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mechanisms and therapeutic potential
Xue Zhang1,2†, Hong Liu1,2†, Kenji Hashimoto3*, Shiying Yuan1,2* and Jiancheng Zhang1,2* 

Abstract 

Sepsis is a potentially fatal condition caused by dysregulation of the body’s immune response to an infection. Sepsis-
induced liver injury is considered a strong independent prognosticator of death in the critical care unit, and there 
is anatomic and accumulating epidemiologic evidence that demonstrates intimate cross talk between the gut and 
the liver. Intestinal barrier disruption and gut microbiota dysbiosis during sepsis result in translocation of intestinal 
pathogen-associated molecular patterns and damage-associated molecular patterns into the liver and systemic 
circulation. The liver is essential for regulating immune defense during systemic infections via mechanisms such as 
bacterial clearance, lipopolysaccharide detoxification, cytokine and acute-phase protein release, and inflammation 
metabolic regulation. When an inappropriate immune response or overwhelming inflammation occurs in the liver, 
the impaired capacity for pathogen clearance and hepatic metabolic disturbance can result in further impairment 
of the intestinal barrier and increased disruption of the composition and diversity of the gut microbiota. Therefore, 
interaction between the gut and liver is a potential therapeutic target. This review outlines the intimate gut–liver cross 
talk (gut–liver axis) in sepsis.
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Introduction
Sepsis is a life-threatening organ dysfunction caused by a 
dysregulated host response to infection, with high mor-
bidity and mortality worldwide [1]. Indeed, 2.8 million 
deaths per year are attributable to sepsis in high-income 
countries [2]. Sepsis can progress to multiple organ dys-
function syndrome (MODS) [3]. Liver dysfunction in 
MODS patients is typically associated with significant 
morbidity, though its exact prevalence remains unknown.

The gut microbiota is recognized as a powerful indica-
tor of disease-related morbidity and progression [4]. For 

instance, Lachnospiraceae contributes to protecting the 
intestinal mucosal barrier and offers a microbe-mediated 
survival advantage in a murine model of sepsis [5]. Bifido-
bacterium, Muribaculaceae, Parabacteroides distasonis, 
and Alloprevotella are involved in protection against 
sepsis-related liver injury in rats [6]. The gut microbiota 
is key to the development and regulation of the immune 
system, impacting host susceptibility and response to 
infection [7]. Intestinal dysbiosis and increased intestinal 
permeability promote pathogenic microbial overgrowth 
and translocation of intestinal pathogen-associated 
molecular patterns (PAMPs) to the lymphatic and por-
tal systems, impairing the body’s defense against infec-
tion or injury and aggravating organ damage [8]. Cross 
talk between the gut and liver is widely acknowledged, as 
the gut and liver communicate bidirectionally via biliary, 
portal, and systemic circulation [9]. Moreover, intestinal 
mucosa and vascular barriers serve as a communication 
hub between the gut and liver. The liver is crucial for 
modifying the host defense and controlling inflammation 
in infection [10]. However, under pathological situations, 
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dysregulated translocation of microbial products initiates 
inflammation that impairs the function and detoxifica-
tion capacity of hepatocytes. In general, liver dysfunction, 
decreased bacterial clearance, and metabolic disorders 
cause increased dysregulation of the gut microbiota 
and further breakdown of the intestinal barrier, leading 
to MODS. Hence, improved knowledge of the gut–liver 
interaction during sepsis-induced liver damage might 
contribute to elucidating these complicated disorders 
and provide insight into novel treatment approaches for 
sepsis that target underlying mechanisms.

Intestinal barrier
Physical barrier
The presence of intestinal epithelial cells (IECs) and 
mucus components serves as a first line of defense to 
maintain the intestinal barrier. The epithelial and intesti-
nal vascular barrier just below the mucus is composed of 
a monolayer of cells [11], and this epithelium monolayer 
acts as a protective barrier, restricting pathogens, toxins, 
and antigens of the gut lumen from passing into the mes-
enteric lymph and circulation [12, 13]. Although the epi-
thelium monolayer serves as a primary physical barrier, 
the paracellular gap is regulated by several intercellular 
connections, including apical tight junctions (TJs), lower 
adherens junctions, and desmosomes [14, 15]. Of note, 
the TJ structure is critical in providing a physical barrier 
to prevent luminal inflammatory molecules from enter-
ing the circulation [16].

