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Abstract 

Background:  The prognostic value of extravascular lung water (EVLW) measured by transpulmonary thermodilution 
(TPTD) in critically ill patients is debated. We performed a systematic review and meta-analysis of studies assessing the 
effects of TPTD-estimated EVLW on mortality in critically ill patients.

Methods:  Cohort studies published in English from Embase, MEDLINE, and the Cochrane Database of Systematic 
Reviews from 1960 to 1 June 2021 were systematically searched. From eligible studies, the values of the odds ratio 
(OR) of EVLW as a risk factor for mortality, and the value of EVLW in survivors and non-survivors were extracted. Pooled 
OR were calculated from available studies. Mean differences and standard deviation of the EVLW between survivors 
and non-survivors were calculated. A random effects model was computed on the weighted mean differences across 
the two groups to estimate the pooled size effect. Subgroup analyses were performed to explore the possible sources 
of heterogeneity.

Results:  Of the 18 studies included (1296 patients), OR could be extracted from 11 studies including 905 patients 
(464 survivors vs. 441 non-survivors), and 17 studies reported EVLW values of survivors and non-survivors, including 
1246 patients (680 survivors vs. 566 non-survivors). The pooled OR of EVLW for mortality from eleven studies was 1.69 
(95% confidence interval (CI) [1.22; 2.34], p < 0.0015). EVLW was significantly lower in survivors than non-survivors, with 
a mean difference of −4.97 mL/kg (95% CI [−6.54; −3.41], p < 0.001). The results regarding OR and mean differences 
were consistent in subgroup analyses.

Conclusions:  The value of EVLW measured by TPTD is associated with mortality in critically ill patients and is signifi‑
cantly higher in non-survivors than in survivors. This finding may also be interpreted as an indirect confirmation of the 
reliability of TPTD for estimating EVLW at the bedside. Nevertheless, our results should be considered cautiously due 
to the high risk of bias of many studies included in the meta-analysis and the low rating of certainty of evidence.

Trial registration the study protocol was prospectively registered on PROSPERO: CRD42019126985.
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Background
Extravascular lung water (EVLW) represents the amount 
of lung fluid outside the pulmonary vasculature, i.e. the 
cellular and extracellular fluid volume of the intersti-
tial and alveolar spaces [1, 2]. As such, its elevation is an 
important pathophysiological pattern of hydrostatic pul-
monary edema and acute respiratory distress syndrome 
(ARDS) [3]. The level of EVLW is correlated with the 
degree of diffuse alveolar damage in patients with ARDS 
[4].

Today, transpulmonary thermodilution (TPTD) is the 
only technique that allows the estimation of the total 
amount of EVLW [2]. This estimation has been vali-
dated against gravimetry, which is the reference method, 
in an autopsy study in humans [5]. It has been shown 
that TPTD is able to detect small and rapid increases in 
EVLW [6], contributing to the validation of the method.

Several studies have investigated the relationship between 
the amount of EVLW and mortality in septic patients [7], 
patients with ARDS [8] and critically ill patients in gen-
eral [9]. Nevertheless, many of these studies were of small 
size [10, 11], some were retrospective [9, 12] and the link 
between EVLW and mortality reported by some of them 
was weak [13, 14]. A previous meta-analysis on the associa-
tion of EVLW and mortality was performed ten years ago 
[15]. Nevertheless, it included studies in which EVLW had 
been evaluated through the double-indicator technique, 
which is not used anymore. Moreover, several other studies 
have since been performed. The relationship between the 
value of EVLW and outcome remains an important ques-
tion. Confirming the prognostic value of EVLW may rein-
force the clinical interest of the variable [16]. In addition, if 
it exists, it may indirectly contribute to confirming the reli-
ability of its estimation by TPTD.

Methods
Clinical research question
The clinical research question was: What is the rela-
tionship between EVLW and mortality in critically ill 
patients?

PICO statement
The PICO statement was the following:

•	 P-patient, problem or population: Critically ill adult 
patients.

•	 I-intervention or exposure: Measurement of EVLW 
through the single indicator transpulmonary dilution 
method.

•	 C-comparison, control or comparator: Compari-
son of EVLW between survivors and non-survivors 
patients, considering either the baseline value or 
maximal value reached during the intensive care unit 
(ICU) stay.

•	 O-outcome: The primary outcome was the odds ratio 
(OR) of EVLW as a risk factor for mortality, defined 
either as in-hospital or 28-day or ICU mortality. The 
secondary outcome was mean differences between 
survivors and non-survivors in terms of EVLW value.

