [28], 
impaired volume homeostasis [29], neuroinflammation 
[13], and imbalances in neurotransmitters [30] (Fig. 1).

Direct neurotoxic effects of AKI from endogenous toxin 
accumulation
Perhaps intuitively, it is hypothesized that AKI precipi-
tates delirium due to impaired renal clearance of drugs 
and toxic metabolic waste products. A potential expla-
nation for the direct neurotoxic effect of AKI is from 
the accumulation of potential uremic neurotoxins. 
While urea may be considered a surrogate for accumu-
lated neurotoxins, it is not thought to directly contrib-
ute to delirium [31]. Although over 130 substances are 
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considered to be potential uremic toxins [32], the uremic 
guanidino compounds, which include creatinine, guani-
dine, guanidinosuccinic acid, and methylguanidine, are 
considered particularly relevant to the pathogenesis of 
delirium [15, 33, 34]. These compounds are hypothe-
sized to exert their neurotoxic effects through the inhibi-
tion of ϒ-aminobutyric acid receptors and activation of 
N-methyl-d-aspartate (NMDA) receptors which results 
in neuronal hyperexcitability, abnormal epileptiform 
activity, and hippocampal injury [33]. While mouse mod-
els demonstrate that administration of exogenous cre-
atinine precipitated epileptic activity, these effects were 
far greater with other guanidino compounds, specifically 
guanidinosuccinic acid [35].

Given the risk of uremic compounds in inducing neu-
ronal hyperexcitability [33, 35], seizure should be consid-
ered in the evaluation of delirium in the setting of AKI. 
However, it is often clinically challenging, if not impos-
sible, to distinguish between delirium and non-con-
vulsive seizures, due to shared clinical phenotypes and 
precipitants. Additionally, kidney injury, both acute and 

chronic, may lead to electrolyte and metabolic disorders 
like hyponatremia, hypocalcemia, hypomagnesemia, or 
hypoglycemia that can independently precipitate epi-
leptic activity [36]. Clinically, one case–control study by 
Oddo et  al. found that at least chronic kidney disease 
was significantly associated with periodic epileptiform 
discharges. Although AKI did not show statistical signifi-
cance, there was a trend toward increased risk of periodic 
epileptiform discharges with AKI (26% with AKI vs 19% 
without, p = 0.21) [37]. These findings suggest a poten-
tial role for electroencephalographic monitoring in AKI-
associated delirium to evaluate for seizures as a treatable 
etiology of delirium-like states, particularly in patients 
with overt seizure-like semiology, myoclonus, or forced 
eye gaze deviation.

Direct neurotoxic effects of AKI from drug accumulation
Another common explanation for delirium in the setting 
of AKI is the accumulation of drugs that are frequently 
administered in the ICU setting. A common mechanistic 
theme for the deliriogenic drugs, such as benzodiazepines 

Fig. 1  Proposed mechanisms of cognitive dysfunction as a result of acute kidney injury. TLR-4, toll-like receptor-4; KC, keratinocyte-derived 
chemokine; G-CSF, granulocyte colony-stimulating factor; MCP-1, monocyte chemoattractant protein-1; and GFAP, glial fibrillary acidic protein



Page 5 of 13Pang et al. Critical Care          (2022) 26:258 	

and certain antibiotics, is their ϒ-aminobutyric acid 
antagonistic properties [38–42].

Cefepime-induced neurotoxicity is a relatively com-
monly precipitant of delirium, imposing up to a tenfold 
greater risk of neurotoxicity when compared to mero-
penem, and occurring in up to 15% of ICU patients 
treated with cefepime [42]. The setting of critical illness is 
believed to create an inflammatory environment that dis-
rupts the integrity of the blood–brain barrier (BBB) [43], 
thus allowing for the penetration of cefepime into the 
brain. Given that cefepime is renally cleared, AKI further 
exacerbates cefepime-induced neurotoxicity due to drug 
accumulation [42]. If delirium due to cefepime-induced 
neurotoxicity is suspected, one should investigate for 
the presence of non-convulsive status epilepticus, which 
occurs in a quarter of such patients [42]. Adjustment 
of cefepime dosing or avoidance of cefepime is recom-
mended in AKI to prevent neurotoxicity manifesting as 
delirium.

Certain classes of drugs, such as opioids and neuro-
pathic agents, confer various degrees of delirium, largely 
based on their anticholinergic properties. Meperidine, for 
instance, should be avoided in AKI because its metabo-
lite, normeperidine, may accumulate and result in central 
nervous system excitation, induce life-threatening sei-
zures, and exacerbate the phenotype of delirium [44–46]. 
An expanded discussion on the risks of delirium from 
analgosedatives in the setting of AKI will be reviewed 
below.

