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Abstract 

Background:  Trauma is a heterogeneous condition, and specific clinical phenotypes may identify target populations 
that could benefit from certain treatment strategies. In this retrospective study, we determined clinical phenotypes 
and identified new target populations of trauma patients and their treatment strategies.

Methods:  We retrospectively analyzed datasets from the Japan Trauma Data Bank and determined trauma death 
clinical phenotypes using statistical machine learning techniques and evaluation of biological profiles.

Results:  The analysis included 71,038 blunt trauma patients [median age, 63 (interquartile range [IQR], 40–78) years; 
45,479 (64.0%) males; median Injury Severity Score, 13 (IQR, 9–20)], and the derivation and validation cohorts included 
42,780 (60.2%) and 28,258 (39.8%) patients, respectively. Of eight derived phenotypes (D-1–D-8), D-8 (n = 2178) had 
the highest mortality (48.6%) with characteristic severely disturbed consciousness and was further divided into four 
phenotypes: D-8α, multiple trauma in the young (n = 464); D-8β, head trauma with lower body temperature (n = 178); 
D-8γ, severe head injury in the elderly (n = 957); and D-8δ, multiple trauma, with higher predicted mortality than 
actual mortality (n = 579). Phenotype distributions were comparable in the validation cohort. Biological profile analy-
sis of 90 trauma patients revealed that D-8 exhibited excessive inflammation, including enhanced acute inflamma-
tory response, dysregulated complement activation pathways, and impaired coagulation, including downregulated 
coagulation and platelet degranulation pathways, compared with other phenotypes.

Conclusions:  We identified clinical phenotypes with high mortality, and the evaluation of the molecular patho-
genesis underlying these clinical phenotypes suggests that lethal trauma may involve excessive inflammation and 
coagulation disorders.
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Background
The standardization of trauma care is being promoted, 
and research is being conducted worldwide to improve 
outcomes. However, 4.5 million cases of trauma-related 
deaths are reported annually worldwide [1]. The roles 
of coagulation, fibrinolysis, and immune reactions 
in trauma are well understood, but their application 
as potential therapeutic targets remains limited. The 

Open Access

*Correspondence:  h.matsumoto0828@gmail.com

1 Department of Traumatology and Acute Critical Medicine, Osaka University 
Graduate School of Medicine, 2‑15, Yamada‑oka, Suita, Osaka 565‑0871, Japan
Full list of author information is available at the end of the article



Page 2 of 11Tachino et al. Critical Care          (2022) 26:241 

development of new treatments is complicated by the 
heterogeneity of trauma due to age, sex, comorbidi-
ties, injury type and degree, and complex pathophysi-
ology. Therefore, correctly determining the effects of 
therapeutic interventions remains intractable. Stud-
ies using large-scale registry data have attempted to 
validate interaction effects to identify groups with fatal 
polytrauma and reported that specific combinations of 
injuries significantly affect patient outcomes [2]. Thus, 
in analyses that consider the effects of complex, nonlin-
ear interactions may reveal the pathological conditions 
that interact with multiple factors.

Recent studies investigated new therapeutic tar-
gets by combining unsupervised learning and biologi-
cal indicators in various diseases to elucidate potential 
sub-phenotypes [3–7]. Identifying trauma sub-phe-
notypes with poor outcomes and complex pathologies 
may enable the discovery of new therapeutic strategies 
and target populations. Recent advances in technol-
ogy have allowed researchers to acquire comprehensive 
biomolecular information. Following trauma, damage-
related molecular patterns bind to pattern recogni-
tion receptors expressed on immunocompetent cells, 
followed by activated intracellular transcription fac-
tors binding to nuclear DNA and promoting upregu-
lated transcription and translation of target genes and 
a systemic inflammatory response. Thus, proteomic 

analysis of blood might broaden the understanding of 
the molecular pathology underlying trauma.

In this study, we identified latent clinical phenotypes 
in trauma patients, with the primary goal of identifying 
lethal clinical phenotypes with high mortality rates based 
on available clinical information. The secondary goal was 
to clarify the molecular pathology of the derived clinical 
phenotypes by analyzing biological data, including prot-
eomic data.

