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Abstract 

Background:  Late mortality risk in sepsis-survivors persists for years with high readmission rates and low quality of 
life. The present study seeks to link the clinical sepsis-survivors heterogeneity with distinct biological profiles at ICU 
discharge and late adverse events using an unsupervised analysis.

Methods:  In the original FROG-ICU prospective, observational, multicenter study, intensive care unit (ICU) patients 
with sepsis on admission (Sepsis-3) were identified (N = 655). Among them, 467 were discharged alive from the ICU 
and included in the current study. Latent class analysis was applied to identify distinct sepsis-survivors clinical classes 
using readily available data at ICU discharge. The primary endpoint was one-year mortality after ICU discharge.

Results:  At ICU discharge, two distinct subtypes were identified (A and B) using 15 readily available clinical and 
biological variables. Patients assigned to subtype B (48% of the studied population) had more impaired cardiovascular 
and kidney functions, hematological disorders and inflammation at ICU discharge than subtype A. Sepsis-survivors 
in subtype B had significantly higher one-year mortality compared to subtype A (respectively, 34% vs 16%, p < 0.001). 
When adjusted for standard long-term risk factors (e.g., age, comorbidities, severity of illness, renal function and dura-
tion of ICU stay), subtype B was independently associated with increased one-year mortality (adjusted hazard ratio 
(HR) = 1.74 (95% CI 1.16–2.60); p = 0.006).

Conclusions:  A subtype with sustained organ failure and inflammation at ICU discharge can be identified from rou-
tine clinical and laboratory data and is independently associated with poor long-term outcome in sepsis-survivors.

Trial registration NCT01367093; https://​clini​caltr​ials.​gov/​ct2/​show/​NCT01​367093.
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Introduction
Sepsis is a life-threatening dysregulated response to 
infection leading to multiorgan dysfunction [1]. Advances 
in critical care medicine have decreased early hospital 
mortality, thus increasing the number of septic patients 
who survive and are discharged from the hospital with 
sequelae of critical illness [2, 3]. However, late mortality 
risk after sepsis persists for years with high readmission 
rates and low quality of life [4, 5]. Efforts to implement 
preventive interventions are limited by an incomplete 
understanding of the relevant intermediary causal mech-
anisms of post-sepsis syndrome [6, 7].

The present study seeks to identify ‘hidden’ subtypes 
of sepsis-survivors using an unsupervised approach 
(i.e., clustering regardless of outcome) at intensive care 
unit (ICU) discharge with simple clinical and laboratory 
parameters. This approach has been used in the acute 
phase of sepsis mostly using complex inflammatory 
markers for prognostic and predictive enrichment [8–10] 
but only scarce data exist in the study of sepsis-survivors 
and their long-term adverse events [4].

A subtype-guided approach at ICU discharge may 
enable a better understanding of sepsis-survivors trajec-
tory in the ICU (e.g., latent profiles of persistent organ 
dysfunction, immunosuppression and inflammation 
after stabilization) [11]. This may allow prognostic and 
therapeutic enrichment (i.e., selection of patients with a 

greater likelihood of having an endpoint or to respond 
to the drug treatment independently from initial severity 
of illness) to support future randomized controlled trials 
of therapies or prevention strategies in sepsis-survivors 
[12].

We analyzed existing clinical and molecular data col-
lected from the French and European Outcome Registry 
in Intensive Care Units (FROG-ICU) prospective obser-
vational cohort study [13, 14]. The primary goal of the 
study was to determine whether readily available clinical 
and biological data at ICU discharge could identify dis-
tinct clinical classes (labeled as subtypes) in sepsis-sur-
vivors using an unsupervised approach (i.e., latent class 
analysis). The secondary goals were to determine whether 
identified classes are associated with distinct organ dys-
function and host response circulating markers and dif-
ferent long-term outcomes in ICU survivors.