AKI‑associated systemic and brain inflammation
There is mounting preclinical evidence that AKI induces 
systemic inflammation, which is considered a key con-
tributing mechanism of delirium [47]. Data from ani-
mal models suggest that AKI promotes upregulation 
of systemic inflammatory processes that contribute 
to endothelial injury, leukocyte infiltration, release of 
cytokines and inflammatory mediators, and induction of 
apoptosis [25, 48, 49]. This pro-inflammatory milieu pre-
cipitated by AKI is hypothesized to contribute to multi-
organ injury, including the brain [50–52]. There is an 
increased systemic production of interleukin-1 α (IL-1α), 
IL-1β, IL-6, IL-10, and tumor necrosis factor α (TNF-
α), which are implicated in the pathogenesis of delirium 
[13]. Other animal studies suggest that AKI-induced sys-
temic and neuroinflammation contributes to BBB disrup-
tion and altered expression of tight-junctional proteins, 
resulting in the infiltration of metabolites and toxins into 
the brain and leading to inflammatory and pathological 
changes in the brain [34, 53]. This is evidenced by mouse 
models of AKI that demonstrated extravasation of Evans 
blue dye into the brain, indicating breakdown of the BBB 
[13]. In the clinical setting, this process of increased brain 

vascular permeability, microvascular protein leakage, and 
alterations of aquaporins allows for metabolites and tox-
ins that are normally impermeable to the BBB to injure 
the brain and result in cerebral edema commonly seen 
in AKI patients [48, 49, 54, 55]. Clinical evidence of BBB 
disruption serving a pathophysiologic role in delirium is 
provided in one study that showed elevated serum lev-
els of S100β, the marker of BBB damage [56] in elderly 
patients with delirium [57].

The pro-inflammatory cytokines, IL-6, TNF-α, IL-1α, 
IL-1β, have been implicated in delirium-like behavioral 
changes, such as impaired concentration, diminished 
motivation, and psychomotor retardation in critically ill 
patients [52, 58–60]. Among various cytokines, IL-6 has 
been frequently studied as a potential predictor of delir-
ium in urinary tract infection, sepsis, acute lung injury, 
and perioperative animal models [53, 61–66]. Indeed, 
animal studies have revealed that IL-6 is both neces-
sary and sufficient to produce cognitive decline [67]. It 
is postulated that surgical intervention may induce neu-
roinflammation and contribute to cognitive decline. For 
instance, it has been found that orthopedic surgery dis-
rupts the BBB and promotes infiltration of bone marrow-
derived monocytes [68] and activation of microglia [69] 
in rodents. This is concordant with clinical studies that 
have found that high levels of IL-6 preoperatively were 
significantly associated with postoperative delirium in 
patients admitted for elective and emergency surgery [62, 
70]. Given that these pro-inflammatory cytokines, espe-
cially IL-6, have also been demonstrated to be elevated in 
AKI, similar mechanisms for delirium in AKI are likely, 
but remain to be proven.

Animal models demonstrate that the structural areas 
of the brain disproportionately affected by AKI-induced 
inflammatory mediators include the CA1 region of the 
hippocampus [13], which is consistent with the semi-
ology of delirium and the hippocampus’ established 
involvement in learning and memory as well as anxi-
ety and depression [71]. Furthermore, the CA1 neurons 
of the hippocampus are vulnerable to damage in sev-
eral other conditions that result in neurodegeneration, 
including global cerebral ischemia, Alzheimer’s disease, 
and prion diseases [72–74].

Mouse models of AKI [13], prion disorders [75], and 
Alzheimer’s disease [76] all suggest that hippocampal 
CA1 pathology is in part, accountable for hypoactivity 
in mice. Hippocampal injury and inflammation high-
lighted by pyknotic neuronal cells [77], activation of 
microglial cells [13], upregulation of toll-like receptor-4 
[78], increased levels of keratinocyte-derived chemokine, 
and increased levels of granulocyte colony-stimulating 
factor [79] within the hippocampus of renal ischemia 
reperfusion injury-induced AKI mouse models provide 
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further evidence for a direct pathological role for AKI in 
delirium. Other areas of the brain involved include the 
cerebral cortex and the corpus callosum as evidenced by 
astrogliosis [13], a marker for activated glial cells during 
brain inflammation [80, 81]. Thus, the activation of cen-
tral immune cells leading to neuronal injury and dysfunc-
tion [82] may contribute to post-AKI delirium (Fig. 2).

