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Abstract 

Background:  Early prediction model of hemodynamic instability has the potential to improve the critical care, 
whereas limited external validation on the generalizability. We aimed to independently validate the Hemodynamic 
Stability Index (HSI), a multi-parameter machine learning model, in predicting hemodynamic instability in Asian 
patients.

Method:  Hemodynamic instability was marked by using inotropic, vasopressor, significant fluid therapy, and/or 
blood transfusions. This retrospective study included among 15,967 ICU patients who aged 20 years or older (not 
included 20 years) and stayed in ICU for more than 6 h admitted to Taipei Veteran General Hospital (TPEVGH) between 
January 1, 2010, and March 31, 2020, of whom hemodynamic instability occurred in 3053 patients (prevalence = 19%). 
These patients in unstable group received at least one intervention during their ICU stays, and the HSI score of both 
stable and unstable group was calculated in every hour before intervention. The model performance was assessed 
using the area under the receiver operating characteristic curve (AUROC) and was compared to single indicators like 
systolic blood pressure (SBP) and shock index. The hemodynamic instability alarm was set by selecting optimal thresh‑
old with high sensitivity, acceptable specificity, and lead time before intervention was calculated to indicate when 
patients were firstly identified as high risk of hemodynamic instability.

Results:  The AUROC of HSI was 0.76 (95% CI, 0.75–0.77), which performed significantly better than shock Index (0.7; 
95% CI, 0.69–0.71) and SBP (0.69; 95% CI, 0.68–0.70). By selecting 0.7 as a threshold, HSI predicted 72% of all 3053 
patients who received hemodynamic interventions with 67% in specificity. Time-varying results also showed that HSI 
score significantly outperformed single indicators even up to 24 h before intervention. And 95% unstable patients can 
be identified more than 5 h in advance.

Conclusions:  The HSI has acceptable discrimination but underestimates the risk of stable patients in predicting the 
onset of hemodynamic instability in an external cohort.
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Introduction
Hemodynamic instability is a crucial and common con-
dition in intensive care unit (ICU). One-third of ICU 
patients will develop hemodynamic instability and 
receive hemodynamic interventions with a mortality rate 
of 40–59% [1, 2]. The diagnosis of hemodynamic instabil-
ity manifests in a variety of clinical parameters, including 
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vital signs, physical examination, and laboratory meas-
urements which reflect underlying pathophysiology of 
cardiovascular system, impaired tissue perfusion, and 
cellular metabolism [1, 3]. Timely diagnosis and early ini-
tiation of intervention are still challenging, since the most 
important information for clinical decision is diluted by 
large quantities of data on comprehensive hemodynamic 
parameters from time to time.

Early warning score of hemodynamic instability has 
the potential to improve the timely detection and then 
initiation of intervention [4, 5]. Single-parameter shock 
indicators such as systolic blood pressure (SBP) and 
shock index (heart rate/SBP) were reported to detect 
hemodynamic instability [6, 7]. However, it either dete-
riorated in later stage of shock or underestimated the 
risk by only addressing cardiovascular system changes. 
Machine learning (ML) models with multi-parameters 
were developed as another way to continuously monitor 
and identify patients at high risk of hemodynamic insta-
bility [8–10]. It was reported that Hemodynamic Stability 
Index (HSI), which was developed based on patients’ data 
from US cohort across 54 hospitals, significantly outper-
formed single parameters like SBP and shock index with 
good generalization in another US cohort—MIMIC III 
[9, 11]. Thirty-three variables were selected as input fea-
tures of the machine learning model which included vital 
signs, laboratory and blood gas measurements, and ven-
tilation settings.