Methods
A secondary analysis of the FROG-ICU dataset was 
performed (trials.gov identifier: NCT01367093, regis-
tered June 6, 2011). The FROG-ICU study was a pro-
spective, observational, international cohort study with 
a biobank (plasma and urine), including adult criti-
cally ill patients, designed to assess the incidence and 
to identify risk factors for mortality during the first 
year following discharge from the ICU. Study design 
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details are published [13, 14]. The study was conducted 
in France and Belgium in accordance with Good Clini-
cal Practice (Declaration of Helsinki 2002) and Ethical 
Committee approvals (Comité de Protection des Per-
sonnes—Ile de France IV, IRB n°00003835 and Com-
mission d’éthique biomédicale hospitalo-facultaire de 
l’hôpital de Louvain, IRB n° B403201213352). Current 
reanalysis of the FROG-ICU cohort was performed 
in compliance with Unity Health Toronto (Toronto, 
Ontario, Canada) Research Ethics Board (n° 19-138). 
Written consent was waived; all patients and/or next of 
kin were informed and verbal consent was documented 
in the patients’ medical records.

Reporting of this study was in accordance with the 
Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) statement and guidelines 
[15].

Study population
In the original FROG-ICU cohort, patients were 
included from August 2011 to June 2013 [13, 14]. The 
study involved 21 ICUs in 14 university hospitals. 
Inclusion criteria were invasive mechanical ventilation 
support or treatment with vasopressors (except dopa-
mine) for more than 24  h. Exclusion criteria were age 
less than 18  years, pregnancy or breastfeeding, severe 
head injury (initial Glasgow Coma Scale ≤ 8), brain 
death or a persistent vegetative state, transplantation 
in the past 12  months, moribund patient or no social 
security coverage.

In the current study, patients with sepsis or septic shock 
on admission (i.e., the reported main cause of admission 
is sepsis) or within the first 24  h after inclusion in the 
original FROG-ICU study (Sepsis-3 definition) [1] and 
who were discharged alive from the ICU were included. 
Among them, patients on systemic chronic immunosup-
pressive treatments (e.g., corticosteroids, chemotherapy) 
before ICU admission were excluded from the reanaly-
sis. For included patients who had multiple admissions 
to ICU, only the first ICU admission was considered for 
reanalysis.

Sepsis-2 criteria were determined at enrollment 
in the whole FROG-ICU cohort. Retrospectively, we 
ascertained/adjudicated that all patients that met sep-
sis criteria on ICU admission also met Sepsis-3 crite-
ria as per reported main cause of admission, clinical 
notes and clinical and biological data within the first 
24 h after inclusion. Patients with documented (i.e., sys-
temic administration of antibiotics and a positive body 
fluid culture specimen) or suspected infection and the 
presence of organ dysfunction defined as two or more 
Sequential Organ Failure Assessment (SOFA) points 

were considered as meeting the Sepsis-3 criteria [1]. 
When SOFA score was not available, a retrospective 
calculation of its different components was performed 
based on the available data.

Study objectives and outcomes
The primary endpoint was all cause mortality one year 
after ICU discharge. Secondary outcomes were all cause 
mortality three and six months after ICU discharge, read-
missions within the first year after ICU discharge and 
health-related quality of life assessed by short form-36 
questionnaire (SF-36) with its physical and mental com-
ponent scores (PCS and MCS) one year after ICU dis-
charge [16–18]. At three, six and twelve months after 
ICU discharge, patients or their families were contacted 
by phone and information about vital status, readmission 
and quality of life was recorded. The readmissions were 
confirmed by reviewing the clinical notes of the readmit-
ting hospital. For patients lost of follow-up, the vital sta-
tus was checked through the national health services.

