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Abstract 

A recent randomised controlled trial failed to demonstrate a beneficial effect of recombinant human thrombomodu-
lin (rhTM) on sepsis. However, there is still controversy in the effects of rhTM for sepsis due to the heterogeneity of the 
study population. We previously identified patients with a distinct phenotype that could be a potential target of rhTM 
therapy (rhTM target phenotype). However, for application in the clinical setting, a simple tool for determining this 
target is necessary. Thus, using three multicentre sepsis registries, we aimed to develop and validate a machine learn-
ing model for predicting presence of the target phenotype that we previously identified for targeted rhTM therapy. 
The predictors were platelet count, PT-INR, fibrinogen, fibrinogen/fibrin degradation products, and D-dimer. We also 
implemented the model as a web-based application. Two of the three registries were used for model development 
(n = 3694), and the remaining registry was used for validation (n = 1184). Approximately 8–9% of patients had the 
rhTM target phenotype in each cohort. In the validation, the C statistic of the developed model for predicting the 
rhTM target phenotype was 0.996 (95% CI 0.993–0.998), with a sensitivity of 0.991 and a specificity of 0.967. Among 
patients who were predicted to have the potential target phenotype (predicted target patients) in the validation 
cohort (n = 142), rhTM use was associated with a lower in-hospital mortality (adjusted risk difference, − 31.3% [− 53.5 
to − 9.1%]). The developed model was able to accurately predict the rhTM target phenotype. The model, which is 
available as a web-based application, could profoundly benefit clinicians and researchers investigating the heteroge-
neity in the treatment effects of rhTM and its mechanisms.
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Background
Recombinant human thrombomodulin (rhTM) has been 
suggested as an adjunct therapy for patients with sepsis 
[1]. A recent randomised controlled trial (RCT) failed 
to demonstrate its beneficial effect on 28-day mortal-
ity [2], but there remains controversy in the results of 
this study due to the heterogeneity of its study popula-
tion. Indeed, 22% of patients in the RCT did not meet 
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protocol-specified coagulopathy. In addition, an updated 
meta-analysis including the RCT reported an associa-
tion between rhTM use and a lower risk of mortality [3]. 
These findings collectively suggest the importance of 
appropriately targeting the study population prior to 
conducting studies to gain maximum benefit [4–6]. We 
identified a distinct phenotype that could be a potential 
target of rhTM therapy [7], a finding consistent with pre-
viously suggested targets, including coagulation disorder 
and high disease severity [8, 9]. However, for application 
in the clinical setting, a simple tool for determining this 
target is necessary [10]. Thus, we aimed to develop and 
validate a model for predicting the potential target phe-
notype for rhTM therapy and to implement the model as 
a web-based application to facilitate further research.

Methods
Study design and settings
The concept of this study is shown in Fig.  1. Details of 
this study are provided in Additional file  1. This was a 
secondary analysis of the following multicentre registries: 
the Japan Septic Disseminated Intravascular Coagula-
tion (JSEPTIC-DIC) study (42 ICUs at 40 institutions, 
2011–2013) [11], Tohoku Sepsis Registry (10 institutions, 
2015) [12], and Focused Outcomes Research in Emer-
gency Care for Acute Respiratory Distress Syndrome, 
Sepsis, and Trauma (FORECAST) sepsis study (59 ICUs, 
2016–2017) [13]. These studies were approved by the 

institutional review boards at the participating hospitals, 
and the need for informed consent was waived.

Study samples
We included all patients (aged ≥ 16  years), who were 
admitted to the ICU with severe sepsis or septic shock as 
defined in the three registries, according to the Interna-
tional Sepsis Definitions Conference Criteria [14, 15]. We 
excluded patients with missing information on 28-day 
mortality, which is required for determining the pheno-
type of each patient [7].

Predictors
We used the following coagulation markers for predict-
ing the presence of the target phenotype, in accordance 
with our previous study [7]: platelet counts, PT-INR, 
fibrinogen, fibrinogen/fibrin degradation products (FDP), 
and D-dimer.

Outcomes
The primary outcome was the presence of the clinical 
phenotype identified in our previous study [7], character-
ised as severe physiological status and organ dysfunction 
(high Acute Physiology and Chronic Health Evalua-
tion [APACHE II] and Sequential Organ Failure Assess-
ment [SOFA] scores), coagulopathy (low platelet count, 
prolonged PT-INR, low fibrinogen, and extremely high 
FDP and D-dimer levels), high lactate level, and high 

Fig. 1  Current study (development and implementation of a prediction model of rhTM target phenotype)
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mortality. We termed this phenotype as “rhTM target 
phenotype”.