Cerebral injury from AKI may potentially be reversible 
if mild in severity or if treated early, as is the case with 
the clinical course of delirium. This point was suggested 
by findings by Liu et  al. who found no neuronal apop-
totic changes in mice with AKI as evidenced by minimal 
terminal deoxynucleotidyl transferase-mediated digoxi-
genin-deoxyuridine nick-end labeling staining and mini-
mal caspase-3 signaling on immunostaining [13].

A summary of experimental studies on brain effects of 
inflammation (Table 2) is shown below.

AKI‑associated fluid overload
Another potential mechanism of AKI-associated delir-
ium is fluid overload, which can occur in 40% of patients 
in the ICU [83]. Fluid overload is thought to increase 
capillary transmural hydrostatic pressure, resulting in 
fluid leak into brain interstitial tissue causing cerebral 
edema [83]. Using a multivariate proportion odds logistic 

regression model for delirium in mechanically venti-
lated patients, a retrospective observational cohort study 
found that fluid overloaded patients, defined as when the 
recorded body weight was 10% higher than at baseline, 
resulted in more delirium days (OR 2.16, 95% CI 1.05–
4.47) [83].

Concordantly, a study by Nguyen et al. found that fluid 
overload was independently associated with develop-
ment of delirium in patients with shock (171 ± 104 in the 
delirium group vs. 128 ± 80  ml/kg; both p = 0.001) [29]. 
Interestingly, this study did not find a difference in cen-
tral venous pressure between the two groups, suggest-
ing that delirium due to fluid overload is independent of 
venous congestion; however, central venous pressure is 
associated with increased risk of AKI [84]. Nguyen et al. 
hypothesized that mechanism behind delirium from fluid 
overload was from brain vasogenic edema due to BBB 
leakage as evidenced by increased serum S100β [29], 
which is an early marker of BBB disruption [85]. BBB 
leakage thus promotes brain edema and allows for move-
ment of neurotoxic substances into the brain [86], result-
ing in delirium. Thus, a reasonable approach to fluid 
status in a patient with AKI is to avoid hypervolemia, 
which not only protects the kidneys from further injury 
[87], but also protects the brain. Further investigations 

Fig. 2  Post-AKI microglial and astrocyte activation as potential cellular drivers of delirium. AKI, acute kidney injury; TNF, tumor necrosis factor; IL, 
interleukin; and BBB, blood–brain barrier
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into the cognitive effects of fluid overload in the setting of 
AKI are warranted.

Hormonal and neurotransmitter effects of AKI
AKI may also lead to changes in the hormonal balance 
and neurotransmitter turnover in the brain which may 
contribute to delirium. Adachi et  al. studied changes in 
the monoamine metabolism and motor activity in AKI 
rats [30] and found an overall decrease in dopamine 
turnover in the striatum, mesencephalon, and hypothala-
mus of AKI rats, while the turnover of norepinephrine or 
5-hydroxyindoleacetic acid, the main metabolite of sero-
tonin, was not affected by AKI. The authors postulated 
that the impairment of spontaneous motor activity in the 
AKI rats, a sign of delirium, may be related to depressed 
central dopamine turnover [30], resulting in impairments 
with memory, learning, anxiety, and depression [88–90].

Additionally, neurologic abnormalities from AKI may 
be related to the rise of calcium content in the brain [28]. 
This hypothesis comes from studies of AKI in canines, 
which identified biochemical alternations in the brain, 
whereby calcium contents in gray and white matter 
markedly increased 3  days after the onset of AKI along 
with a modest increment of magnesium in delirium-rel-
evant regions of the brain. While these increases were 
thought to be related to excess parathyroid hormone [28], 
it is known that hypercalcemia is one of the reversible 
metabolic causes of delirium in patients with advanced 
cancer for instance, and that treatment of hypercalcemia 
resulted in symptom control [91]. Thus, for patients with 
delirium in the setting of AKI, it is reasonable to evaluate 
and treat hypercalcemia as a contributing factor.

Potential therapeutic treatments of AKI‑associated 
delirium
There is a pressing need for novel clinical interventions 
to ameliorate AKI-associated delirium. With the pos-
sible exception of renal replacement therapy, existing 
treatment paradigms are limited to lower, indirect evi-
dence of benefit. A summary of the potential therapeu-
tic approaches to AKI-associated delirium is provided 
in Table 3.