Mucus covers the entire intestinal surface, which is 
composed of goblet cell-derived mucins (MUCs). The 
small intestine is covered with a single mucus layer, 
whereas the large intestine contains two major mucus 
layers, with the inner dense mucus layer working mainly 
as a protective shield for the gut owing to its imperme-
ability to luminal bacteria [17, 18]. Mucus supplies car-
bohydrates for commensal bacteria, inhibits epithelial 
apoptosis, and increases release of immune cell compo-
nents by acting as a viscous trap for antimicrobial pep-
tides and immunoglobulins [19–21]. MUC2 is a key 
element of intestinal mucus layers. Muc2 in mice defi-
ciency exacerbates sublethal doses of lipopolysaccharide 
(LPS)-induced intestinal bacterial translocation to the 
liver and increases mortality [22].

Furthermore, the intestinal epithelium generates large 
amounts of antimicrobial peptides (AMPs) and intestinal 
alkaline phosphatases (IAPs) [23, 24]. AMPs rapidly kill 
or inactivate bacteria by secreting lysozyme, regulating 
downstream innate immune responses, and interfering 
with bacterial cell wall synthesis, among others, which is 
a method of immune defense that has evolved over time 
[23].

IAPs can prevent the follow-up toxicity of newly 
released LPS [24], regulate HCO3

– secretion [25], and 
promote growth of gut commensal bacteria [26]. Nota-
bly, IAPs also prevent LPS from triggering toll-like 
receptor (TLR)-4/myeloid differentiation factor 88 
(MyD88)-mediated inflammatory cascades [27, 28]. 
Recent research indicates that IAPs induce autophagy in 
IECs and macrophages to exert anti-inflammatory effects 
in mice [29].

Immune barrier
The immune cells in the gut form a second line of defense 
to maintain the intestinal barrier (Table  1). Anatomi-
cally, the intestinal canal wall is divided into four layers, 
including the mucosa, submucosa, muscularis, and sero-
sal layer from the lumen inside to outside. Rich lymphatic 
follicles are present in the propria layer of the mucosal 
and submucosal tissues, including isolated and aggre-
gated lymphatic follicles [30, 31]. Considering their dis-
tribution in the intestinal wall, gut immune cells mainly 
include intestinal lymph follicles, interepithelial lympho-
cytes, and lymphocytes in the propria layer of the mucosa 
[30, 32, 33]. The intestinal epithelial barrier is protected 
by local interepithelial lymphocytes, which rapidly acti-
vate T helper 1 (Th1) cell cytokine responses aimed at 
an infected or stressed epithelium [34, 35]. Interestingly, 
dendritic cells (DCs) inserted into the gut epithelium 
in vitro can open TJs between IECs and directly take up 
luminal microorganisms. Furthermore, DCs express TJ 
proteins to preserve epithelial barrier integrity [36]. The 
propria layer of the mucosa includes plasmacytoid DCs, 
innate lymphoid cells, mucosa-associated invariant T 
cells, and T cells to attack pathogens [34, 37, 38]. Secre-
tory immunoglobulin A (IgA) plays a critical role in the 
adaptive immunity mediated by lamina-intrinsic plasma 
cells: It regulates gut microbiota composition, protects 
the intestinal epithelium from pathogenic microbes, and 
assists in immune system development [39, 40]. By pre-
senting pathogen antigens to intestinal immune cells, 
IECs contribute to intestinal adaptive immunity [41].

Membranous cells are specialized epithelial antigen-
presenting cells dispersed throughout the follicle-associ-
ated epithelium and are critical for antigen-specific IgA 
production. These gut-associated immune mechanisms 
protect the systemic circulation from the harmful effects 
of intestinal pathogens.

Commensal microbiota in intestines
Human microorganisms are diverse, with an estimated 
100 trillion microorganisms composed of between 500 
and 1000 distinct bacterial species [42, 43]. The major-
ity have been verified to be composed of five phyla, 
mainly Firmicutes (79.4%) and Bacteroidetes (16.9%) 
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[44]. Normally, the commensal microbiota influences the 
intestinal environment, limiting the growth of invasive 
pathogens. For instance, microbial-derived metabolites 
inhibit the growth of Escherichia coli O157 in vitro [45]. 
Commensal bacteria also produce bacteriocins that are 
mainly produced by Firmicutes to fight against invading 
pathogens [46]. Other bacteria, including Proteobacteria, 
Bacteroidetes, and Actinobacteria, also encode various 
bacteriocins. Furthermore, several bacteriocin-produc-
ing commensal bacteria (Bifidobacterium and Lactobacil-
lus), known as probiotics, are used to promote gut health 
[47]. The distribution, adaptability, and function of the 
microbial community throughout the gastrointestinal 
tract are matched with different hospitable environmen-
tal conditions, allowing mutual benefits between the host 
and commensal microbiota.