External validation is critical to quantify the generaliz-
ability of a risk prediction model, whereas only 5–7.1% 
of published studies were externally validated [12, 13], 
even less in the cohort from different regions and clini-
cal practices by independent researchers. Performance 
drift of prediction model occurred frequently in external 
validation due to the difference in outcome incidence, 
heterogeneity of predictors’ effect, and difference in case 
mix, i.e., the distribution of predictors values [12]. In this 
study, we aim to independently validate the above-men-
tioned HSI model in an external cohort from different 
region and clinical practice and to evaluate the case-mix 
effect on the performance drift.

Methods
Cohort selection
This retrospective study included mixed-ICU patients 
age > 20  years admitted to Taipei Veteran General Hos-
pital (TPEVGH) between January 1, 2010, and March 
31, 2020 (TPEVGH cohort for short). We excluded the 
patients who had incomplete data profiles or stayed 
in ICU for less than 6  h aligned with HSI development 
cohort (US cohort for short) (Fig. 1). We extracted those 
patients’ data from ICU clinical information system, 
i.e., Philips IntelliSpace Critical Care and Anesthesia 

(ICCA). This study was reviewed and approved by both 
ethical committee of TPEVGH (No. 2020-09-001AC) and 
Philips Internal Committee of Biomedical Experiments 
(ICBE-2-36635).

Definition of hemodynamic instability and annotation 
rules
Hemodynamic instability was labeled as any administra-
tion of inotropes, vasopressor, significant fluid support, 
and/or blood transfusions, which were aligned with US 
cohort on categories. Differences in annotating details to 
follow TPEVGH practices are shown in Table 1. A patient 
with hemodynamic instability can have multiple unstable 
segments annotated by hemodynamic interventions dur-
ing ICU stay (Additional file 1: Fig. S1), and only first seg-
ment after 6  h in ICU was used for this validation. We 
also excluded hemodynamic instability segments admin-
istrated within first 6 h in ICU into account.

HSI model
The HSI model is an early detection model to predict 
hemodynamic instability, which was developed by Philips 
Research North America based on patients’ data from 
eICU Research Institute (eRI) dataset [9, 14]. This model 
was developed with an ensemble of interpretable decision 
trees to obtain a single real-time risk score to continu-
ously monitor the hemodynamic status with 33 routinely 
measured physiological variables. The profiles of 33 fea-
tures including vital signs, laboratory results, blood gas 
measurements, and ventilation settings are presented 
in Additional file 1: Table S1 . HSI demonstrated gener-
alizability across clinically relevant patient populations 
on a retrospective validation set, and better accuracy in 
predicting hemodynamic interventions 1  h in advance 
compared to single parameters like SBP and shock index 
(AUROC was 0.82 compared to 0.69 and 0.39 for shock 
index and SBP) [9]. HSI provided a risk score even with 
a subset of missing variables and was calculated on an 
hourly interval to detect unstable segments.

Data processing
All variables passed through a plausibility filter (Addi-
tional file  1: Table  S1) to check whether their values 
were in the physiologically valid range and outliers were 
replaced as missing. For the patient in unstable group, 
time-varying data of each variable were extracted every 
hour that preceded the onset time of hemodynamic 
interventions. For the patient in stable group, data of 
each variable were extracted within 5-h observation win-
dow after patients’ admission to ICU. The missing values, 
which were not available at that time point of extrac-
tion, were processed following the method reported in 
HSI model study [9, 15] (Additional file  1: Table  S2 ). 
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The noninvasive blood pressures were used to impute 
as the invasive variables when invasive measurements 
were not available. The fraction of inspired oxygen (FiO2) 
was imputed to room oxygen level of 0.21, and the rest 
was kept missing since the HSI model allowed that some 
measurements were not available.