Methods
Overview
This study included two datasets and used several statis-
tical approaches. The study scheme is outlined in Fig. 1. 
First, we divided the datasets from Japan Trauma Data 
Bank (JTDB) into two cohorts according to the registra-
tion period and identified clinical phenotypes from the 
derivation cohort using unsupervised clustering. We then 
derived the clinical phenotypes using the same clustering 
method in the validation cohort and subsequently ana-
lyzed the distribution of each component. We assessed 
the reproducibility and consistency of the two clinical 
phenotypes by performing hierarchical clustering analy-
sis. After determining the correlation between the clini-
cal phenotypes and biological markers of host response, 
we clustered trauma patients from another dataset into 
different clinical phenotypes and evaluated the molecular 
pathology of each cluster by analyzing serum proteomic 
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data. This study was conducted according to the Declara-
tion of Helsinki and approved by the Ethics Committee of 
Osaka University (IRB approval Nos. 16260, 21,211, and 
885; Osaka University Critical Care Consortium Novel 
Omix Project; Occonomix Project).

Data collection
We used JTDB data related to all blunt trauma patients. 
Patients who had non-direct transportation, suffered 
cardiopulmonary arrest on arrival, had an Injury Sever-
ity Score (ISS) of 75, were pregnant, or had significant 
missing data were excluded from the study. The primary 
outcome was all-cause mortality. In another dataset, we 
evaluated the association between clinical phenotypes 
and biological markers of host response for blunt trauma 
patients transferred to Osaka University Hospital from 
2017 to 2021 (Osaka University cohort). In this cohort, 
a datasheet containing clinical data necessary (Addi-
tional file 1: Methods: Biological Correlates and Clinical 
Outcomes) for clustering was generated, and biological 
information was collected. After incorporating the Osaka 
University cohort into the derivation cohort and deter-
mining clusters for each case in the former cohort, bio-
logical profiling was performed.

Candidate clinical variables for phenotyping
To generate a model applicable to early trauma care, we 
restricted the candidate variables to the following two 
conditions: (1) those related to trauma outcome and 
pathophysiology and (2) those included as the general 
information obtained during initial trauma care. Subse-
quently, 14 candidate variables were selected. We gener-
ated a data sheet and included the following information 
to understand the baseline characteristics of the patients: 
age, sex, existing comorbidities, vital signs on arrival, AIS 
code (AIS 90, update 98) [8], ISS [9], Revised Trauma 
Score [10], and a Trauma and Injury Severity Score and 
Probability of Survival (TRISS-PS) [11]. The ISS was cal-
culated from the top three scores of the AIS of the six 
trunks classified by the AIS code.

Statistical analysis
Based on our aims to (1) develop and evaluate new clini-
cal phenotypes related to traumatic death and (2) under-
stand the molecular pathology underlying the derived 
clinical phenotypes, we first assessed the distribution of 
the candidate variables and instances where they were 
absent. The 5-year trauma data were split to obtain a 
ratio of approximately 6:4 for the sample size used to 
derive and verify the phenotype (derivation: January 
2013–June 2015; validation: July 2015–December 2017) 
[12]. To avoid multicollinearity, we excluded candidate 
variables with an absolute correlation coefficient > 0.5 

[13]. We derived clinical phenotypes associated with 
trauma-related death and performed two-step clustering 
considering calculation cost. We calculated the appro-
priate number of clusters by the mean silhouette and 
k-means methods [14, 15]. After standardizing patient 
data, clustering was performed using the k-means algo-
rithm based on the optimal number of clusters, and the 
silhouette coefficient was calculated according to Euclid-
ean distance. Negative silhouettes were removed, and 
the survival of each phenotype was evaluated. The clini-
cal phenotype with the highest mortality rate was then 
extracted and clustered a second time. For the second 
clustering, a group was derived using latent class analysis 
(LCA), where the Bayesian information criterion (BIC), 
appropriate size of each phenotype, and misclassifica-
tion rate of each phenotype were evaluated to confirm 
the optimal phenotype number [16, 17]. The optimal 
class number was selected based on the largest BIC con-
sidering the misclassification rate and interpretability 
[Additional file  1: Methods: Latent class analysis (LCA) 
and Calculation of BIC with LCA] [6]. The proportion 
of patients assignable to a phenotype at the margin was 
determined as 45% to 55%. To confirm the robustness of 
the phenotype, consensus k-means clustering was per-
formed using 14 variables (Additional file  1: Methods: 
Consensus K clustering) [18]. To determine the opti-
mal number of phenotypes, we evaluated the number 
of patients included in each phenotype, clear separa-
tion of the consensus matrix heatmaps, characteristics 
of the consensus cumulative distribution function plots, 
and appropriate pairwise consensus values between the 
clusters (> 0.8). Additionally, we visualized t-distributed 
stochastic neighbor embedding (t-SNE) to confirm the 
reproducibility between LCA and consensus k-means 
clustering [Additional file 1: Methods: Data visualizing/t-
Distributed Stochastic Neighbor Embedding (t-SNE) 
plot] [19]. Upon determining the clinical phenotype, we 
generated a complex heatmap, violin plots, and alluvial 
plots to visualize the distribution of clinical explanatory 
variables in order to evaluate the features of each clinical 
phenotype (Additional file 1: Methods: Data visualizing/
Alluvial plot).