The stomach of healthy adults has the fewest bacte-
ria, namely Lactobacillus and Helicobacter species [48], 
whereas the duodenal microbiota is dominated by Fir-
micutes and Actinobacteria [49]. Firmicutes continues 
to dominate (43%) in the ileum and colon, but the abun-
dance of Proteobacteria and Bacteroides steadily rises in 
the ileum and colon [50]. Compared to the small intes-
tine, the large intestine shows greater microbial variety, 
though the colon tends to be occupied by two signifi-
cant phyla (Bacteroidetes at 50% and Firmicutes at 45%) 
[51]. The gut microbial community contributes to health 

by reinforcing the intestinal barrier [52], and commen-
sal bacteria protect against pathogens by competing for 
nutrients and space [23]. For instance, commensal Enter-
obacteriaceae fight against Salmonella colonization by 
competing for oxygen in mice [53]. Furthermore, com-
mensal bacteria activate host pattern recognition recep-
tors to enhance production of AMPs and MUCs [18, 
23]. They also induce IgA secretion by providing modest 
levels of immunological stimulation, therefore establish-
ing a basic immune adaptation that plays a crucial role 
in enabling the host and microbial community to live in 
homeostasis. Gut microbiota-generated short-chain fatty 
acids serve as an energy source for commensal bacteria 
and defend against LPS-induced intestinal barrier distur-
bance [54]. Overall, microbiota dysbiosis is considered a 
major contributor to various diseases [52].

The gut–liver axis
The physiological “gut–liver axis”
The liver is the largest gland, secreting bile acids that are 
ultimately discharged into the small intestine [55], and 
is supplied by both arterial and venous blood that mix 
and bathe the various liver structures and cells [56]. The 
oxygen-rich arterial blood enters the liver via the hepatic 
artery, but it is a minor blood supply for this organ. 
Instead, the portal vein, entering the liver with rich nutri-
ents and pathogen-derived molecules such as LPS, is the 

Table 1  Gut immune cells in the intestinal wall

IFN, interferon; IL, interleukin; ILC, innate lymphoid cell; iNKT, invariant natural killer T; MAIT, mucosal-associated invariant T; TCRαβ+, αβ T cell receptor+; TCRγδ+, γδ T 
cell receptor+; Th1, T helper 1; TJs, tight junctions; SIgA, secretory immunoglobulin A

Location Cell type Function Refs.

Mucous layer Intestinal macrophages Phagocytosis and degradation of microorganisms and dead tissue cells
Producing mediators that drive epithelial cell renewal

[33]

Dendritic cells Having the ability to open TJs between epithelial cells and directly take up luminal 
microorganisms

[36]

Local interepithelial lymphocytes: 
conventional and nonconven-
tional
TCRαβ+ subsets; TCRγδ+ sub-
groups

Guarding the intestinal epithelial barrier
Rapidly activating cytolytic and Th1-cell cytokine responses aimed at an infected or 
stressed epithelium

[34, 35]

ILC1 Being activated by myeloid-cell-derived IL-12 [37, 38]

ILC2 Being activated by epithelial-derived cytokines and orchestrate type 2 immunity

ILC3 Interacting with cells of both the innate and adaptive immune systems
Secreting IL-22 and initiating an antimicrobial program as well as barrier fortification in 
epithelial cells

Intestinal B cells Producing the SIgA [40]

Invariant T cells: MAIT cells Rapidly producing cytokines and exerting cytolytic activity after activation by cells 
infected with bacteria, including several enteric species

[34]

iNKT cells Producing large amounts of IL-4 and IFN-γ involved in the immune response [34]

Mucous layer 
and submu-
cosa

Lymphatic follicles Involved in the local immune response, namely through collaboration with epithelium 
to effectively localize entry of foreign materials to sites where antigens and microor-
ganisms can be immediately endocytosed, processed, and presented for primary or 
memory immune responses without the need for systemic involvement

[31]
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major blood supply for the liver [57]. Normally, the liver 
communicates with the gut and its microbiota through 
the biliary system and systemic circulation (Fig.  1). The 
bidirectional association of the gut and its microbiota 
with the liver is well known as the physiological “gut–
liver axis” [58].