Renal replacement therapy
A prospective observational cohort study found that 
renal replacement therapy modifies the risk of AKI-
associated delirium. Specifically, among patients not 
on renal replacement therapy, an increase in daily peak 
serum creatinine of 1  mg/dl was significantly associ-
ated with increased odds of delirium (OR, 1.35; 95% CI, 
1.18–1.55), whereas patients receiving renal replace-
ment therapy, daily peak serum creatinine was not 
associated with delirium (OR, 1.07; 95% CI, 0.87–1.31). 
The authors hypothesized that renal replacement ther-
apy diminishes the effects of AKI on the brain by clear-
ing neurotoxic sedatives, antibiotics, and metabolites 
[2]. Although early initiation of renal replacement ther-
apy may shorten length of stay in the intensive care [92] 
or in-hospital settings [93], it is unclear if improved 
delirium outcomes drive this effect. Prior randomized 
clinical trials were not designed to assess delirium as a 
primary outcome, leaving opportunities for future clin-
ical trials to evaluate the potential for both benefits and 
risks of invasive renal replacement therapy [92, 94].

Table 2  Summary of experimental studies on the effects of inflammation on the central nervous system

UTI, urinary tract infection; cDNA, complementary deoxyribonucleic acid; TLR-4, toll-like receptor-4; AKI, acute kidney injury; IL-6, interleukin-6; mRNA, messenger 
RNA; G-CSF, granulocyte colony-stimulating factor; and DA, dopamine

Author(s) Year Model Conclusion

Rashid et al. 2021 UTI in mice
Readout: behavioral and structural brain dysfunction

Mice with UTI demonstrated impairments of the frontal cortex 
and hippocampus, which were reversed following treatment 
with systemic anti-IL-6 antibody

An-HsunChou et al. 2014 60 min bilateral ischemia reperfusion injury-induced AKI
Study endpoint/s: 2 and 24 h
Readout: cDNA based microarray

Mice with AKI exhibited upregulated mRNA levels of genes 
involved in inflammation

Salama et al. 2013 Bilateral renal ischemia reperfusion injury in rats
Readout: TLR-4 expression

↑ TLR-4 expression within hippocampus and striatum

Liu et al. 2008 60 min bilateral ischemia reperfusion injury-induced AKI
Study endpoint: 24 h
Readout: Histology

↑ Neuronal pyknosis and microgliosis
↑ Keratinocyte-derived chemoattractant and G-CSF in the 
cerebral cortex and hippocampus
↑ Expression of glial fibrillary
acidic protein in astrocytes in the cortex and corpus callosum

Adachi et al. 2001 Bilateral rat renal artery occlusion. Endpoint: 48 h
Readout: motor activity and brain monoamine turnover

↓ Turnover of DA in the striatum, mesencephalon and hypo-
thalamus
Impaired motor activity



Page 8 of 13Pang et al. Critical Care          (2022) 26:258 

Ta
bl

e 
3 

Su
m

m
ar

y 
of

 e
vi

de
nc

e-
ba

se
d 

th
er

ap
ie

s, 
po

te
nt

ia
lly

 u
se

fu
l t

he
ra

pi
es

, a
nd

 e
m

er
gi

ng
 th

er
ap

ie
s 

to
 p

re
ve

nt
 A

KI
-a

ss
oc

ia
te

d 
de

lir
iu

m

A
KI

, A
cu

te
 k

id
ne

y 
in

ju
ry

; E
SR

D
, e

nd
-s

ta
ge

 re
na

l d
is

ea
se

; C
KD

, c
hr

on
ic

 k
id

ne
y 

di
se

as
e;

 C
N

S,
 c

en
tr

al
 n

er
vo

us
 s

ys
te

m
; G

SA
, g

ua
ni

di
no

su
cc

in
ic

 a
ci

d;
 C

SF
, c

er
eb

ro
sp

in
al

 fl
ui

d;
 a

nd
 N

M
D

A
, N

-m
et

hy
l-d

-a
sp

ar
ta

te

D
ire

ct
 e

vi
de

nc
e-

ba
se

d 
th

er
ap

ie
s 

[2
3]

In
di

re
ct

 e
vi

de
nc

e-
ba

se
d 

th
er

ap
ie

s 
[4

4,
 1

00
, 1

10
, 1

13
, 1

17
]

Em
er

gi
ng

 th
er

ap
ie

s 
an

d 
fu

tu
re

 in
ve

st
ig

at
io

ns
 [6

6,
 9

6,
 9

7,
 1

16
]