Statistics and case‑mix effect
Patients’ characteristics and baseline characteristics 
including demographics, admission type of ICU, ICU 
unit type, APACHEII score and admission sources were 
compared between unstable group with hemodynamic 
interventions and stable group without hemodynamic 
interventions. Nonparametric tests were applied since 
the population data did not have a normal distribution 
[16]. Kruskal–Wallis test was used to test the significance 
of continuous variables in the form of median and quar-
tiles across both groups. Fisher’s exact test was used to 
test the categorical variables. The model performance 
was assessed using the area under the receiver operating 
characteristic curve (AUROC), and Delong method was 
used to calculate 95% confidence interval (CI) of AUROC 
and to compare with single indicators like SBP and shock 
index [17]. The hemodynamic instability cutoff was 
set by selecting optimal threshold with high recall, i.e., 
sensitivity, acceptable specificity, and lead time before 

intervention was calculated to indicate when patients 
were firstly identified as high risk of hemodynamic insta-
bility. In addition, calibration plot was visualized to assess 
the agreement between predictions and observations. 
Additionally, to assess case-mix effect, i.e., the effect of 
the difference in predictor values’ distribution on pre-
dictive performance between the development and vali-
dation cohort [18], we calculated the median for each 
continuous variable, respectively, and compared with 
ones in US cohort.

Results
Of 17,062 ICU stays, 15,967 patients who admitted to 
TPEVGH ICU were identified in our retrospective study 
over 10 years. In total, 3053 (19.1%) patients were in the 
unstable group, and the rest 80.9% (12,914) patients were 
in the stable group (Fig. 1).

Table 2 shows that patients in stable group had signifi-
cantly higher APACHEII score in first 24  h admitted to 
ICU (p < 0.001), higher mortality (p < 0.001), and longer 
ICU stay (p < 0.001). Compared to stable patients, unsta-
ble patients admitted less from emergency (p < 0.001), and 
more from medical ICU (p < 0.001). However, no signifi-
cant differences were found in age (p = 0.237) and gen-
der (p = 0.71) between two groups. Additionally, patients 
with hemodynamic interventions have significantly lower 

Table 1  Criteria to annotate hemodynamic instability and differences between US and TPEVGH cohort

*US cohort which was used to developed Hemodynamic Stability Index (HSI)

**TPEVGH Cohort, Taipei Veteran General Hospital Cohort for this HSI external validation study

Hemodynamic instability was annotated by hemodynamic interventions under any of the following criteria

US Cohort* TPEVGH Cohort**

Administration of any quantity of any of the following inotropic and vaso‑
pressor medications:

Administration of any quantity of any of the following inotropic and 
vasopressor medications:

 1. Dobutamine  1. Dobutamine

 2. Dopamine  2. Dopamine

 3. Epinephrine  3. Epinephrine

 4. Levophed  4. Levophed

 5. Neosynephrine  5. Norepinephrine

 6. Norepinephrine  6. Phenylephrine

 7. Phenylephrine  7. Vasopressin

 8. Vasopressin

Administration of fluid therapy (colloid or crystalloid) in the following 
dosages:

Administration of fluid therapy (colloid or crystalloid) in the following 
dosages:

 1. 2400 cc in 8 h  1. The same as US

 2. 3000 cc in 12 h  2. 25% Albumin 200 cc with 2 h

Administration of packed red blood cells (PRBCs) in either of the following 
dosages:

Administration of packed red blood cells (PRBCs) in either of the following 
dosages:

 1. 800 cc PRBC over course of 24 h  1. PRBC > 1500 cc with 24 h

 2. 500 cc in 2 hours followed by fluid therapy within 12 h. (What quali‑
fies as “fluid therapy" is described in this table, titled "Administration of 
Fluid Therapy.")

 2. PRBC 500 cc + FPP 500 cc + PLT Pheresis 500 cc within 6 h



Page 4 of 10Dung‑Hung et al. Critical Care          (2022) 26:215 

blood pressure, hemoglobin, and hematocrit (p < 0.001), 
higher heart rate, central venous pressure (CVP) 
(p < 0.001), blood urine nitrogen (BUN), lactate, aspartate 
transaminase (AST), creatinine, peak airway pressure, 
mean airway pressure, and FiO2 (p < 0.001). The detailed 
baseline data of 33 features between two groups were cal-
culated within 24 h after ICU admission and are shown 
in Additional file 1: Table S3.