Identification of records
Our aim was to identify all studies evaluating the asso-
ciation between EVLW measured by TPTD, whatever the 
threshold used to define an elevated EVLW, and mortal-
ity in critically ill patients. We included in our analysis 
only studies that were published in full text or accepted 
for publication in indexed journals.

We searched the US National Library of Medicine’s 
MEDLINE database, the Embase database, and the 
Cochrane Database of Systematic Reviews for relevant 
studies published from 1960 to 1 June, 2021. We used the 
following medical subject headings and keywords: ‘‘EVLW”, 
“EVLWi”, “lung water”, “survival”, and “mortality”. The com-
plete searching strategy is reported in Additional file 1: S1. 
We also looked for relevant articles cited in review arti-
cles, commentaries, editorials, and in the references of 
the original articles identified by our search. We excluded 
studies performed in children and in burned patients, stud-
ies published in languages other than English, and studies 
in which EVLW was estimated by methods different from 
TPTD. The search was performed by two authors (FG and 
RS) until no new records could be found. Conflicts regard-
ing the inclusion or exclusion of studies were resolved by 
consensus with a third investigator (XM). The meta-analy-
sis was performed according to the PRISMA statement [17] 
(Additional file 1: S2). The study protocol was prospectively 
registered in PROSPERO (CRD42019126985).

Data extraction
Using a standardized data form, we extracted several data 
elements from the included studies, including charac-
teristics of the investigated population, the method used 
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to measure EVLW, and the timing at which EVLW was 
measured. We collected the OR with its 95% confidence 
interval (95% CI) of EVLW as a risk factor for mortality, if 
available. If data needed for the analysis were not retriev-
able from the text, tables or figures, we systematically 
asked them to the authors of the studies.

Assessment of risk of bias in included studies
Two authors (FG and RS) independently assessed the 
overall quality of evidence at the outcome level according 
to the Grading of Recommendations, Assessment, Devel-
opment, and Evaluation (GRADE) system [18]. Moreo-
ver, they assessed the risk of bias of the included studies 
by following the criteria specified in the QUIPS tool [19]. 
It should be noted that this tool was not the one we ini-
tially planned to use for assessing the risk of bias (PROS-
PERO: CRD42019126985). For each criterion, the risk of 
bias was judged as high, moderate, or low. Disagreements 
between the reviewers were resolved by consensus with a 
third investigator (XM).

Statistical analysis
Pooled ORs were performed using continuity corrections 
[20]. Mean differences and standard deviation (SD) of the 
EVLW between survivors and non-survivors were con-
sidered. If a confidence interval of EVLW was reported, 
we converted it to SD for pooled analysis. The 95% CI 
was calculated using the Wilson method [21]. A ran-
dom effects meta-analysis model was computed on the 
weighted mean differences (WMD) across the two groups 
to estimate the pooled size effect. A value of I2 ≥ 75% was 
considered as indicating a high heterogeneity [22].

To investigate the source of heterogeneity, pre-defined 
subgroup analyses were performed:

•	 Timing of EVLW measurement: baseline (≤ 48  h) 
versus maximal value

•	 EVLW indexation: actual versus predicted body 
weight

•	 Study population: ARDS versus non-ARDS
•	 Risk of bias: “moderate and low” versus “high”.

Publication bias was investigated using Deek’s test [23, 
24]. The statistical significance was set at a p value < 0.05. 
The analyses were performed by using Review Manager 
version 5.3, R 3.3.5 with metafor packages [25].

Results
Characteristics of the included studies
We included 18 studies that reported EVLW and mortal-
ity, with a total of 1296 patients enrolled [7, 8, 11–14, 26–
37]. The flow chart is presented in Fig. 1. Data from nine 

studies [7, 8, 13, 14, 26, 31, 32, 36, 37] that were missing 
in the published articles were obtained by direct contact 
with authors, or retrieved in our database for studies per-
formed by our group.