Statistical analysis
We derived our prediction model using the JSEPTIC-DIC 
study and Tohoku Sepsis Registry (derivation cohort) and 
validated the model using the FORECAST sepsis study 
(validation cohort). We imputed missing predictors using 
the random forest method with the missForest package 
(Additional file  2: Table  S1) [16]. We did not calculate 
the sample size in advance because we used all available 
data. The sample size for model development (n = 3694, 
of which 9% had the target phenotype) was enough to 
ensure precise predictions and minimise overfitting [17].

For model development, we divided the derivation 
cohort into the training set (70% of the full sample ran-
domly chosen for model development and hyperparam-
eter tuning) and test set (30% of the full sample randomly 
chosen for internal validation). Using the training set, 
using log-transformed predictors, we constructed a pre-
diction model with XGBoost. We used the grid search 
strategy to identify the best combination of hyperparam-
eters using the ranger and caret packages with tenfold 
cross validation.

We measured the prediction performance of the devel-
oped model by computing the (1) C statistic (i.e., the area 
under the receiver operating characteristic [ROC] curve) 
and (2) prospective prediction results.

In addition, among patients those who were predicted 
to have the potential target phenotype (termed as “pre-
dicted target patients”), we assessed the effect of rhTM 
on in-hospital and 28-day mortality using a generalised 
estimating equation to account for patient clustering 
within hospitals. The adjusted variables were selected 
according to the previous study [7] (see Additional file 1). 
We also reported the number of patients who met the 
inclusion criteria for the SCARLET trial (cardiovascular 
and/or respiratory dysfunction, and PT-INR > 1.4 and 
a platelet count in the range from 30 to 150 ×  109/L) to 
illustrate the difference in the target study population 
between studies [2].

Lastly, we uploaded the model online (URL: http://​
resea​rch-​kudo-​predi​ction.​s3-​websi​te-​ap-​north​east-1.​
amazo​naws.​com/), so researchers interested in utilising 
the model could access it for free. All analyses were per-
formed with R statistical software version 3.6.1 (R Foun-
dation for Statistical Computing).

Results
Patient characteristics were similar between predicted 
target patients and patients with rhTM target pheno-
type (Table 1). However, predicted target patients in the 
current study were likely to have milder coagulopathy. 

Approximately 8–9% of patients had the rhTM target 
phenotype. Overall, patients who met the inclusion crite-
ria for the SCARLET trial accounted for 20–30% of rhTM 
target phenotype.

Using the test set of the derivation cohort, we found 
that the C statistic of the developed model was 0.993 
(95% CI 0.989–0.997). Prospective prediction results 
were as follows: sensitivity 0.968, specificity 0.955, posi-
tive predictive value 0.669, and negative predictive value 
0.997. Figure 2 shows the prediction ability of the devel-
oped model in the validation cohort. Using the validation 
cohort, we found that the model had high discrimination 
(C statistic, 0.996; 95% CI 0.993–0.998). Prospective pre-
diction results were as follows: sensitivity 0.991, speci-
ficity 0.967, positive predictive value 0.754, and negative 
predictive value 0.999.

Among predicted target patients in the validation 
cohort, rhTM use was associated with a lower in-hospi-
tal mortality (adjusted risk difference, − 31.3% [− 53.5 
to − 9.1%]; Table 2).

Discussion
We derived and validated a machine learning model 
that accurately predicts the rhTM target phenotype in 
patients with sepsis and released it online for clinical 
and research use. The C statistic was 0.994 in the valida-
tion cohort, with a sensitivity of 0.981 and a specificity 
of 0.944. The predicted target patients were likely to have 
milder coagulopathy compared to those with rhTM tar-
get phenotype.