Model validation and performance
Hemodynamic instability segments were annotated by 
interventions including inotropic/vasopressor medica-
tion, fluid therapy, and/or blood transfusion. AUROC 
of HSI on TPEVGH cohort 1 hour before the interven-
tion was 0.76 (95% CI 0.75–0.77) according to annotation 
rules with hemodynamic interventions (19.1%), which 
performed better than Shock index (AUROC 0.7; 95% CI 
0.69–0.71) and SBP (AUROC 0.69; 95% CI 0.68–0.70). 
Details are shown in Additional file 1: Table S4. And we 
also found out that only 92 patients with hemodynamic 
interventions in TPEVGH cohort did not administrate 
vasopressor/inotropic medications and the AUROC 
remained the same by excluding these 92 patients from 

unstable group. HSI score was hourly calculated by using 
33 features in 24  h before first hemodynamic interven-
tion. Time-varying results of HSI score show that it out-
performed shock index and SBP even up to 24 h before 
first hemodynamic interventions (Fig. 2a).

Sensitivity analysis and selection of optimal threshold
The output of HSI model is the probability to indicate a 
risk of hemodynamic interventions. The higher probabil-
ity is the higher risk of hemodynamic instability (unsta-
ble). We selected the alarm threshold of HSI score based 
on the performance of HSI on TPEVGH cohort. The 
threshold is used as a cutoff of HSI score to get unstable 
segments. Figure 2c shows the recall–precision curve of 
HSI model. Ideally, the intersection point is the break-
even point to get an optimal threshold without com-
promising the precision, but this point was not the best 
case since recall (sensitivity of hemodynamic instability) 
was lower than 50%. From the confusion matrix shown 
in Additional file  1: Table  S5 , the threshold was in the 
range of 0.65 to 0.70 when the drop of recall and increase 
in specificity could be balanced. To enhance the recall of 
prediction model as an early warning alarm, we finally 

Fig. 1  Flow diagram for inclusion and exclusion criteria of patients



Page 5 of 10Dung‑Hung et al. Critical Care          (2022) 26:215 	

chose 0.7 as the threshold for TPEVGH cohort. And it is 
also in the range of break-even point between specificity 
and recall in Fig.  2d. The calibration plot also indicated 
that HSI had better agreement between predictive and 
observational hemodynamic instability risk when the 
threshold was over 0.7, than ones under 0.7, especially 
ones over 0.82 (shown in Additional file 1: Fig. S2).

Evaluation of potential clinical benefit and lead time 
before intervention
We have selected 0.7 as a threshold and calculated HSI 
scores to predict hemodynamic interventions hour by 
hour. Of 15,967 ICU stays, 3053 patients administrated 
interventions and 2190 patients (72%) can be identi-
fied by using HSI model 1 h before the interventions. 

The fraction of true alarm decreased to below 60% when 
it is over 6 h in advance to hemodynamic interventions 
(Fig. 3a). HSI has the higher correctly trigger rates than 
other two single parameters including shock index and 
SBP. The false alarm rate kept around 0.3 through all 24 h 
before interventions (Additional file  1: Fig. S3). Once 
alert was addressed at first time of HSI score > 0.7, 95% 
unstable patients can be identified over 5 h in advance to 
interventions (Fig. 3b).