The main characteristics of the studies are reported 
in Table  1. Nine studies were performed specifically 
in ARDS patients [8, 11, 14, 30, 33–37], seven in septic 
shock patients [7, 12, 27–29, 31, 32], and two in unse-
lected critically ill patients [13, 26]. All studies were per-
formed in patients admitted to the ICU. Of them, the OR 
of EVLW as a risk factor for mortality could be extracted 
from 11 studies [8, 12, 13, 26, 28–30, 32, 33, 36, 37]. In 17 
studies [7, 8, 11–14, 26–35, 37], the value of EVLW was 
provided at baseline, i.e. at the first time, it was measured 
(Table 1). The maximal value of EVLW observed during 
the study period was available in ten studies [7, 8, 12–14, 
31, 32, 34, 36, 37], one in unselected critically ill patients 
[13], five in patients with ARDS [8, 14, 34, 36, 37] and 
four in patients with septic shock [7, 12, 31, 32] (Table 1).

Mortality was defined as the 28-day mortality in seven 
studies [7, 8, 12–14, 27, 36], as the ICU mortality in nine 
[11, 26, 29–34, 37], and as the in-hospital mortality in 
two studies [28, 35] (Table 1). The results of the GRADE 
and the QUIPS evaluation are provided in Table  2 and 
Additional file 1: S3.

Association of EVLW with mortality
The pooled OR obtained from the 11 studies that 
reported OR [8, 12, 13, 26, 28–30, 32, 33, 36, 37] was 1.69 
(95% CI [1.22; 2.34], I2 = 98.98%, p < 0.0015) (Fig. 2). Sev-
enteen studies reported EVLW values of survivors and 
non-survivors, including 1 246 patients (680 survivors vs. 
566 non-survivors) [7, 8, 11–14, 27–37] (Additional file 1: 
S4). The weighted mortality rates are presented in Addi-
tional file 1: Figure S5.

Overall, EVLW was significantly lower in survivors com-
pared to non-survivors, with a mean difference of − 4.97 mL/
kg (95% CI [− 6.54; − 3.41], p < 0.001) (Fig. 3). Since the statis-
tical heterogeneity was significant (I2 = 93.8%, p < 0.001), the 
random-effects model was used to pool the data. The results 
in the prespecified subgroups were as follows.

Baseline EVLW versus maximal EVLW
When comparing OR of EVLW as a risk factor for mor-
tality between studies in which EVLW at baseline was 
reported [28–30, 33, 36] to those in which maximal 
EVLW was reported [8, 12, 13, 26, 32, 37], the EVLW 
remained to be a risk factor in both groups (OR of group 
baseline EVLW: 2.22, 95% CI [1.17; 4.20] vs. OR of group 
maximal EVLW: 1.48, 95% CI [1.01; 2.17], p = 0.38) 
(Additional file 1: Figure S6).

In the eight studies in which the EVLW at base-
line was reported [11, 27–31, 33, 35], it was lower in 
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survivors than in non-survivors (WMD: − 6.90 mL/kg, 
95% CI [− 10.27; − 3.53], p < 0.001). In the nine studies 
in which the maximal value of EVLW was reported [7, 
8, 12–14, 32, 34, 36, 37], it was also lower in survivors 
than in non-survivors (WMD: − 3.43  mL/kg, 95% CI 
[− 5.28; − 1.59], p < 0.001). The WMD was not different 
between the two categories of studies (p = 0.08) (Addi-
tional file 1: Figure S7).

Actual versus predicted body weight for EVLW indexation
When comparing OR of EVLW as a risk factor for mor-
tality between studies in which EVLW was indexed to 
actual body weight [13, 28, 32] to those in which it was 
indexed to predicted body weight [8, 12, 26, 29, 30, 32, 
33, 36, 37], EVLW remained a risk factor in both groups 
(OR of actual body weight for EVLW indexation: 2.37, 
95% CI [1.47; 3.83] vs. OR of predicted body weight for 
EVLW indexation: 1.54, 95% CI [1.13; 2.10], p = 0.16) 
(Additional file 1: Figure S8).
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Fig. 1  PRISMA flowchart
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In the four studies that reported the EVLW indexed 
to actual body weight [7, 13, 27, 28], the survivors had 
significantly lower values of EVLW than non-survivors 
(WMD: − 5.92 mL/kg, 95% CI [− 11.09; − 0.75], p = 0.02). 
This was also the case in the 13 studies in which the 
EVLW was indexed to predicted body weight [8, 11, 12, 
14, 29–37] (WMD: − 4.64 mL/kg, 95% CI [− 6.35; − 2.94], 
p < 0.001). The WMD was not different between the two 
groups (p = 0.65) (Additional file 1: Figure S9).