Clustering in the validation cohort was performed as 
described for the derivation cohort. We statistically eval-
uated the reproducibility as follows: 1) hierarchical clus-
tering by principal component scores of each phenotype 
and 2) visualization of the centroid of each phenotype 
with size based on the number of patients by principal 
component analysis. Additionally, we collected clini-
cal information to cluster patients who were transferred 
to the Department of Traumatology and Acute Critical 
Medicine at Osaka University Graduate School of Medi-
cine from February 2017 to March 2021 and incorporated 
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these data into the derivation cohort dataset, with clus-
tering performed as described. The high-mortality group 
included all cases, whereas the remaining seven clinical 
phenotypes included ≤ 14 patients close to the centroid 
in each group.

To evaluate the biological characteristics of each phe-
notype, we procured general laboratory data of the 
patients using samples taken upon their arrival to the 
hospital and performed proteomic analysis of the serum 
collected within 72 h of injury using mass spectrometry 
(Additional file  1: Methods: Mass spectrometry). Vol-
cano plot analysis was performed using the limma voom 
algorithm [20, 21] to identify differentially expressed 
proteins between the high-mortality phenotype and 
other phenotypes. Differential protein expression was 
defined as a false discovery rate < 0.2 and a fold change 
>|1.2|. Subsequently, Gene Ontology (GO) enrichment 
analysis was performed using the R package clusterPro-
filer [22]. Patient characteristics data are described as the 
mean (standard deviation) or median [interquartile range 
(IQR)]. Mann–Whitney U tests, analysis of variance, 
and Kruskal–Wallis tests were used to compare continu-
ous data, and the chi-square test was performed for cat-
egorical data. The threshold of statistical significance was 
p < 0.05 according to a two-sided test. No adjustment was 
made to the type I error rate by multiple comparisons; 
therefore, these results should be considered exploratory.

All statistical analyses were performed using R (v4.0.2; 
https://​www.r-​proje​ct.​org/). Some analyses were per-
formed on a supercomputer (OCTOPUS; Osaka Uni-
versity Cybermedia cenTer Over-Petascale Universal 
Supercomputer). This study followed the STROBE guide-
lines [23].

Results
Study population
From 2013 to 2017, 158,918 trauma patients were 
enrolled in JTDB. Of these, 12,565 non-blunt trauma 
patients and 75,315 patients who did not meet the 
inclusion criteria were excluded, leaving 71,038 
patients for the final analyses (Additional file 1: Fig. S1). 
Patients admitted from January 2013 to June 2015 were 
included in the derivation cohort (n = 42,780; 60.2%), 
and patients admitted from July 2015 to December 
2017 were included in the validation cohort (n = 28,258; 
39.8%) (Fig.  1). Baseline characteristics of all patients 
are listed in Table  1. Overall, the median age was 
63  years (IQR 40–78  years), median ISS was 13 (IQR 
9–20), median TRISS-PS was 0.97 (IQR 0.93–0.99), and 
the in-hospital mortality rate was 5.5%. The biological 
profile cohort included 171 patients, with a median age 
of 50 years (IQR 34–71 years), a median ISS of 17 (IQR 
6–26), and median TRISS-PS of 0.97 (IQR 0.84–0.99), 
and an in-hospital mortality rate of 5.8%. This cohort 