Model performance in different subgroups of patients
We evaluated the HSI model in subgroups with dif-
ferent admission sources and compared the difference 
between medical and surgical ICU as well in Fig.  4a. 
Patients admitted from cardiology department got the 

Table 2  Patient characteristics comparison between unstable and stable group

a Kruskal–Wallis test
b Fisher’s exact test

Characteristics Unstable Stable Overall p value
N = 3053 N = 12,914 N = 15,967

Age, median [Q1, Q3] 70 [58, 82] 70 [56, 82] 70 [57, 82] 0.237a

Gender n (%)

 Female 1058 (34.6) 4524 (35.0) 5582 (35.0) 0.71b

 Male 1995 (65.4) 8390 (65.0) 10,385 (65.0)

APACHEII, median [Q1, Q3] 25 [20, 31] 21 [15, 26] 22 [16, 28] < 0.001a

Length of stay (days), median [Q1, Q3] 12 (7, 19) 5 (2, 8) 6 (3, 10) < 0.001a

Admission type n (%)

 Emergency 1228 (40.2) 5735 (44.4) 6963 (43.6) 0.012b

 Not emergency 1427 (46.7) 5965 (46.2) 7392 (46.3)

 Other 398 (13.1) 1207 (9.4) 1605 (10.1)

ICU n (%)

 Surgical 1007 (33.0) 5277 (40.9) 6284 (39.4) < 0.001b

 Medical 2046 (67.0) 7637 (59.1) 9683 (60.6)

ICU mortality n (%)

 Survivors 1805 (59.1) 11,533 (89.3) 13,338 (83.5) < 0.001b

 Death 1248 (40.9) 1381 (10.7) 2629 (16.5)

Admission source, n (%)

 Cardiovascular medical 50 (1.6) 1219 (9.4) 1269 (7.9) < 0.001b

 Cardiovascular surgical 37 (1.2) 269 (2.1) 306 (1.9)

 Gastrointestinal medical 373 (12.2) 1331 (10.3) 1704 (10.7)

 Gastrointestinal surgical 536 (17.6) 2602 (20.1) 3138 (19.7)

 Metabolic/endocrinology medical 196 (6.4) 606 (4.7) 802 (5.0)

 Neurologic medical 5 (0.2) 20 (0.2) 25 (0.2)

 Neurologic surgical 3 (0.1) 24 (0.2) 27 (0.2)

 Others medical 1419 (46.5) 4448 (34.4) 5867 (36.7)

 Others surgical 329 (10.8) 1865 (14.4) 2194 (13.7)

 Respiratory medical 3 (0.1) 13 (0.1) 16 (0.1)

 Respiratory surgical 11 (0.4) 23 (0.2) 34 (0.2)

 Trauma surgical 91 (3.0) 494 (3.8) 585 (3.7)
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better results with AUROC of 0.89 (95% CI: 0.87–0.92), 
and highest recall in surgical group admitted from car-
diology department. AUROC values in other admission 
source subgroups were close to 0.76 (0.72–0.78), which 
was the comparable performance with the whole cohort 
(Additional file 1: Table S6). Figure 4a also indicates small 
variance of precision across different admission sources. 
Figure  4b shows that the lower recall and higher preci-
sion were found in death group.

Model performance over time
The performance of HSI over time was also plotted year 
by year as shown in Fig.  4c. The AUROC range was 
around 0.70 to 0.80. There was the higher AUROC value 

in 2017 and the worst AUROC value in 2013. Since there 
are only 3  months in 2020, we combined them in 2019 
data to calculate AUROC.

Inspection of dataset shift on case‑mix effect
Dataset shift in terms of the difference in the median 
of predictors was observed in individual features from 
HSI development cohort in US to our external valida-
tion cohort in TPEVGH. The notable feature median dif-
ferences were blood glucose with 37%, AST with 74%, 
and BUN with 72% higher in TPEVGH cohort. The rest 
features had similar distributions in median as shown 
in Fig.  2b, and detailed distribution shift between HSI 

Fig. 2  Model and threshold performance plots. a Time-varying results of HSI model at different prediction times before hemodynamic 
interventions, compared to Shock Index and systolic blood pressure (systolic BP); b median comparison between the US cohort and TPEVGH cohort 
(not all the features are listed due to complications of whole figure); c HSI recall–precision curve of TPEVGH cohort; d HSI recall–specificity curve of 
TPEVGH cohort
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development cohort in US and our external validation 
cohort in TPEVGH is also shown in Additional file  1: 
Table S7.