St
ud

y:
Pr

os
pe

ct
iv

e 
co

ho
rt

Si
ew

 e
t a

l. 
20

17
Fi

nd
in

gs
:

Re
na

l r
ep

la
ce

m
en

t t
he

ra
py

 is
 a

ss
oc

ia
te

d 
w

ith
 a

 re
du

ce
d 

od
ds

 
of

 d
el

iri
um

 in
 A

KI
Re

co
m

m
en

da
tio

ns
:

Fu
tu

re
 s

tu
di

es
 a

re
 n

ee
de

d 
to

 e
xa

m
in

e 
th

e 
m

ec
ha

ni
sm

s 
un

de
rly

in
g 

th
es

e 
as

so
ci

at
io

ns
 a

nd
 th

e 
eff

ec
ts

 re
na

l r
ep

la
ce

m
en

t 
th

er
ap

y 
m

ay
 h

av
e 

on
 A

KI
-a

ss
oc

ia
te

d 
de

lir
iu

m
. C

on
si

de
r t

he
 u

se
 

of
 re

na
l r

ep
la

ce
m

en
t t

he
ra

py
 to

 re
du

ce
 ri

sk
 o

f d
el

iri
um

St
ud

y:
Sy

st
em

at
ic

 re
vi

ew
 a

nd
 m

et
a-

an
al

ys
is

 o
n 

de
xm

ed
et

om
id

in
e

Fl
ük

ig
er

 e
t a

l. 
20

18
Fi

nd
in

gs
:

O
ve

ra
ll 

in
ci

de
nc

e 
of

 d
el

iri
um

 in
 th

e 
de

xm
ed

et
om

id
in

e 
gr

ou
p 

w
as

 s
ig

ni
fi-

ca
nt

ly
 lo

w
er

 c
om

pa
re

d 
to

 p
la

ce
bo

, s
ta

nd
ar

d 
se

da
tiv

es
, a

nd
 o

pi
oi

ds
Re

co
m

m
en

da
tio

ns
:

Pr
ef

er
en

tia
l u

se
 o

f d
ex

m
ed

et
om

id
in

e 
fo

r s
ed

at
io

n,
 w

hi
ch

 m
ay

 a
ls

o 
po

te
n-

tia
lly

 b
e 

re
na

lly
 p

ro
te

ct
iv

e 
(L

iu
 e

t a
l.)

St
ud

y:
St

ud
y 

on
 th

e 
us

e 
of

 a
nt

i-I
L-

6 
to

 re
ve

rs
e 

de
lir

iu
m

-li
ke

 p
he

no
ty

pe
s 

in
 

m
ic

e 
m

od
el

 o
f U

TI
Ra

sh
id

 e
t a

l. 
20

21
Fi

nd
in

gs
:

M
ic

e 
w

ith
 U

TI
 h

ad
 s

ig
ni

fic
an

tly
 e

le
va

te
d 

pl
as

m
a 

IL
-6

 a
nd

 d
em

on
st

ra
te

d 
be

ha
vi

or
al

 im
pa

irm
en

ts
 th

at
 w

er
e 

fu
lly

 re
ve

rs
ed

 w
ith

 tr
ea

tm
en

t w
ith

 
sy

st
em

ic
 a

nt
i-I

L-
6

Re
co

m
m

en
da

tio
ns

:
G

iv
en

 th
at

 a
nt

i-I
L-

6 
re

ve
rs

ed
 U

TI
-in

du
ce

d 
de

lir
iu

m
-li

ke
 p

he
no

ty
pe

s 
in

 
m

ic
e,

 fu
tu

re
 s

tu
di

es
 s

ho
ul

d 
ex

am
in

e 
if 

sy
st

em
ic

 o
r t

ar
ge

te
d 

IL
-6

 in
hi

bi
-

tio
n 

m
ay

 a
ls

o 
m

iti
ga

te
 A

KI
-a

ss
oc

ia
te

d 
de

lir
iu

m

St
ud

y:
Sy

st
em

at
ic

 re
vi

ew
 o

f t
he

 ri
sk

 o
f d

el
iri

um
 w

ith
 d

iff
er

en
t o

pi
oi

ds
Sw

ar
t e

t a
l. 