Immunological defense of the liver
The liver is also a key immune tissue, with liver sinu-
soidal endothelial cells (LSECs), macrophages, stellate 
cells, lymphocytes, and biliary cells comprising the 
majority of nonparenchymal cells [59–62]. LSECs con-
stitute the inner layer of the hepatic sinus vascular or 
capillary bed, where nutrient-rich hepatic portal vein 

blood and oxygen-rich hepatic artery blood mix, con-
tributing to immune surveillance by detecting and cap-
turing pathogens and possibly even presenting antigens 
and removing macromolecular waste products from 
the blood [63].

Kupffer cells (KCs) constitute the majority of hepatic 
macrophages in a healthy liver. The yolk sac-derived 
colony-stimulating factor 1 receptor-positive erythro-
myeloid progenitors and bone marrow-derived mono-
cytes are both sources of KCs [64, 65]. The human liver 
contains two distinct macrophage subtypes: CD68+ mac-
rophage receptor with collagen structure (MARCO)+ 
macrophages, which contribute to the maintenance of 
immunological tolerance and inflammation suppression, 

Fig. 1  During sepsis, several mechanisms contribute to disruption of the gut barrier, including IEC apoptosis, alteration of the mucus layer, and 
disruption of intercellular junctions, resulting in translocation of intestinal PAMPs into the liver via the lymphatic vessels, portal circulation, or biliary 
tract. The liver is essential to the regulation of immune defense, with effector cells such as LSECs, macrophages, stellate cells, and hepatocytes 
immediately identifying and engaging pathogens, clearing bacteria, and releasing cytokines. When an inappropriate immune response or 
overwhelming inflammation occurs with high levels of DAMPs and proinflammatory cytokine production in the liver, the normal structure of the 
hepatic sinus is disrupted, and such cells are damaged through apoptosis and autophagy, leading to bacterial clearance dysfunction and metabolic 
disorders. As a result, the gut barrier is further damaged, gut microbiota dysbiosis is exacerbated, and distal organs are injured due to the spread of 
PAMPs and DAMPs and systemic inflammation. IECs, intestinal epithelial cells; DAMPs, damage-associated molecular patterns; LSECs, liver sinusoidal 
endothelium; PAMPs, pathogen-associated molecular patterns
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and CD68+ MARCO– macrophages, which are more 
proinflammatory [66, 67].

Effects of sepsis on the intestinal barrier 
and microbiota
Inflammation significantly contributes to the pathogen-
esis of intestinal damage in sepsis [68]. Sepsis affects 
expression of claudins, junctional adhesion molecule A, 
occludin, and zonula occludens-1 and activates myo-
sin light-chain kinase, modulating intestinal permeabil-
ity [69–71]. Owing to activation of TLR4 expressed on 
intestinal stem cells induced by PAMPs, such as LPS, 
sepsis may directly affect intestinal stem cell growth and 
apoptotic death [72, 73]. Intestinal hyperpermeability is 
strongly associated with dysregulated IEC apoptosis [74], 
causing changes to the mucus layer, such as decreased 
thickness, reduced luminal coverage, and poor adhesion 
[75]. Similarly, decreased villous length is associated with 
an increase in intestinal permeability and IEC apopto-
sis [76]. Overexpression of Bcl-2 improves survival by 
TJ alterations in transgenic mice with the occurrence of 
hyperpermeability following sepsis [77].

Disruption of intestinal physiology is followed by 
microbiota dysbiosis in septic patients [78]. In critically 
ill patients with sepsis, the diversity of the intestinal 
microbiota declines, and its composition becomes domi-
nated by multidrug-resistant bacteria [79]. Broad-spec-
trum antibiotic treatment can significantly alter the gut 
microbiota of severely ill patients [80, 81]. For example, 
fluoroquinolones increase Lactococcus and Pediococcus 
but decrease Escherichia/Shigella and Desulfovibrio in 
critically ill patients [82].

The gut–liver axis in sepsis
Specific role of lipopolysaccharides
The human gut is a reservoir of ≥ 1  g of LPS from an 
estimated 100 trillion microorganisms, and endotoxin 
can be detected even in healthy human plasma [83]. 
Depending on its size, an LPS molecule passes through 
multiple alternative paths while crossing the small intes-
tine, which include the paracellular pathway, clathrin-
mediated endocytosis [84], micropinocytosis and lipid 
raft-mediated endocytosis [85], goblet cell-associated 
antigen passages [86], and the chylomicron pathway [87]. 
In the colon, LPS can be transported by clathrin-medi-
ated or vesicle-mediated protein transport pathways [88]. 
When the components of the gut barrier are impacted 
by inflammation in sepsis, as noted in dysregulated IEC 
apoptosis, these defense luminal mechanisms that help 
prevent a large number of LPS transfers to the systemic 
circulation gradually fail [40], causing transmigration 
of LPS to multiple organs and triggering uncontrolled 
immunoinflammatory responses [89].