Discussion
The HSI model provides an early warning of hemody-
namic instability by detecting hemodynamic interven-
tions. The external validation of this model outperforms 
traditional measures like shock index and SBP (AUROC: 
0.76 vs. 0.70 vs. 0.69, respectively). It is still in an accept-
able range and is worth to be implemented in clinical 
setting, though the AUROC decreased from 0.82 in US 
cohort to 0.76 in TPEVGH cohort. The higher probability 
predicted by HSI model indicates the larger risk of hemo-
dynamic instability. The threshold of 0.7 was selected as 
cutoff based on the performance on TPEVGH cohort 
with higher recall (0.72) without compromising a lot in 
the drop of specificity (0.67). Calibration plots showed 
that the overall performance of HSI model underesti-
mated the risk of hemodynamic instability in TPEVGH, 
whereas the patients who were predicted as hemody-
namic instability (probability > 0.7) had better agreement 
between predictive and observation values. The model 
tends to underestimate the risk when training cohort is in 
a lower incidence; however, the incidence was compara-
ble between training and external validation cohort (19% 
vs. 18%) [19]. Heterogeneity of predictors’ effect and dif-
ference in case mix can be the reason of underestimation. 
We still have space to optimize the performance of HSI 
by retraining. Time-varying results of HSI model showed 
the promising future for clinical applications since 95% 
patients with hemodynamic instability could be detected 
over 5  h before hemodynamic interventions with the 
false alarm rate being remained at 30%. Besides, we also 
found that even some common measured features were 

still missing in some features such as 22.1% missing of 
lactate in TPEVGH cohort, although dramatically less 
than US cohort (Additional file 1: Table S2). In contrast 
to prior work by Hyland et  al., the full model with 112 
variables leads to high ratio of imputation for missing 
features and the imputation results in overrating patients’ 
risk and increasing high ratio of false alert [8].

This study is the first work on hemodynamic instability 
to externally validated in Asian cohort by the independ-
ent researchers. Although features and model aligned 
with original HSI development study, annotation crite-
ria with minor adjustment, performance reduction was 
observed. Annotation criteria were adjusted to follow the 
clinical practices of TPEVGH. In this case, we can know if 
HSI model can be applicable in TPEVGH with their prac-
tices on hemodynamic interventions. And we also found 
out that 92 patients in TPEVGH cohort administrated 
only fluid therapy and/or blood transfusion, and the per-
formance of HSI was not affected once we excluded these 
92 patients. Prediction models frequently performed 
worse in external cohort than in development cohort, 
due to the difference in outcome incidence, heterogene-
ity of predictors’ effect, and difference in the distribution 
of predictors’ value [12, 20, 21]. In our study, the inci-
dence of hemodynamic instability is not largely deviated 
from original US cohort (19% vs. 18%), and performance 
was not changed after calibrating the incidence. Further, 
distribution of some features in terms of median shifts 
a lot. The largest differences in median were blood glu-
cose with 37% increase, AST with 74% increase, and BUN 
with 72% increase (Fig. 2b).

According to the current critical care glucose control 
guidelines, the glucose level of critically illness patient 
should be controlled within 150–180 mg/dl [22]. How-
ever, due to severe complications of hypoglycemia, 

Fig. 3  Time-varying true alarms and leading time plots. a The fraction of events that correctly trigger an alarm is reported per hour in 24 h before 
any hemodynamic intervention occurs. b The distribution of timing of the first alarm in the 24 h before an event. 95% unstable patients can be 
identified over 5 h in advance to interventions
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glucose control is not so restricted in TPEVGH. Median 
sugar level in US cohort is about 123 mg/dl and that in 
TPEVGH cohort is about 168  mg/dl. Both are within 
acceptable range. However, it could influence the per-
formance owing to case-mix effect. We also noticed 
that BUN level is also relatively higher in TPEVGH 
population 31 mg/dl than in US cohort 18 mg/dl which 
may also contribute to the impairment of model’s per-
formance. We reviewed the previous studies showing 
that chronic kidney disease (CKD) and impaired renal 
function were closely related to higher mortality rates 