Table 1  Baseline characteristics of the patients in all three cohorts

IQR interquartile range, CPS Charlson polypharmacy scale, AIS abbreviated injury scale, ISS injury severity scale, RTS revised trauma score, TRISS-PS, 
Trauma and Injury Severity Score and Probability of Survival

Variables Derivation cohort Validation cohort Osaka University cohort Overall

Number of patients 42,780 28,258 171 71,209

Age, years, median [IQR] 62 [38–77] 65 [42–79] 50 [34–71] 63 [40–78]

Male gender, no. (%) 27,545 (64.4) 17,934 (63.5) 128 (74.9) 45,607 (64.0)

CPS, median [IQR] 1 [1–1] 1 [1, 2] 0 [0–1] 1 [1–1]

Respiratory rate, median [IQR] 20 [17–24] 20 [17–24] 21 [18–26] 20 [17–24]

Heart rate, median [IQR] 83 [72–96] 83 [72–96] 90 [74–108] 83 [72–96]

Systolic blood pressure, median [IQR] 138 [119–158] 139 [120–160] 139 [119–161] 138 [119–159]

Body temperature (℃), median [IQR] 36.5 [36.0–36.9] 36.5 [36.1–36.9] 36.5 [36.0–36.9] 36.5 [36.0–36.9]

Glasgow Coma Scale, median [IQR] 15 [14, 15] 15 [14, 15] 14 [12–15] 15 [14, 15]

Head & Cervical AIS, median [IQR] 1 [0–4] 1 [0–4] 1 [0–4] 1 [0–4]

Face AIS, median [IQR] 0 [0–0] 0 [0–0] 0 [0–0] 0 [0–0]

Chest AIS, median [IQR] 0 [0–2] 0 [0–2] 0 [0–3] 0 [0–2]

Abdomen AIS, median [IQR] 0 [0–0] 0 [0–0] 0 [0–1] 0 [0–0]

Extremities AIS, median [IQR] 2 [0–3] 2 [0–3] 1 [0–2] 2 [0–3]

External AIS, median [IQR] 0 [0–0] 0 [0–0] 0 [0–0] 0 [0–0]

ISS, median [IQR] 13 [9–20] 13 [9–20] 17 [6–26] 13 [9–20]

RTS, median [IQR] 7.84 [7.55–7.84] 7.84 [7.84–7.84] 7.84 [6.90–7.84] 7.84 [7.55–7.84]

TRISS-PS, median [IQR] 0.97 [0.93–0.99] 0.97 [0.93–0.99] 0.97 [0.84–0.99] 0.97 [0.93–0.99]

Survival, no. (%) 40,344 (94.3) 26,753 (94.7) 161 (94.2) 67,258 (94.5)

https://www.r-project.org/
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was incorporated into the derivation cohort, and clus-
tering analysis was performed using the same method. 
Additionally, we analyzed biological data for 90 indi-
viduals whose coordinates were close to the centroid of 
each phenotype.

Derivation of clinical trauma phenotypes
We examined correlations among 14 candidate vari-
ables and found that there were no variables with abso-
lute correlation coefficients > 0.5 (Additional file  1: 
Fig.  S2). In the derivation cohort, the optimal num-
ber of phenotypes was identified as 8 according to the 
mean silhouette and the k-means method (Additional 
file 1: Figs. S3 and 4). Additional file 1: Table S1 shows 
the characteristics of 38,097 patients after removing the 
negative silhouettes (Additional file  1: Fig.  S5). Subse-
quently, we identified the clinical phenotypes with high 
mortality rates (Fig.  1 and Additional file  1: Table  S1) 
and performed LCA on the phenotype with the highest 
mortality rate (Additional file  1: Fig.  S6). The BIC for 
the LCA model increased continuously with the num-
ber of classes, with changes in the BIC decreasing when 
the number of classes was ≥ 4. Overall, the four-class 
model was the best-fitting model because of its low 
misclassification rate and interpretability (Additional 
file 1: Fig. S7) and showed strong separation in the like-
lihood of membership for patients assigned to a given 
phenotype rather than to other phenotypes (Additional 
file 1: Figs. S8 and 9). The discriminative power of each 
variable in LCA was subsequently confirmed (Addi-
tional file 1: Fig. S10). Additional file 1: Table S2 shows 
the patient number and baseline characteristics of the 
four clinical phenotypes derived from the high-mor-
tality cluster in the derivation cohort, with the clinical 
features of the high-mortality group shown in violin 
and alluvial plots (Additional file  1: Figs.  S11 and 12). 
Severe head trauma with impaired consciousness and 
a Glasgow Coma Scale ≤ 8 were common in the high-
mortality group. The clinical phenotype D-8α is com-
prised predominantly of young individuals with chest, 
limb, and pelvic trauma complications (29.2% mortal-
ity). Phenotype D-8β mainly included elderly people 
with head trauma and hypothermia on hospital arrival 
(46.6% mortality). Clinical phenotype D-8γ had the 
largest number of patients in the high-mortality group, 
with the highest mortality rate (56.6%) observed in the 
elderly with severe head trauma. Phenotype D-8δ was 
characterized by polytrauma and the highest ISS, with 
many individuals with this phenotype having chest, 
extremity, and pelvic trauma. The mortality rate for this 
phenotype was 51.6%, with the predicted mortality rate 
considerably higher than the actual mortality rate.