Typically, intestinal LPS passing through the portal vein 
is processed and detoxified by the liver. Detoxification of 
LPS, which is phagocytosed by scavenger receptor (SR)-
mediated uptake in the liver, is carried out by acylhydro-
lase (AOAH) and alkaline phosphatase [90, 91]. AOAH 
selectively removes secondary fatty acyl chains attached 
to the primary chain in the lipid A fraction, playing an 
important role in controlling LPS toxicity [92].

Additionally, plasma contains some LPS-binding pro-
teins with varying affinities, including LPS-binding pro-
tein (LBP), CD14, bactericidal/permeability-increasing 
protein (BPI), and lipoproteins engaged in LPS detoxifi-
cation. LBP is primarily produced by IECs and hepato-
cytes in the acute phase of sepsis in mice [93]. It binds 
specifically to lipid A of LPS, forming the LPS-LBP com-
plex; this facilitates LPS transfer and binding with mem-
brane CD14 on the surface of monocytes/macrophages 
and neutrophils, which is finally recognized by TLR4 
and myeloid differentiation-2, promoting an inflamma-
tory response cascade [94]. Activation of TLR4 signaling, 
classified as MyD88 dependent, MyD88-independent, 
and Toll/IL-1R domain-containing adaptor-inducing 
interferon (IFN)-β-dependent pathways, leads to mark-
edly increased cytokines and cell damage [95, 96] (Fig. 2). 
However, high plasma concentrations of LBP and solu-
ble CD14 may help limit deleterious systemic responses 
to LPS [97]. BPI is expressed in the intestinal epithelium, 
and changes in potassium levels in damaged cells can act 
as damage-associated molecular patterns (DAMPs) to 
promote BPI expression in murine intestinal epithelium 
[98].

Effects of gut dysfunction on the liver
After sepsis along with gut dysfunction, PAMPs and 
DAMPs from the intestine travel through the portal cir-
culation or biliary tract to the liver [58]. In the hepatic 
vasculature, effector cells immediately engage circulat-
ing pathogens or identify PAMPs, forming a network of 
immunological sentinels [99–103]. Furthermore, TLRs 
on macrophages and other cell types in the liver are acti-
vated by endogenous components from dying host cells, 
known as DAMPs [95, 102, 104]. NLRs and the RNA-
helicase family also recognize pathogens in the cell cyto-
plasm [102, 105–107]. Gut-derived PAMPs and DAMPs 
may be a key trigger [108], leading to an inappropri-
ate immune response or overwhelming inflammation, 
impaired clearance of hepatic pathogenic bacteria, and 
metabolic disorders [109, 110] (Table 2).

Liver sinusoidal endothelial cells
Because LSECs lack a basal lamina or septum under-
neath the endothelium, they provide communication 
areas known as fenestrae between sinusoidal blood and 
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the subendothelial space, facilitating interchange of sub-
strates between the blood and nearby stellate cells and 
hepatocytes and regulating lipoprotein traffic in the lat-
ter [63, 111]. Blood pressure and toxin levels affect the 
diameter of LSEC fenestrae in mice [112, 113]. Adhesion 
molecules of the LSEC immunoglobulin superfamily play 
crucial roles in leukocyte migration to inflammatory sites 
[114, 115]. Normal LSECs very faintly express vascular 
cell adhesion molecule-1, but its expression increases 
markedly under inflammatory stimulation in rats [116].

LSECs have an extremely high endocytotic capacity 
that is facilitated by SRs and lysosomal activity, which 
aids internalization and catabolism of several waste 
substances and small colloidal particles [117–119]. For 
instance, SR-A type 1/1.1 binds to various macromol-
ecules, such as LPS and lipoteichoic acid (LTA), in mice 
[120, 121]. Seven TLRs are now being studied in LSECs 
[122]. TLR-9 expressed on murine LSECs recognizes and 
binds unmethylated CpG motifs that are abundant in 
bacterial DNA to activate nuclear factor kappa-B (NF-
κB) and stimulates production of IL-1β and IL-6 [123]. 
In addition, LSECs initiate antiviral and proinflammatory 
responses via TLR3 and adaptive responses via TLR1, 
TLR6, and TLR8 [124]. Hence, LSECs form an anatomi-
cal sieve in the liver, continually monitoring antigens 
such as PAMPs and DAMPs, with proper tolerance, to 
maintain hepatic immune homeostasis.