The importance of considering the heterogeneity in 
the study population and the treatment effects has been 
emphasised in recent years [6]. As shown in the analysis 
of multiple sepsis registries and RCTs [5], clinical pheno-
types were correlated with host-response patterns and 
clinical outcomes, and simulations suggested the pres-
ence of heterogeneity in treatment effects across phe-
notypes. Thus, such heterogeneity may at least partially 
explain the underlying mechanisms of RCTs that failed to 
reveal significant benefit of therapies in critical care [18, 
19]. Indeed, patients who met the inclusion criteria for 
the SCARLET trial accounted for 20–30% of the patients 
with rhTM target phenotype, suggesting that further 
studies are needed to investigate the effects of rhTM for 
sepsis. Additionally, the process of identifying the tar-
get population to be treated is important and should be 
discussed in future cost–benefit analyses of treatment 
strategies, even if a small proportion of patients can be 
treated effectively (as was the case in our study sample).

Subgroup analyses have been widely used to address 
treatment effect heterogeneity despite its limitations 
[20]. In particular, conventional subgroup analyses assess 
one characteristic at a time, which may not reflect the 

http://research-kudo-prediction.s3-website-ap-northeast-1.amazonaws.com/
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biology or clinical practice where multiple factors often 
act synergistically [6]. To address this concern, several 
approaches have been proposed: clustering algorithms 

to identify distinct clinical phenotypes, Bayesian hier-
archical models, and adaptive enrichment [6]. Build-
ing on these works, we used a clustering approach in a 

Table 1  Characteristics and clinical course of patients with sepsis in the derivation and validation cohorts

APACHE, Acute Physiology and Chronic Health Evaluation; FDP, fibrinogen/fibrin degradation product; IQR, interquartile range; PT-INR, prothrombin time-international 
normalised ratio; SIRS, systemic inflammatory response syndrome; SOFA, Sequential Organ Failure Assessment; and WBC, white blood cells

Five coagulation markers (in bold) were used for prediction

*Defined as patients with (1) coagulopathy (PT-INR > 1.4 and platelet count 30 to 150 × 109/L) and (2) vasopressor use or mechanical ventilation use

Variables Test set of the derivation cohort
 (n = 1108)

Validation cohort
 (n = 1184)

Predicted target 
patients
n = 118

Patients with rhTM 
target phenotype
n = 85

Predicted target patients
n = 142

Patients with rhTM 
target phenotype
n = 108

Age, median (IQR) 71 (56, 79) 70 (55, 79) 73 (64, 82) 73 (64, 82)

Sex, female 60 (51%) 42 (49%) 61 (43%) 45 (42%)

Body weight (kg), median (IQR) 54 (49, 63) 55 (49, 64) 55.0 (47.0, 65.0) 53.0 (46.5, 60.5)

Infection site

Catheter-related 2 (2%) 0 (0%) 7 (5%) 6 (6%)

Bone/soft tissue 10 (8%) 7 (8%) 11 (8%) 7 (6%)

Cardiovascular 5 (4%) 5 (6%) 5 (4%) 5 (5%)

Central nervous system 3 (3%) 3 (4%) 2 (1%) 2 (2%)

Urinary tract 28 (24%) 21 (25%) 39 (27%) 31 (29%)

Lung/thoracic 16 (14%) 13 (15%) 24 (17%) 19 (18%)

Abdomen 33 (28%) 19 (22%) 38 (27%) 25 (23%)

Other/unknown 21 (18%) 17 (20%) 16 (11%) 13 (20%)

APACHE II, median (IQR) 28 (21, 34) 27 (21, 34) 27 (22, 33) 27 (22, 32)

SIRS score, median (IQR) 3 (3, 4) 3 (3, 4) 3 (3, 4) 3 (3, 4)

SOFA scores 13 (10, 16) 13 (10, 16) 13 (11, 13) 11 (9, 14)

Lab data

White blood cell (103/μL), median (IQR) 11.5 (2.7, 20.3) 12.4 (2.7, 20.7) 11.0 (6.1, 20.1) 10.8 (6.3, 20.0)

Platelet (103/μL), median (IQR) 54 (29, 99) 47 (26, 76) 73 (42, 122) 68 (41, 121)

PT-INR, median (IQR) 1.7 (1.4, 2.1) 1.7 (1.4, 2.1) 1.5 (1.3, 1.7) 1.5 (1.3, 1.7)

Fibrinogen (mg/mL), median (IQR) 237 (141, 328) 220 (130, 311) 269 (153, 378) 277 (154, 381)

FDP (μg/mL), median (IQR) 98 (68, 224) 127 (80, 299) 107 (73, 188) 121 (93, 245)