Data collection and candidate variables for phenotyping
Clinical and biological data were recorded at inclusion 
and at discharge. Severity scores and Charlson age–
comorbidity Index were calculated at inclusion. The 
Charlson age–comorbidity Index combines 19 medical 
conditions weighted 1–6, with age weighted 1 for every 
decade past 40  years [19–21]. Details of data collection 
have been previously reported in full [13, 14]. In addi-
tion to routine biological data, circulating markers (e.g., 
inflammatory, cardiovascular and renal biomarkers) were 
collected at inclusion and at ICU discharge and measured 
centrally in the original study. Details of the biomarkers 
and the methods used to perform the assays were previ-
ously published [13, 14, 22–24].

The list of clinical and biological variables at discharge 
to be included in latent class analysis (LCA) was deter-
mined a priori. Available clinical and biological data at 
ICU discharge were preselected as candidate variables 
based on the prior published literature [5, 14, 25]. Vari-
ables with more than 25% missing values were excluded 
from the selection process. The final selection of varia-
bles included in the LCA models (15 variables) was made 
by consensus among three critical care medicine experts: 
AM, LB and JM (Additional file 1: Table S1). The selected 
variables correlations are summarized in Additional 
file 1: Fig. S1. For each variable, the most abnormal value 
within the last 48 h before ICU discharge was extracted.

Thereafter, circulating markers measured at ICU dis-
charge (details described in Additional file  1: Table  S2) 
were compared across the identified classes (labeled as 
subtypes).
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Statistical analysis
Sample size calculation (N) to determine the impact of 
risk factors associated with one-year all-cause mortal-
ity was performed based on the primary endpoint from 
the original FROG-ICU study [13]. Missing values were 
handled by multiple imputation by chained equations 
(R-package ‘mice’) [26]. A total of 20 imputed datasets 
were generated. Log transformation was used for non-
normal data.

LCA was secondarily used (R-package ‘depmixS4’, 
‘mix’ function) [27] to identify classes of sepsis-survi-
vors based on their clinical and routine biological data 
at ICU discharge. Classification was conducted inde-
pendently of clinical outcome. Only variables with less 
than 25% missing data were considered within the LCA. 
After evaluating correlation, highly correlated variables 
using Spearman’s  rank-order statistics (correlation coef-
ficient > 0.5) were excluded from the LCA and consensus 
k means clustering (Additional file 1: Methods) [28].

The optimal number of latent classes was decided by 
considering the Bayesian Information Criteria (BIC) 
(lower values suggest model parsimony), class interpret-
ability (the extent to which additional classes provided 
clinically relevant information) and class prevalence (e.g., 
classes with at least 5% of the sample to improve replica-
bility) [8, 9]. We prioritized the lowest BIC, followed by 
clinical significance and adequate class size [29].

The LCA model at ICU discharge was run on each of 
the 20 imputed datasets separately. The reported number 
of latent classes was the one selected in the most imputed 
data sets. Thereafter, final class assignment was deter-
mined by taking the majority votes of the 20 LCA models 
for each patient [10, 30].

To assess the reproducibility of the classes with the 
same selected variables, consensus k means clustering 
was applied using the aforesaid approach regarding miss-
ing data and highly correlated variables. The optimal 
number of latent classes selection is described in Addi-
tional file 1: Methods.

The associations between subtypes membership and 
one-year mortality and secondary outcomes were ana-
lyzed. Basic characteristics and circulating markers levels 
comparisons between subtypes groups were conducted 
at ICU discharge. Continuous variables were expressed 
as median (IQR) and were compared with the Mann–
Whitney U test. Categorical variables were expressed as 
frequencies and percentages and were compared with 
the Fisher exact test or the Chi square test as appropri-
ate. To examine the impact of class membership on one-
year mortality, survival curves were generated by the 
Kaplan–Meier analyses. Multivariable survival analysis 
was performed using Cox proportional hazards regres-
sion models. Subtype membership at ICU discharge and 

one-year mortality risk factors [5, 14, 18] were included 
in the Cox regression models. A logistic regression model 
was also constructed to identify the main biomarkers 
measured at discharge associated with classes member-
ship [31–33]. Details of regression models’ analysis were 
reported in Additional file  1: Methods. Two-sided tests 
were applied with p ≤ 0.05 considered statistically signifi-
cant. All the analyses were performed using the R statisti-
cal software (https://​www.r-​proje​ct.​org/).