Macrophages
Macrophages exhibit variable phenotypes, including 
M1-like macrophages that are conventionally triggered 
by TLR ligands and IFN-γ and M2-like macrophages 
activated by IL-4/IL-13 in addition to various states 
in between [125–127]. Proinflammatory cytokines are 
markedly produced by the M1 phenotype, which also 
generates reactive nitrogen and oxygen intermediates, 
promotes the Th1 immune response, and plays a sig-
nificant role in microbicidal and tumoricidal activities 
[125, 128]. Th2-biased responses are linked to the M2 
phenotype, which is typically associated with produc-
tion of IL-10 and IL-1 receptor antagonists [129, 130]. 
When macrophages are exposed to bacterial products 
from the gut in septic mice, they become polarized to 
the M1 phenotype and participate in the immunoin-
flammatory response [131]. Sepsis-induced acute liver 
injury in rats is attenuated by M2-like macrophages, 
presumably via upregulation of IL-10 expression and 
suppression of TNF production [132]. Both enhance-
ment of M2-like macrophage polarization and suppres-
sion of M1-like macrophage polarization protect the 
liver from excessive inflammation-induced injury [133, 
134] (Fig.  3). Lethal sepsis in mice can be ameliorated 
by neochromine S5, particularly due to its modulation 
of M1-like macrophages [135].

Fig. 2  An overview of the signaling pathway of TLR4 activated by LPS. LPS recognition, as facilitated by LBP and CD14, is mediated by TLR4 
and the MD-2 receptor complex. Activation of TLR4 signaling, classified into MyD88 dependent, MyD88-independent, and TRIF-dependent 
pathways, mediates activation of proinflammatory cytokines (TNF-α, IL-6, etc.) and type I interferon genes. IL, interleukin; LBP, LPS-binding 
protein; LPS, lipopolysaccharide; MD-2, myeloid differentiation-2; MyD88, myeloid differentiation factor 88; TLR4, toll-like receptor 4; TRIF, Toll/IL-1R 
domain-containing adaptor-inducing IFN-β; TNF, tumor necrosis factor
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Moreover, there are some special roles of KCs in 
defense against pathogens. For one, complement recep-
tor of the immunoglobulin superfamily (CRIg), expressed 
on subsets of resident macrophages in various tissues 
and especially on liver KCs, recognizes activated forms 
of the complement component C3, playing a significant 
role in removing additional particles and large complexes 
from the circulation and in effectively clearing opsonized 
infectious pathogens [136–138]. CRIg gene deficiency 
in mice markedly lowers KC uptake of Staphylococcus 
aureus and Listeria monocytogenes [136]. CRIg is also 
involved in direct capture of gram-positive bacteria from 
the circulation by binding to LTA in mice [139]. Bacteria 
such as Bacillus cereus and methicillin-resistant Staphy-
lococcus aureus are rapidly captured by KCs in mice and 
trigger platelets to change their adhesion mode to sustain 
glycoprotein IIb-mediated adhesion on the KC surface 
to encapsulate microorganisms, preventing pathogen-
induced endothelial permeability and liver damage [140]. 
However, when addressing macrophage-platelet interac-
tions, it is important to consider immunological reper-
cussions and potential complications such as thrombosis 
[141, 142]

Neutrophils, NK cells, and natural killer T (NKT) cells
Buildup of activated neutrophils in the liver microcir-
culation may lead to immune-mediated damage [143]. 
Neutrophil extracellular traps (NETs) are released by 
neutrophils during sepsis when they migrate to liver 
sinusoids [144, 145]. LPS or sepsis triggers intravascular 
NET development mediated by β2-integrin-dependent 
platelet–neutrophil interactions inside sinusoids in mice 
[146]. Furthermore, the neutrophil–endothelium inter-
action and NETs induce microthrombosis and vascular 
leakage in a rat model of sepsis [147].