20
17

Fi
nd

in
gs

:
Si

gn
ifi

ca
nt

 ri
sk

 o
f d

el
iri

um
 fr

om
 th

e 
us

e 
of

 m
ep

er
id

in
e,

 c
om

pa
re

d 
w

ith
 

ot
he

r o
pi

oi
ds

. D
ec

re
as

ed
 ri

sk
 w

ith
 h

yd
ro

m
or

ph
on

e 
an

d 
fe

nt
an

yl
Re

co
m

m
en

da
tio

ns
:

Pr
ef

er
en

tia
l u

se
 o

f f
en

ta
ny

l c
om

pa
re

d 
to

 o
th

er
 o

pi
oi

ds
 in

 s
et

tin
g 

of
 re

na
l 

im
pa

irm
en

t

St
ud

y:
St

ud
y 

of
 th

e 
eff

ec
ts

 o
f G

SA
 in

tr
ah

ip
po

ca
m

pa
l i

nj
ec

tio
n 

in
 ra

ts
Pa

n 
et

 a
l. 

19
96

Fi
nd

in
g:

G
SA

-in
je

ct
ed

 a
ni

m
al

s 
le

d 
to

 s
ei

zu
re

s 
an

d 
da

m
ag

e 
to

 th
e 

hi
pp

oc
am

-
pu

s 
th

at
 w

as
 p

re
ve

nt
ed

 b
y 

th
e 

ad
m

in
is

tr
at

io
n 

of
 th

e 
N

M
D

A
 re

ce
pt

or
 

an
ta

go
ni

st
 k

et
am

in
e

Re
co

m
m

en
da

tio
ns

:
G

iv
en

 th
at

 G
SA

 is
 in

cr
ea

se
d 

in
 th

e 
se

ru
m

 a
nd

 C
SF

 o
f p

at
ie

nt
s 

w
ith

 
re

na
l f

ai
lu

re
, f

ut
ur

e 
st

ud
ie

s 
m

ay
 e

xa
m

in
e 

th
e 

us
e 

of
 N

M
D

A
 re

ce
pt

or
 

an
ta

go
ni

st
s 

to
 p

re
ve

nt
 d

el
iri

um
 in

 A
KI

St
ud

y:
Re

vi
ew

 p
ap

er
 o

n 
us

e 
of

 D
ru

gs
 in

 E
nd

-S
ta

ge
 K

id
ne

y 
D

is
ea

se
W

ilc
oc

k 
et

 a
l. 

20
17

Fi
nd

in
gs

:
Lo

w
er

 ri
sk

 o
f a

cc
um

ul
at

io
n 

w
ith

 lo
ra

ze
pa

m
 c

om
pa

re
d 

to
 d

ia
ze

pa
m

 o
r 

cl
on

az
ep

am
 in

 E
SR

D
Re

co
m

m
en

da
tio

ns
:

W
he

n 
be

nz
od

ia
ze

pi
ne

s 
ar

e 
in

di
ca

te
d,

 lo
ra

ze
pa

m
 m

ay
 b

e 
pr

ef
er

re
d

St
ud

y:
Re

tr
os

pe
ct

iv
e 

co
ho

rt
M

ur
ug

an
 e

t a
l. 

20
21

Fi
nd

in
gs

:
Lo

w
er

 ra
te

s 
of

 u
ltr

afi
ltr

at
io

n 
re

du
ce

d 
or

ga
n 

dy
sf

un
ct

io
n

Re
co

m
m

en
da

tio
ns

:
Fu

tu
re

 s
tu

di
es

 a
re

 n
ee

de
d 

to
 d

et
er

m
in

e 
th

e 
eff

ec
ts

 o
f l

ow
er

 ra
te

s 
of

 
ul

tr
afi

ltr
at

io
n 

on
 d

el
iri

um
 in

 p
at

ie
nt

s 
w

ith
 A

KI

St
ud

y:
Ca

se
–c

on
tr

ol
 s

tu
dy

Li
eb

er
m

an
 e

t a
l. 