Evaluation of reproducibility
In the validation cohort, clinical phenotypes were derived 
from silhouette analysis and LCA. The optimal number 
of phenotypes was 8 when the mean silhouette method 
and the k-means method were used, as was the case 
for the derived cohort (Additional file  1: Fig.  S13). The 
LCA for high-mortality phenotypes optimally classified 
the phenotypes into four phenotypes based on the BIC 
results. Moreover, consensus k-means clustering for the 
high-mortality group confirmed its robustness, suggest-
ing that the t-SNE results were comparable with the LCA 
classification (Additional file 1: Fig. S14). We performed 
the same clustering for the validation cohort (Addi-
tional file 1: Figs. S16–27 and Tables S3 and 4). Figure 2 
shows the survival rate distribution and each variable for 
the phenotypes generated in the derivation and valida-
tion cohorts. The high-mortality phenotype (D-8/V-8) 
was characterized by severely impaired consciousness, 
lower body temperature, and a higher degree of severe 
head trauma. Survival analysis revealed that this phe-
notype (D-8/V-8) showed decreased survival over time 
(Additional file  1: Figs.  S15 and 28). Hierarchical clus-
tering based on principal component scores confirmed 
that high-mortality clusters were statistically paired 
(Fig. 3a). We subsequently plotted the principal compo-
nent coordinates of the calculated centroids according to 
the numbers of patients and visualized pairs with similar 
phenotypes in each cohort (Fig. 3b and Additional file 1: 
Fig. S29).

Correlation of clinical phenotypes with biomarker profiles
The patient characteristics of the cohort for the biologi-
cal profile are shown in Additional file  1: Table  S5. We 
removed decoy proteins and immunoglobulins and used 
256 proteins according to their standing according to the 
total exponentially modified protein abundance index 
summation [24]. Among the differentially expressed pro-
teins, expression levels of 11 and 26 proteins were sig-
nificantly upregulated and downregulated, respectively 
(Fig.  4a and Additional file  1: Tables S6 and 7). Char-
acteristics of patients with high-mortality phenotypes 
in all three cohorts were compared and are presented 
in Table  2. GO enrichment analysis showed that clini-
cal phenotype B-8 (equivalent to phenotype D-8/V-8) 
exhibited excessive inflammation, including enhanced 
acute inflammatory response and dysregulated com-
plement activation pathways, and impaired coagula-
tion, including downregulated coagulation and platelet 
degranulation pathways (Fig. 4b). When continuous vari-
ables were ranked according to the standardized mean 
difference between phenotypes (Fig.  5), phenotype B-8 
showed higher laboratory values related to coagulation, 
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fibrinolysis, and inflammation and lower values for 
fibrinogen and platelets relative to the other phenotypes.

Discussion
This analysis revealed 11 tentative, mutually exclusive 
clinical phenotypes that are multidimensional and exhibit 
differential patient characteristics along with distinct 
laboratory data and patterns of organ damage according 
to the injured region. The frequency and characteristics 
of the clinical phenotypes were confirmed as robust and 
reproducible using different cohorts and machine learn-
ing methods. Furthermore, biological analysis indicated 
that the high-mortality phenotype showed excessive 
inflammation and coagulation dysfunction.