NK cells are much more abundant in the liver than in 
the circulation; NKT cells with several distinct subsets 
contribute to antibacterial defense and are influenced by 
the intestinal microbiota. Both NK and NKT cells con-
tribute to the pathophysiology of liver damage [148, 149]. 
For example, after injection of poly I:C and D-galactosa-
mine in a murine fulminant hepatitis model, NK cells 
interact with KCs via NK Group 2 member D/ligand 
recognition, causing severe liver injury [150]. Moreo-
ver, when ischemia or toxin-induced injury occurs in 
the liver, the activated NKT cells predominantly secrete 
IFN-γ, leading to accumulation of neutrophils and 

Table 2  Roles of gut-derived PAMPs and DAMPs in the liver after sepsis

AIM2, absent in melanoma 2; BAs, bile acids; DAMPs, damage-associated molecular patterns; IECs, intestinal epithelial cells; IFN, interferon; IL, interleukin; KCs, Kupffer 
cells; LPS, lipopolysaccharide; LSECs, liver sinusoidal endothelium; NETs, neutrophil extracellular traps; NK, natural killer; NKT, natural killer T; NLRP3, nucleotide-
binding oligomerization domain (NOD)-like receptor protein 3; PAMPs, pathogen-associated molecular patterns; TLR, toll-like receptor; TNF, tumor necrosis factor

Components Roles Refs.

LPS Passing through the intestine to reach the IECs via multiple alternative paths
Detoxification of LPS by the liver and LPS-binding proteins in plasma
Activation of TLR4 signaling
Plasma lipoproteins neutralize LPS and accelerate LPS clearance

[84–87, 90, 93, 95]

LSECs Detecting and capturing pathogens, presenting antigens
Contributing to migration of leukocytes to inflammatory sites

[65, 115]

Macrophages [64, 100–103, 105, 
125, 127, 140]KCs Constituting the majority of hepatic macrophages in a healthy liver

Macrophage polarization M1-like macrophages, as triggered by TLR ligands and IFN-γ, produce proinflammatory 
cytokines (IL-1β, TNF, IL-6, etc.)
M2-like macrophages, as activated by IL-4/IL-13, IL-10, IL-1 receptor antagonist, are critical 
for anti-inflammatory effects and repairing tissue damage

Assembly of inflammasomes NLRP3 and AIM2 inflammasomes cause detrimental inflammation

Macrophage autophagy Alleviating hepatic inflammation

KCs-platelet interaction Platelet recruitment and limiting bacterial infection in sepsis

Neutrophils Migrating to liver sinusoids and releasing NETs to collect and remove bacteria [143, 144]

NK cells and NKT cells Contributing to antibacterial defense [148, 149]

Hepatocytes Hepatocyte dysfunction and abnormal lipid metabolism
Alterations of BA metabolism
Causing excretory liver dysfunction

[108–110]

Vagal nerve Serving as the primary sensory and efferent nerve in the digestive system; among the 
organs within the abdominal cavity, the liver is a major target of the vagus nerve
Stimulation of the efferent arm of vagal circuits can control release of proinflammatory 
cytokines and promote immune cell activation and differentiation toward a pro-regener-
ative phenotype
Vagus nerve signaling is a critical component of the cholinergic anti-inflammatory 
pathway

[60–62]
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macrophages and the promotion of liver damage in mice 
[151]. Another study revealed that activation of NKT 
can kill hepatocytes directly via Fas/FasL pathways in a 
murine model [152].

Therapy
Epithelial barrier‑targeting therapy
Due to the role of claudin-2 in gated paracellular chan-
nel formation and TJ channel modulation, it may be an 
ideal therapeutic target for regulating the epithelial bar-
rier [153]. In fact, regulation of TJ channel gating kinet-
ics and protein intermolecular interactions may have 
therapeutic value in inflammation-associated barrier fail-
ure, such as occludin S408 dephosphorylation. However, 

more studies are needed to identify pharmacological 
means of modulating gating activity for therapeutic pur-
poses. Moreover, microRNA-155 alleviates inflammation 
and intestinal barrier dysfunction in septic mice, with 
a decrease in TNF-α and IL-6 levels via inactivation of 
NF-κB signaling [154].

Targeting the gut microbiome
Probiotics are living nonpathogenic microorganisms 
that help preserve the intestinal barrier, inhibit patho-
gen spread, minimize bacterial displacement, and pre-
vent infection [155]. Nevertheless, genomic analysis in an 
epidemiological investigation detected six independent 