19
85

Fi
nd

in
gs

:
Fo

r p
at

ie
nt

s 
w

ith
 c

hr
on

ic
 re

na
l f

ai
lu

re
, u

se
 o

f t
ric

yc
lic

 a
nt

id
ep

re
ss

an
ts

 le
ad

s 
to

 e
le

va
te

d 
se

ru
m

 le
ve

ls
 o

f g
lu

cu
ro

ni
da

te
d 

m
et

ab
ol

ite
s

Re
co

m
m

en
da

tio
ns

:
G

iv
en

 th
at

 g
lu

cu
ro

ni
da

te
d 

m
et

ab
ol

ite
s 

of
 tr

ic
yc

lic
 a

nt
id

ep
re

ss
an

ts
 w

er
e 

re
po

rt
ed

 to
 e

xe
rt

 p
ot

en
t b

io
lo

gi
c 

eff
ec

ts
 p

er
ip

he
ra

lly
 a

nd
 in

 th
e 

ce
nt

ra
l 

ne
rv

ou
s 

sy
st

em
 (L

ie
be

rm
an

 e
t a

l.)
, a

 s
im

ila
r a

cc
um

ul
at

io
n 

of
 m

et
ab

ol
ite

s 
m

ay
 o

cc
ur

 in
 A

KI
, p

ot
en

tia
lly

 le
ad

in
g 

to
 d

el
iri

um
, a

lth
ou

gh
 fu

tu
re

 re
se

ar
ch

 
is

 n
ee

de
d 

to
 p

ro
ve

 th
is

. M
in

im
iz

in
g 

th
e 

us
e 

of
 n

eu
ro

pa
th

ic
 a

ge
nt

s, 
w

hi
ch

 
m

ay
 a

cc
um

ul
at

e 
in

 th
e 

co
nt

ex
t o

f A
KI

, m
ay

 d
ec

re
as

e 
de

lir
iu

m
 ri

sk



Page 9 of 13Pang et al. Critical Care          (2022) 26:258 	

Ultrafiltration may be an intuitive approach to 
addressing AKI-associated delirium, due to fluid over-
load; however, any potential benefits of ultrafiltration 
need to be balanced with the concerns related to cer-
ebral hypoperfusion [95] and worsened renal recovery 
[96]. Although delirium has not been specifically evalu-
ated in prior studies using ultrafiltration, prior studies 
have shown improved rates of extracerebral organ dys-
function with lower compared to higher rates of ultra-
filtration [96]. Future studies are needed to examine the 
viability of ultrafiltration in hypervolemic patients with 
AKI to mitigate delirium.

Additionally, data from the United States Renal Data 
System found the risk of incident dementia to be lower in 
patients on peritoneal dialysis compared to hemodialysis, 
with a hazard ratio 0.74 (95% CI 0.64–0.86) in a matched 
model. Cognitive impairment rates for patients undergo-
ing hemodialysis are 1.5–2.0 times higher than for those 
undergoing peritoneal dialysis [97]. This was suggested to 
be attributable to a reduction in the hemodynamic insta-
bility and rapid changes in cerebral blood flow typically 
seen with patients undergoing hemodialysis [90]. Future 
studies are needed to assess whether renal replacement 
therapy strategies that lower the risk of hemodynamic 
instability potentially mitigate the risk of delirium.

Analgosedation optimization
Sedatives, such as benzodiazepines and opiates, are 
known to be highly deliriogenic and may potentially 
exacerbate delirium in the context of AKI. Careful con-
sideration of their respective metabolism and clearance 
pathways is warranted when choosing between various 
sedatives in the setting of AKI.

Metabolites of commonly used benzodiazepines, 
for example, the active midazolam metabolite, 
α-hydroxymidazolam, are cleared by the kidneys and 
accumulate with renal failure [98], which may prolong 
the duration of their pharmacological effects [23]. In 
contrast, the lorazepam metabolite, lorazepam glucuro-
nide, is a nontoxic metabolite and its drug clearance is 
not altered by renal disease [99]. As such, studies from 
patients with end-stage renal disease report lower risk of 
accumulation with lorazepam compared to midazolam, 
diazepam, clonazepam [100, 101]. Despite the relative 
renal safety of lorazepam, a side effect of the solvent used 
in intravenous lorazepam can produce propylene gly-
col toxicity, which can lead to proximal tubular necrosis 
resulting in AKI, in addition to metabolic acidosis, serum 
hyperosmolality, and elevated anion gap [102]. Patients 
with AKI may be at higher risk of propylene glycol accu-
mulation, although it is reassuring that while in one study, 
propylene glycol toxicity occurred in 19% of medical ICU 

patients receiving high-dose lorazepam infusion, none 
had any significant clinical deterioration [103].

Similar considerations related to the mechanism of 
drug elimination are justified when using opioids in 
patients with AKI. Opioids that undergo significant 
clearance through the kidneys should be avoided. For 
instance, the metabolites of tramadol, morphine, codeine, 
and meperidine are renally cleared [45, 104] and thus jus-
tify caution or dose adjustment in the setting of AKI. In 
particular, the morphine metabolite, morphine-6-glucu-
ronide, has prolonged effects in the brain once it crosses 
the BBB, and even with discontinuation or dialyzing to 
remove the metabolite, the brain effects persist for some 
time as morphine-6-glucuronide re-equilibrates across 
the BBB [105]. Additionally, a systematic review by Swart 
et  al. on the comparative risk of delirium with different 
opioids found the highest risk of delirium with meperi-
dine and tramadol, likely due to the high anticholinergic 
properties of the opioids and their metabolites [44].