D-dimer (μg/mL), median (IQR) 42 (31, 94) 51 (34, 119) 48 (32, 83) 60 (40, 106)

Antithrombin (%), median (IQR) 51 (42, 60) 50 (42, 58) 54 (48, 65) 55 (49, 66)

Lactate (mmol/L), median (IQR) 6 (3, 10) 6 (4, 10) 5 (3, 7) 5 (3, 7)

Patients who met the inclusion criteria for the SCARLET trial*

Coagulopathy 29 (25%) 23 (27%) 32 (23%) 33 (31%)

Coagulopathy and respiratory/cardiovascu-
lar dysfunction

25 (21%) 21 (25%) 27 (19%) 20 (16%)

Management

rhTM 52 (44%) 41 (48%) 55 (39%) 44 (44%)

Vasopressor use 105 (89%) 77 (91%) 103 (73%) 77 (71%)

Renal replacement therapy 51 (43%) 40 (47%) 23 (16%) 16 (15%)

Steroids 35 (30%) 26 (31%) 65 (48%) 48 (44%)

Intravenous immunoglobulin 58 (49%) 40 (47%) 50 (35%) 18 (17%)

Antithrombin 59 (50%) 41 (48%) 28 (20%) 22 (20%)

Prognosis

28-day death 48 (41%) 36 (42%) 40 (28%) 24 (25%)

In-hospital death 62 (53%) 47 (55%) 47 (33%) 28 (28%)
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Fig. 2  The receiver operating characteristic curve of the developed model for predicting the presence of the target phenotype in the external 
validation cohort

Table 2  Unadjusted and adjusted risk difference between recombinant thrombomodulin use and outcomes among predicted target 
patients

In the test set of derivation cohort, the adjusted variables were age, sex, comorbidities, and Sequential Organ Failure Assessment (SOFA) scores

In the validation cohort, the adjusted variables were age, sex, comorbidities, SOFA scores, and in-hospital management, including renal replacement therapy, and 
treatment with steroids, intravenous immunoglobulin, antithrombin, and vasopressors

Predicted target patients In-hospital mortality 28-day mortality

Unadjusted risk Difference 
(95% CI)

Adjusted risk difference 
(95% CI)

Unadjusted risk Difference 
(95% CI)

Adjusted risk 
difference (95% 
CI)

Test set of the derivation cohort 
(n = 118)

 − 22.0%
(− 40.6 to − 3.4%)

 − 27.4%
(− 41.8 to − 12.9%)

 − 20.0%
(− 38.2 to − 1.8%)

 − 23.6%
(− 39.8 to − 7.4%)

Validation cohort (n = 142)  − 15.1%
(− 31.1 to 1.0%)

 − 31.3%
(− 53.5 to − 9.1%)

 − 8.4%
(− 24.7 to 8.0%)

 − 21.1%
(− 43.4 to 1.1%)
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previous study to address the heterogeneity in our study 
population. While it is still challenging to find the true 
phenotypes that are responsible for the heterogene-
ity, we believe that our research process: (1) discover-
ing the target phenotype, (2) implementing a model for 
predicting the phenotype, and (3) conducting studies for 
identifying the optimal target population or exploring 
underlying mechanisms—is an efficient way of conduct-
ing future studies and advancing personalised medicine. 
For example, our findings support the findings from a 
post hoc analysis of the SCARLET trial that reported an 
association between higher baseline thrombin generation 
biomarker levels and the effect of rhTM [9], by demon-
strating that a subtype consisting of a high-dimensional 
coagulation profile could be a potential target of rhTM.

This study has several limitations. First, although we 
developed a model to predict the rhTM target pheno-
type, it remains unclear whether the rhTM target phe-
notype is the true target of rhTM therapy. Second, there 
may be diagnostic suspicion bias and unmeasured con-
founding. Additionally, the number of missing variables 
for prediction may have limited our findings. Thus, our 
findings should be validated in randomised controlled 
trials. Third, because machine learning models are gener-
ally difficult to interpret, our model itself does not pro-
vide information on the underlying mechanisms. Finally, 
our data were obtained from Japanese patients, and the 
generalisability of the results to other populations may be 
limited.

Conclusions
We developed a model that accurately predicted the 
rhTM target phenotype. Our model is available online, 
which could profoundly benefit clinicians and research-
ers investigating the heterogeneity in the treatment 
effects of rhTM and its mechanisms.
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