ARDS population versus non‑ARDS population
When comparing OR of EVLW acting as a risk factor for 
mortality between studies that included ARDS patients 
[8, 30, 33, 36, 37] to those that included non-ARDS 
patients [12, 13, 26, 28, 29, 32], EVLW remained a risk 
factor in both groups (OR in ARDS patients: 1.09, 95% 
CI [1.05, 1.14] vs. OR in non-ARDS patients: 1.83, 95% CI 
[1.20, 2.79], p = 0.57) (Additional file 1: Figure S10).

In the nine studies dedicated to ARDS patients [8, 11, 14, 
30, 33–37], the EVLW was lower in survivors than non-
survivors (WMD: − 5.16  mL/kg, 95% CI [− 6.48; − 3.84], 
p < 0.001). This was also the case in the eight studies that 
included non-ARDS patients [7, 12, 13, 27–29, 31, 32] 
(WMD: − 5.00  mL/kg, 95% CI [− 7.65; − 2.35], p < 0.001). 

No significant difference in WMD was observed between 
the two groups (p = 0.92) (Additional file 1: Figure S11).

Risk of bias
When comparing studies according to the global risk of 
bias, there was no significant difference in OR between 
the studies with a high [26, 28, 30, 36] and moderate and 
low [8, 12, 13, 29, 32, 33, 37] risk of bias (OR of studies 
with low risk of bias: 1.46, 95% CI [1.10; 1.94] vs. OR in 
studies with a high risk of bias 2.62, 95% CI [1.04; 6.60], 
p = 0.37) (Additional file 1: Figure S12).

In studies with a moderate and low risk of bias [8, 
12–14, 29, 32, 33, 37], the EVLW was lower in survi-
vors than in non-survivors (WMD: − 3.80  mL/kg, 95% 
CI [− 5.49; − 2.11], p < 0.001). This was also the case in 
the studies with a high risk of bias [7, 11, 27, 28, 30, 31, 
34–36] (WMD: − 5.83  mL/kg, 95% CI [− 8.12; − 3.54], 
p < 0.001) No significant difference in WMD was 
observed between the two groups, p = 0.16) (Additional 
file 1: Figure S13).

Publication bias
According to the results of Deek’s test, the funnel plot asym-
metry test revealed the absence of publication bias within the 
studies considered (p = 0.31) (Additional file 1: Figure S14).

Table 1  Main characteristics of included studies

ABW actual body weight, ALI acute lung injury, ARDS acute respiratory distress syndrome, EVLW extravascular lung water, ICU intensive care unit, PBW predicted body 
weight, UK United Kingdom, USA United States of America

Study ID Year No. of patients Country Type of study Setting Type of patient EVLW indexation Outcome

Martin et al. [27] 2005 29 USA Prospective Medical ICU Severe sepsis/sep‑
tic shock

ABW 28-Day mortality

Kuzkov et al. [7] 2006 38 Russia Prospective Mixed ICU Septic shock/ALI ABW 28-Day mortality

Chung et al. [28] 2008 33 Taiwan Prospective Medical ICU Severe sepsis/sep‑
tic shock

ABW In-hospital mortality

Phillips et al. [11] 2008 19 USA Prospective ICU ARDS PBW/ABW ICU mortality

Chung et al. [29] 2010 67 Taiwan Prospective Medical ICU Severe sepsis/sep‑
tic shock

PBW ICU mortality

Craig et al. [30] 2010 44 UK Prospective ICU ALI/ARDS PBW/ABW ICU mortality

Chew et al. [31] 2012 51 Sweden Prospective Mixed ICU Severe sepsis/sep‑
tic shock

PBW/ABW ICU mortality

Cordemans et al. 
[13]

2012 123 Belgium Retrospective ICU Critically ill ABW 28-Day mortality

Mallat et al. [32] 2012 55 France Prospective Mixed ICU Septic shock PBW/ABW ICU mortality

Brown et al. [33] 2013 59 UK Prospective ICU ALI/ARDS PBW ICU mortality

Jozwiak et al. [8] 2013 200 France Retrospective Medical ICU ARDS PBW 28-Day mortality

Huber et al. [26] 2014 50 Germany Prospective ICU Critically ill PBW ICU mortality

Tagami et al. [14] 2014 192 Japan Post-hoc analysis ICU ARDS PBW 28-Day mortality

Zhao et al. [34] 2015 21 China Prospective ICU ARDS PBW ICU mortality

Wang et al. [12] 2016 105 China Retrospective ICU Septic shock PBW 28-Day mortality