The findings suggest that these phenotypes can be eval-
uated during the initial care of trauma patients to help 
develop treatment strategies for each respective pheno-
type and establish inclusion criteria for future clinical 

trials. Previous studies subgrouped trauma patients 
according to patient characteristics and injured organs 
to search for risk factors [25–27]; however, no study 
has comprehensively captured all trauma patients using 
machine learning approaches to search for new target 
populations in trauma treatment and evaluate them bio-
logically. Machine learning is advantageous for variable 
selection and modeling, as it considers complex interac-
tion effects and nonlinearity with outcomes [28, 29].

High-mortality groups exhibited a high degree of 
impaired consciousness and were further divided into 
a severe traumatic brain injury group and a polytrauma 
group according to reasonable clinical parameters. In 
trauma epidemiology, associations between combina-
tions of injured regions and trauma-related mortality 
have been examined using a logistic model that included 
interaction effects and demonstrated significant inter-
actions with mortality in head–chest and chest–pelvic/
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extremities injuries [2]. In the present study, clustering 
analysis revealed that injuries to the chest, pelvis, and 
extremities in the polytrauma group were associated with 
a high mortality rate. Moreover, the high-mortality group 
showed excessive inflammation, including a dysregulated 
acute inflammatory response and complement activation 
pathway, and coagulation abnormalities, which may play 
a major role in trauma death.

This study has two clinical implications. First, we 
used early trauma care data to identify clinical pheno-
types with high mortality, identifying populations that 
may benefit from early intervention. Selecting sub-phe-
notypes of patients at high risk of poor outcomes and 
incorporating them into clinical trials is referred to as 
prognostic enrichment [30, 31]. However, no previous 
report has identified sub-phenotypes in early trauma 
stages or attempted new clinical trials, suggesting that the 
data presented here may reveal new therapeutic target 
populations and treatment strategies. Additionally, this 
technique may help clinicians predict potential trauma-
related deaths and treat these patients appropriately. 
Second, we considered phenotypic pathological features 
from biological data, which enhanced the understanding 

of the endotypes of trauma patients. Excessive inflamma-
tion and coagulation disorders in clinical phenotype D-8/
V-8 suggest the possibility of using preemptive treatment 
upon confirmation of the phenotype from initial clinical 
data. These findings may constitute a breakthrough for 
developing new trauma treatment strategies and thera-
peutic agents.

This study has a few limitations. First, this is a ret-
rospective study, which has inherent limitations, as 
unmeasured confounding factors may affect trauma mor-
tality. Second, with AIS coding, only the maximum value 
is adopted, even when there are multiple injuries in the 
same region. Third, we only used daily clinical data avail-
able from the electronic health records to identify clinical 
phenotypes. The JTDB datasets used in this study did not 
include blood test data; therefore, information on char-
acteristics such as lactate levels and blood coagulation 
could not be used to derive clinical phenotypes. Moreo-
ver, future improvements in testing capabilities will likely 
help reveal biological indicators early in trauma care, 
which could result in completely different clinical pheno-
types from those reported here. Fourth, the studied data 
were obtained only from Japanese patients. Therefore, 
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Fig. 4  Molecular pathophysiological comparison of high-mortality phenotypes and other phenotypes. a Serum proteins differentially expressed 
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Table 2  Comparison of characteristics of patients with high-mortality phenotypes in each cohort

IQR interquartile range, CPS Charlson polypharmacy scale, AIS abbreviated injury scale, ISS injury severity scale, RTS revised trauma score, TRISS-PS 
Trauma and Injury Severity Score and Probability of Survival

Clinical phenotype D-8 V-8 B-8 Overall p value
Number of patients 2178 1241 9 3428

Age, years, median [IQR] 66 [46–77] 67 [47–79] 66 [52–79] 66 [46–78] 0.122

Male gender, no. (%) 1502 (69) 856 (69) 9 (100) 2367 (69) 0.132

CPS (median [IQR]) 1 [1–1] 1 [1–1] 1 [0–1] 1 [1–1]  < 0.001

Respiratory rate, median [IQR] 20 [16–25] 20 [16–25] 21 [17–27] 20 [16–25] 0.793

Heart rate, median [IQR] 92 [76–113] 98 [80–118] 108 [98–126] 94 [78–115]  < 0.001