Results
The study flowchart is represented in Fig.  1. Patients’ 
characteristics are summarized in Table  1 and Addi-
tional file  1: Table  S3. Sites of infection and microbio-
logical characteristics are summarized in Additional 
file  1: Table  S4. One-year mortality after ICU discharge 
was 24.6%. Median Charlson age–comorbidity index and 
ICU length of stay for sepsis-survivors were 3 (2–5) and 
13 (8–22) days respectively. On admission, 91.2% of sep-
sis-survivors required mechanical ventilation and 86.2% 
required vasopressors.

Identification of sepsis classes at ICU discharge
Latent class analysis was used to create a two-class model 
of patients at ICU discharge, which we believe provided 
an optimal statistical fit to the data. Bayesian informa-
tion criteria was the lowest in the two-class model in all 
the imputed datasets. Bayesian information criteria is 
an indicator of stronger model fit. A representative LCA 
model fit summary for one to four classes is provided in 
Additional file 1: Table S5.

At ICU discharge, 244 patients (52%) were assigned to 
subtype A and 223 patients (48%) were assigned to sub-
type B. The mean (standard deviation) posterior class 
membership probability was 0.94 (0.12) for subtype A 
and subtype B.

Using consensus k means clustering, we selected k = 2 
as the optimal fit clustering solution for our population 
(Additional file  1: Fig. S2). The two identified classes of 
sepsis-survivors at ICU discharge using LCA and consen-
sus k means clustering presented similar clinical patterns 
(Additional file 1: Fig. S2).

Clinical and biomarker profiles of sepsis‑survivor subtypes
The Patient characteristics and outcomes based on sub-
type classes are summarized in Table 1. Standardized mean 
difference plot of subtype-defining variables are shown 
in Fig. 2. Of the ICU discharge variables used in the LCA 
model, patients with subtype B (compared to subtype A) 
had: (i) higher circulating levels of serum creatinine levels, 
sodium, Troponin T levels and C-reactive protein; and (ii) 
lower circulating levels of platelets, hemoglobin and total 

https://www.r-project.org/
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protein compared to individuals in subtype A. Patients 
assigned to subtype B were mostly male, older, had more 
comorbidities, higher body mass index, were more severely 
ill on admission (i.e., higher Simplified Acute Physiology 
Score II (SAPS II) and SOFA scores) and had more bacte-
remia at inclusion. Sepsis-survivors subtype classes did not 
significantly differ by duration of ICU stay (Table 1).

To ascertain that sepsis-survivors subtypes represent 
subgroups of patients with underlying differential biology 
we measured and analyzed specific circulating mediators 
known to be associated with persistent inflammation and 
organ dysfunction and compared them between patients 
assigned to specific LCA-determined classes. Patients in 
subtype B demonstrated persistent elevation in levels of 
markers of inflammation (procalcitonin and interleukin-6), 
endothelial dysfunction (bio-adrenomedullin), myocardial 
injury and stress (high sensitivity cardiac troponin I, brain 
natriuretic peptide and galectin 3) and renal dysfunction 
(plasmatic cystatin C) compared to subtype A (Fig.  3). 
Circulating dipeptidyl peptidase 3 (DPP3) levels were 
similarly low in the two subtypes. Differences in circulat-
ing biomarker levels between sepsis-survivors subtypes 
persisted after subgroup analysis stratified by Charlson 
age–comorbidity index terciles, at discharge SOFA score 
terciles, on admission SAPS II terciles and sepsis severity 
on admission (Additional file 1: Figs. S3, S4, S5 and S6).

Association between sepsis‑survivors subtypes 
and outcomes
Differences between one-year survivors and non-sur-
vivors are summarized in Additional file  1: Table  S6. 