Ma et al. [35] 2019 41 China Retrospective ICU ARDS PBW In-hospital mortality

Huber et al. [36] 2020 49 Germany Prospective ICU ARDS PBW 28-Day mortality

Shi et al. [37] 2021 120 France Prospective ICU ARDS PBW ICU mortality
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Fig. 2  The pooled odds ratio of EVLW for mortality

Study ID

Brown 201333

Chew 201231

Chung 200828

Chung 201029

Cordemans 201213

Craig 201030

Huber 202036

Jozwiak 20138

Kuzkov 20067

Ma 201935

Mallat 201232

Mar�n 200527

Phillips 200811

Shi 202137

Tagami 201414

Wang 201612

Zhao 201534

Total (95% CI)
Heterogeneity: Tau² = 9.13; Chi² = 258.55, df = 16 (P < 0.00001); I² = 94%
Test for overall effect: Z = 6.22 (P < 0.00001)

Mean

12
9.1
8.5

12.2
11.7
10.6

10
19

8
11.2
14.5

8
11.6
18.7
20.7

12
13

SD

5
1.3
1.7
5.8
4.3
2.4

4
7
3

3.4
1.6
3.7
1.9
5.2
7.3
4.4
0.5

Total

41
36
16
34
58
32
33
92
16
23
32
17
12
47

133
45
13

680

Mean

17
10.6

21
24.4
13.7
17.5

14
24

11.07
13.8
16.5

14
20.6
23.3
21.8
14.4
19.5

SD

9
1.2
3.8

10.6
5.9

2
9

10
6.24

6.1
3

3.1
4.6
7.7
9.2
5.3
0.5

Total

18
15
17
33
65
12
16

108
22
18
23
12

7
73
59
60

8

566

Weight

4.5%
6.9%
6.3%
4.7%
6.4%
6.6%
4.4%
6.0%
5.6%
5.5%
6.7%
6.0%
5.1%
6.1%
5.8%
6.4%
7.0%

100.0%

IV, Random, 95% CI

-5.00 [-9.43, -0.57]
-1.50 [-2.24, -0.76]

-12.50 [-14.49, -10.51]
-12.20 [-16.31, -8.09]

-2.00 [-3.81, -0.19]
-6.90 [-8.30, -5.50]
-4.00 [-8.62, 0.62]
-5.00 [-7.37, -2.63]
-3.07 [-6.06, -0.08]
-2.60 [-5.74, 0.54]
-2.00 [-3.35, -0.65]
-6.00 [-8.48, -3.52]

-9.00 [-12.57, -5.43]
-4.60 [-6.91, -2.29]
-1.10 [-3.76, 1.56]
-2.40 [-4.26, -0.54]
-6.50 [-6.94, -6.06]

-4.97 [-6.54, -3.41]

Survivors Non-survivors Mean Difference Mean Difference
IV, Random, 95% CI

-10 -5 0 5 10Favors
Survivors

Favors
Non-survivors
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Page 8 of 11Gavelli et al. Critical Care          (2022) 26:202 

Discussion
Our systematic review and meta-analysis of 18 studies, 
involving 1296 patients, suggests that an increased value 
of EVLW is associated with increased mortality com-
pared to less elevated values in ICU patients. The levels 
of EVLW were less increased in survivors compared to 
non-survivors. However, due to the high risk of bias of 
included studies and the low rating of certainty of evi-
dence according to the GRADE assessment, these con-
clusions should be considered with caution.

A major advantage of TPTD, which is part of the 
advanced monitoring techniques in critically ill patients 
[38–41], is to provide a bedside estimation of EVLW [42]. 
EVLW measured by TPTD has been demonstrated to 
reliably detect diffuse alveolar damage (DAD), which is 
the histologic pattern of ARDS [4, 43–45]. The severity 
of DAD is heterogeneous among ARDS patients, and this 
is in accordance with the heterogeneity of EVLW in this 
population, as we have recently observed for instance in 
ARDS patients with Coronavirus disease 2019 (COVID-
19) [37]. Since the presence of DAD is associated with a 
poorer outcome in ARDS [44, 45], EVLW may reflect the 
severity of pulmonary lesions in critically ill patients.