Systolic blood pressure, median [IQR] 138 [109–167] 141 [111–169] 169 [152–205] 140 [110–168] 0.029

Body temperature, median [IQR] 36.0 [35.3–36.5] 36.1 [35.5–36.6] 35.8 [35.1–36.4] 36.0 [35.4–36.5]  < 0.001

Glasgow coma scale, median [IQR] 3 [3–6] 3 [3–5] 3 [3–3] 3 [3–6] 0.004

Head and Cervical AIS, median [IQR] 5 [4, 5] 5 [4, 5] 5 [5–5] 5 [4, 5] 0.002

Face AIS, median [IQR] 0 [0–0] 0 [0–0] 0 [0–0] 0 [0–0] 0.662

Chest AIS, median [IQR] 0 [0–3] 0 [0–3] 0 [0–0] 0 [0–3] 0.003

Abdomen AIS, median [IQR] 0 [0–0] 0 [0–0] 0 [0–0] 0 [0–0] 0.229

Extremities AIS, median [IQR] 0 [0–2] 0 [0–2] 1 [0–2] 0 [0–2] 0.748

External AIS, median [IQR] 0 [0–0] 0 [0–0] 0 [0–0] 0 [0–0]  < 0.001

ISS, median [IQR] 25 [21–34] 26 [25–36] 29 [25–30] 25 [22–35]  < 0.001

RTS, median [IQR] 4.09 [4.09–5.21] 4.09 [4.09–5.03] 4.09 [4.09–4.09] 4.09 [4.09–5.03] 0.102

TRISS-PS, median [IQR] 0.45 [0.26–0.67] 0.40 [0.21–0.63] 0.35 [0.21–0.39] 0.43 [0.24–0.65]  < 0.001

Survival, no. (%) 1119 (51.4) 647 (52.1) 5 (55.6) 1771(51.7) 0.888
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Fig. 5  Comparison of variables contributing to clinical phenotype 
in the Osaka University cohort. A line plot was created to visualize 
the differences in general blood-derived variables between the 
high-mortality phenotype and other phenotypes. Each indicator 
is color-coded according to the organ system. Variables were 
standardized to scale all means to 0 and SDs to 1. Standardized 
variables (X-axis) with a value of 1 had a mean value with an SD > 1, 
which is higher than the mean value of the entire phenotype. 
Asterisks indicate significant differences in Mann–Whitney U tests. 
FDP, fibrinogen/fibrin degradation products; PT-INR, prothrombin 
time–international normalized ratio; APTT, activated partial 
thromboplastin time; IL, interleukin; TNF-α, tumor necrosis factor-α; 
WBC, white blood cell; T-bil, total bilirubin; Lymph: lymphocyte; LDH, 
lactate dehydrogenase; MCP1, monocyte chemotactic protein 1; 
CRP, C-reactive protein; AST, aspartate transaminase; ALT, alanine 
transaminase; Neut, neutrophil; BUN, blood urea nitrogen; SD, 
standard deviation

the results may not be generalizable to other cohorts 
because of differences in trauma patient characteristics 
and medical practice across countries and regions. Fifth, 
the small sample size of the Osaka University cohort used 
for the biological profile may be statistically insufficient. 
Comparison of high-mortality phenotypes in each cohort 
showed significant differences in factors such as heart 
rate and body temperature. However, demographic data 
of the high-mortality phenotypes in each cohort were 
similar, and the significant differences could be attrib-
uted to the small sample size of the Osaka University 

cohort. Sixth, the body undergoes drastic changes after 
trauma, especially during the acute phase. In this study, 
the median proteomic sampling time was 1  h (IQR 
0.8–1.7  h), with a maximum of 56  h after injury. Thus, 
the variation in blood sample collection time may have 
affected the results of proteomic analysis.

Conclusions
In summary, this retrospective analysis using a nation-
wide trauma cohort for the Japanese population classified 
all trauma into 11 clinical phenotypes based on available 
clinical information acquired during the early stage of 
trauma care. We identified clinical phenotypes with high 
mortality, with the evaluation of the molecular pathogen-
esis of the derived clinical phenotypes suggesting that 
lethal trauma involves excessive inflammation and coagu-
lation disorders.
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