in ICU patients [23]. The prevalence of total CKD was 
15.5% in Taiwan which was higher than the rest of the 
world [24]. As to AST, the frequency of acquired liver 
injury and failure in critical illness has been signifi-
cantly increased. Liver injury and failure are observed 
in up to 20% of patients in ICU [2]. The median AST 
level in US cohort is about 27U/L and that in TPEVGH 
cohort is about 47U/L. In TPEVGH, the normal range 
was set as below 40U/L. According to the review of 
Thomas Horvatits et al. [25], we believe that the higher 
AST level in critical illness patients is reasonable. In 

Fig. 4  Model performance in different subgroup cohorts. a Model performance in different admission source subgroups of TPEVGH cohort. * 
means outliers, identified by 1.5*IQR; b model performance in different subgroups of TPEVGH cohort on gender, admission type, surgical status, and 
death. * means outliers, identified by 1.5*IQR; c HSI model AUROC performance by year of TPEVGH cohort
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contrast, the median AST of US cohort is in the middle 
of normal range which seems to be unexplainable. Dif-
ferent laboratory and test machines might have differ-
ent results and reference ranges, which may bring to a 
different conclusion. We also reviewed the incidence of 
hepatitis in critical illness. There is no available data of 
in-ICU-hepatitis incidence so far. According to a previ-
ous study, the incidence of sepsis-associated liver injury 
is 34.7% which is not rare in ICU [26].

We also performed the analysis according to differ-
ent admission source (Fig.  4a). As compared to the US 
cohort, this external validation by TPEVGH cohort still 
shows great recall on cardiovascular group either in 
medical or in surgical patients. When it comes to neuro-
logical group, TPEVGH cohort remains in a higher recall 
up to 70%; however, it is lower in US cohort (< 70%). The 
explanation may be due to differences in admission char-
acteristics of patients. In US cohort, the neurological 
patients received vasoactive agent is not necessarily due 
to hemodynamic instability. In TPEVGH, typical patients 
from neurological department will not be transferred 
in the ICU, and the baseline of noninvasive SBP was 
112.3  mmHg in median (Q1: 101.8, Q3: 127.2). Most of 
the patients were admitted into our ICU due to sepsis or 
medical problems.

We also investigated subgroup analysis of gender, 
admission type, surgical status, and mortality. No dif-
ferences of performance on recall and precision were 
identified in gender, admission type, and surgical status, 
which indicated the robust performance of HSI model in 
subgroups. Low recall and high precision were found in 
death group which were owing to model characteristics. 
The performance of HSI over year was also stable to the 
average and demonstrated robustness of HSI over time.

Limitations
The key limitation of this study is that we performed on 
cohort from a single medical center, although the cohort 
was large and over 10 years. Another limitation is the 
constraints of HSI model itself. Hemodynamic vari-
ables like cardiac output, stroke volume, and stroke vol-
ume variation would likely add predictive power to HSI 
once integrated with clinical information system [27, 28]. 
Other features such as sonography, medical images, and 
even drugs such as antibiotics may also play an important 
part of prediction.

Our next step is to optimize the HSI model to over-
come the underestimated status and perform federated 
learning between hospitals to gain a generalized result. 
We also will integrate the model into our clinical infor-
mation system to continuously collect clinical data, vali-
date, and further optimize our model.

Conclusion
This external validation indicates that the HSI has 
acceptable discrimination but underestimates the risk 
of stable patients in predicting the onset of hemody-
namic instability. The leading time of 5 h could be used 
as a clinical alarm. The optimized AI model will be fur-
ther validated to address the case-mix effect by dataset 
shift.
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