However, most of the conclusions regarding the prog-
nostic value of EVLW come from heterogeneous studies, 
performed in different settings and with different meth-
odologies. While some authors reported a close relation-
ship between EVLW values and outcome [11], others 
did not [14]. Moreover, some studies included only a 
small series of patients [11, 34]. The present meta-anal-
ysis may thus clarify the relationship between EVLW and 
outcome in ICU patients. We found that an increased 
value of EVLW is one of the prognostic factors for mor-
tality in ICU patients. The OR of EVLW as a risk factor 
for mortality was 1.69 [1.22; 2.34]. Also, mortality was 
significantly higher in patients with the highest EVLW 
values, either at baseline or at its maximum, compared to 
patients with the lowest EVLW values.

The heterogeneity of the included studies was signifi-
cant. However, the subgroup analyses for OR and WMD 
were conducted to investigate the sources of heteroge-
neity. The association between EVLW and mortality has 
been described at different times, i.e. baseline, Day-3, or 
when it reached its maximal value, likely because these 
timings highly depend on the time when the TPTD 
device was set up. Nevertheless, our subgroup analyses 
showed that an increase in EVLW remains an unfavour-
able prognostic factor, regardless of the timing at which it 
is measured. In addition, we found no difference between 
studies in which EVLW was indexed to predicted body 
weight and those in which it was indexed to actual body 
weight, regarding OR for mortality as well as mean differ-
ences between survivors and non-survivors. Nonetheless, 

as the between-group difference between survivors and 
non-survivors was quite small and as the dimension of 
the lungs depends on the height of the patient rather than 
on actual weight fluctuations [26, 30], we still suggest 
indexing EVLW to the predicted body weight. EVLW was 
similarly associated with mortality in studies that specifi-
cally included ARDS patients and in studies with non-
ARDS patients. This may suggest the value of EVLW for 
indicating disease severity not only in ARDS but also in 
other critically ill patients.

Since the risk of bias was estimated as high for many 
studies included and our results have “very low certainty 
of evidence” according to the GRADE assessment, our 
conclusions should be considered with caution. Obvi-
ously, EVLW should not be used to predict the outcome 
of ICU patients on an individual basis. There are many 
other prognostic factors in ICU patients. We rather 
believe that our results indirectly contribute to the rec-
ognition of TPTD for estimating EVLW. Indeed, EVLW 
measured by the technique would not be associated with 
the outcome if this estimation was unreliable. Although 
the estimation of EVLW by TPTD has been demon-
strated to be correlated with the reference technique 
[46], reproducible [47], and able to detect small [48, 49] 
and rapid [6] variations, doubts may persist regarding 
its reliability [2, 3]. As the gold standard technique for 
measuring EVLW, namely gravimetry, can be performed 
only in cadavers, the validation of EVLW measurements 
in patients can only be indirect. The present meta-anal-
ysis may contribute to this indirect validation. Thus, our 
results suggest that clinicians may rely on the estimation 
of EVLW by TPTD. Besides, EVLW may help to identify 
patients with DAD and to grade the severity of ARDS [50, 
51]. It may also be used in fluid management, as a marker 
indicating the risk of fluid administration, or as a guide 
for fluid removal [52]. Further studies should investigate 
the clinical interest of such strategies, describe the rela-
tionship between EVLW and respiratory mechanics, or 
evaluate the effect of some respiratory management such 
as prone position [53]. Studies testing the interest of inte-
grating EVLW in the strategy of fluid management are 
also needed to better identify its clinical significance.

Our study suffers from many limitations. First, the 
OR of EVLW as a risk factor for mortality, which is 
the main factor to consider in meta-analyses on prog-
nostic factors, was not provided in all the studies 
we included. Second, data for the comparison of the 
mean difference between survivors and non-survivors 
was not available in one of the included studies [26]. 
Nevertheless, this represents a minority (4%) of the 
whole cohort. Third, we did not obtain data regard-
ing fluid balance since our principal objective was to 
confirm that EVLW measured by TPTD is associated 
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with a worse outcome. Fourth, we did not investigate 
EVLW as an adjunctive variable to other techniques, 
such as ultrasonography and bioelectrical impedance, 
to evaluate the fluid status [54]. Finally, we limited 
our search to articles published in English language 
and did not expand our search to clinical trial registry 
databases.

Conclusion
In conclusion, although limited by the low rating of cer-
tainty of the evidence, this meta-analysis suggests that 
elevated levels of EVLW measured by TPTD are associ-
ated with mortality in ICU patients. This finding may be 
interpreted as an indirect confirmation of the reliability 
of TPTD for estimating EVLW.
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