Fig. 3  When gut-derived PAMPs are exposed to hepatic macrophages, the macrophages are polarized and form large numbers of M1-like 
macrophages that mainly produce proinflammatory cytokines such as IL-1β, TNF, and IL-6; some M2-like macrophages typically produce IL-10 
and play a role in anti-inflammatory reactions. Inflammasomes are activated in hepatic macrophages and in response to pathogen infections and 
tissue injury. Moreover, neutrophils are attracted to the liver by chemotactic factors, such as CXCL1 and CXCL2 derived from KCs, and released NETs 
participate in removal of pathogens and toxins. Platelet recruitment is also critical for limiting bacterial infection, and platelets that interact with KCs 
play a crucial role in fighting against bacterial infection. However, when an inappropriate immune response or overwhelming inflammation occurs 
with high levels of DAMP formation and proinflammatory cytokine production in the liver, notable hepatocyte injury, macrophage autophagy, 
and apoptosis occur. Hepatic macrophages are supplemented by KC proliferation and circulating monocyte recruitment and differentiation. CXCL, 
chemokine (C-X-C motif ) ligand; DAMPs, damage-associated molecular patterns; IL, interleukin; KCs, Kupffer cells; NETs, neutrophil extracellular 
traps; PAMPs, pathogen-associated molecular patterns; TNF, tumor necrosis factor
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incidences of probiotic transfer from the capsule to the 
blood in ICU patients, resulting in bacteremia [156].

Prebiotics are indigestible dietary components, most 
of which comprise indigestible oligosaccharides that may 
specifically encourage the development and metabolism 
of beneficial gut microbiota, improving the balance of the 
intestinal flora and benefiting human health [157]. Cel-
lulose supplementation has been associated with partly 
decreased systemic inflammation in mouse sepsis mod-
els, suggesting a survival benefit conferred by microbes 
[158].

Fecal microbial transplantation (FMT) can save 
mice from lethal sepsis caused by pathogens isolated 
from a septic patient, which is associated with spread 
of butyrate-producing Bacteroidetes, improvement in 
pathogen clearance, and restoration of host immunity 
via interferon regulatory factor 3 [159]. FMT may be 
an option for treating sepsis; however, donor screen-
ing is necessary to prevent spread of bacteria that may 
cause unfavorable infection. Moreover, it is important to 
consider the advantages and hazards of FMT in diverse 
patient groups.

An entirely different strategy is the use of absorbent 
materials to prevent enterogenic toxins and bacterial 
products from entering the blood circulation and the 
liver. Indeed, cation-exchange resin targeting hyper-
kalemia and hyperphosphatemia has shown efficacy 
[160]. Nonabsorbable nanopore carbon reduced por-
tal vein pressure and liver biochemical markers in rats 
that underwent bile duct ligation, resulting in decreased 
endotoxin-induced KC stimulation [161, 162]. Therefore, 
by targeting the gut–liver axis, adsorbent materials is a 
possible treatment strategy for sepsis.

High‑density lipoprotein (HDL) as a potential therapy
One study revealed that HDL is able to neutralize LPS 
and accelerate LPS clearance via SR-BI-mediated LPS 
uptake in mice [163]. Numerous apolipoproteins (Apo) 
on HDL particles play crucial roles in clearing endotoxins 
to prevent infection.

For instance, the inflammatory response to LPS is 
inhibited when LPS binds to Apo AI or Apo E [164–166], 
but Apo AII and Apo CI bind to LPS, enhancing inflam-
mation [167, 168]. In a study of 63 severe septic patients, 
HDL levels < 20  mg/dL and Apo AI < 100  mg/dL on day 
1 were associated with an increase in overall and sepsis-
attributable  30-day mortality rates, prolonged intensive 
care unit stay and hospital-acquired infection [169].

Moreover, reconstituted HDL infusion reduces endo-
toxin-induced histological tissue injury in the lung, liver, 
and intestines of rats [170]. In addition, 111-indium bac-
terial labeling in mice highlights the possibility of poten-
tial hepatic bacterial clearance promoted by HDL uptake 

[171]. Thus, HDL may be an important target for future 
sepsis prevention and therapy.

Conclusions
During sepsis, gradual damage to gut barrier components 
due to inflammation causes increased intestinal perme-
ability and intestinal dysbiosis, including pathogenic 
microbial overgrowth and translocation of abundant 
PAMPs and DAMPs to the liver via the portal circulation 
or biliary tract. Because of its physical proximity to the 
gut, the liver, a first-line immune organ acting as a gate-
keeper between the gut and systemic circulation, can be 
rapidly shifted from immune hyporeactivity to produce 
a potent inflammatory response and effective adaptive 
immunity. However, an inappropriate immune response 
or overwhelming inflammation can be triggered by intes-
tinal hyperpermeability and gut-derived PAMPs and 
DAMPs after sepsis, resulting in impaired hepatic clear-
ance of pathogenic bacteria and metabolic disorder and 
contributing to MODS. Therefore, a better understand-
ing of the gut–liver interaction in sepsis may help prevent 
and limit sepsis-induced liver damage and improve the 
prognosis of patients with sepsis.
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