In contrast, fentanyl is extensively metabolized via 
CYP3A4 into norfentanyl, which is an inactive metabo-
lite, and methadone is ultimately metabolized into pyr-
roline, which can be eliminated through feces [104]. The 
risk of delirium was noted to be lower with fentanyl com-
pared to other opioids [44], findings similar to that of a 
systematic review by King et al. which noted less harm in 
renally impaired patients when using fentanyl compared 
to other opioids, such as morphine [106]. In fact, fentanyl 
use has been associated with reduced delirium [83]; thus, 
in patients with AKI, given the safety profile with renal 
dysfunction as well as relatively low risk of delirium, fen-
tanyl should be the first-line opioid when indicated.

Neuropathic agents, such as tricyclic antidepressants, 
are known contributors to delirium—perhaps mediated 
by their anticholinergic effects [107]. Thus, such agents 
must be used with caution in patients with renal disease 
given that serum levels of glucuronidated metabolites of 
tricyclic antidepressants accumulate with kidney dys-
function. Other neuropathic agents such as gabapentin 
and pregabalin must also be used cautiously in the set-
ting of AKI since these agents are renally excreted. The 
toxic accumulation of such drugs may result in depressed 
mental status [108] and mimic delirium.

Dexmedetomidine, an α-2 adrenergic agonist, may 
be superior to other sedatives such as benzodiaz-
epines, propofol, and opioids [109–111] given its lack of 
ϒ-aminobutyric acid properties, as with benzodiazepines 
and propofol, or anticholinergic properties, such as with 
opioids, both of which are thought to play a role in the 
pathogenesis of delirium. Dexmedetomidine may also 
provide a more natural sleep-like sedation pattern, which 
may reduce the risk of developing delirium [110]. Dex-
medetomidine’s delirium-sparing effects in AKI may also 
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be related to its hepatic clearance [112], and potential 
renoprotective effects [113] via stabilization of the sym-
pathetic system, and anti-inflammatory toll-like recep-
tor-4-mediated effects [113]. Therefore, in the setting of 
AKI, it seems reasonable to use dexmedetomidine over 
other types of sedatives [114].

Potential emerging therapies and future investigations
In the future, immunomodulating therapies may play a 
role in the prevention and treatment of AKI-associated 
delirium. Although various cytokines and inflammatory 
mediators are upregulated in AKI, recent animal stud-
ies suggest that the use of systemic IL-6 inhibition miti-
gates delirium-like phenotypes in urinary tract infection 
[66], acute lung injury [65], and postoperative states [67]. 
Given that IL-6 is significantly upregulated in AKI [115], 
future studies are needed to determine whether modula-
tion of the IL-6 signaling pathway mitigates AKI-associ-
ated delirium.

As noted earlier, uremic guanidino compounds may 
play a central role in AKI-associated delirium by pro-
moting NMDA receptor-mediated depolarization of hip-
pocampal neurons, therefore minimizing epileptiform 
discharges, and hippocampal damage [33]. In a study 
using rodents, ketamine, an NMDA receptor antagonist, 
prevented epileptiform activity and hippocampal damage 
induced by injection of guanidinosuccinic acid, one of the 
key neuroanatomical structures believed to be affected in 
AKI-associated delirium [116]. Therefore, future studies 
are needed to assess the role of NMDA receptor antago-
nists to prevent or treat AKI-associated delirium. While 
studies using NMDA receptor antagonists to reduce 
postoperative delirium have yielded mixed results, fur-
ther research is needed to assess the role of NMDA 
receptor agonists specifically in AKI-associated delirium.

Conclusion
The pathogenesis of AKI-associated delirium is multifac-
torial and includes both inflammatory- and non-inflam-
matory-mediated processes, such as the accumulation of 
toxins and drugs, structural brain injury from systemic 
inflammation, impaired volume homeostasis, and hor-
monal and neurotransmitter effects. Current evidence 
suggests that, when possible, gradual normalization of 
kidney function may ameliorate delirium; however, opti-
mization of other clinical contributors, such as deliri-
ogenic drugs, including analgosedation and antibiotics, 
provides additional opportunities to mitigate delirium. 
Future investigations are needed to understand the role 
of systemic immunomodulation to ameliorate AKI-asso-
ciated delirium.
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