Sepsis-survivors in subtype B had significantly higher 
one-year mortality compared to subtype A (respec-
tively, 34% vs 16%, p < 0.001) (Table  1). The log-rank 
test between the one-year post-ICU survival curves of 
the two subtypes showed a p < 0.001 (Fig.  4). In a Cox 
proportional hazards model adjusted for Charlson age–
comorbidity index, SAPS II at inclusion, SOFA score at 
ICU discharge and duration of ICU stay, membership 
in subtype B at ICU discharge was independently asso-
ciated with one-year mortality (adjusted hazard ratio 
(HR) = 1.74 (95% CI 1.16–2.60); p = 0.006) (Table  2). 
In another Cox regression model adjusted for Charl-
son age–comorbidity index, SAPS II at inclusion, renal 
SOFA score at ICU discharge and duration of ICU 
stay, membership in subtype B at ICU discharge was 
also independently associated with one-year mortal-
ity (adjusted hazard ratio (HR) = 1.80 (95% CI 1.19–
2.77); p = 0.005) (Additional file  1: Table  7). The same 
results were found when adjusting for age, chronic 
kidney disease, diabetes mellitus, SAPS II at inclusion, 
SOFA score at ICU discharge and duration of ICU stay 
(subtype B adjusted hazard ratio (HR) = 1.62 (95% CI 
1.03–2.54); p = 0.03) (Additional file 1: Table 8). Sepsis-
survivors in subtype B had significantly higher hospi-
tal readmissions at 6  months compared to subtype A 
(respectively, 55.1% vs 40.1%, p = 0.009). There was a 
significant difference between the two subtypes regard-
ing SF-36 PCS at 6 months (i.e., lower physical quality 
of life in subtype B patients) but not at 3 and 12 months 
(Table 1).

Fig. 1  Study flowchart. Abbreviation: ICU intensive care unit
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Table 1  Patient characteristics and outcomes based on subtypes at ICU discharge

Continuous variables were expressed as median (IQR) and were compared with the Mann–Whitney U test. Categorical variables were expressed as numbers (%) and 
were compared with the Fisher exact test or the Chi square test as appropriate

ICU intensive care unit, BMI body mass index, COPD chronic obstructive pulmonary disease, SAPS II Simplified Acute Physiologic Score, SOFA Sequential Organ Failure 
Assessment, RRT​ renal replacement therapy, SF-36 short form-36 questionnaire, PCS physical component score, MCS mental component score, IQR interquartile range
† At inclusion
‡ After ICU discharge, in-hospital deaths proportion during the same hospitalization at 3 months was 50% in subtype A versus 47% in subtype B (p = 0.79)
§ Values calculated for 310 patients
¶ Values calculated for 279 patients
ǀ Values calculated for 318 patients

No significant difference in missing information for readmission was found between subtypes A and B at 3, 6 and 12 months (Chi square test)
‖ values calculated for 172 patients

All patients (N = 467) Subtype A (N = 244) Subtype B (N = 223) p value

Age, years† 64 (53–75) 60 (49–70) 69 (58–78)  < 0.001

Male gender 293 (62.7%) 141 (57.7%) 152 (68.1%) 0.028

BMI, kg/m2† 27 (23–31) 26 (22–29) 28 (24–32) 0.001

Comorbidities†

 Charlson age–comorbidity index 3 (2–5) 3 (1–4) 4 (3–6)  < 0.001

 Diabetes mellitus, n (%) 98 (20.9%) 34 (13.9%) 64 (28.6%)  < 0.001

 Chronic heart failure, n (%) 35 (7.4%) 10 (4.1%) 25 (11.2%) 0.004

 Coronary artery disease, n (%) 40 (8.5%) 16 (6.5%) 24 (10.7%) 0.10

 Hypertension, n (%) 220 (47.1%) 95 (38.9%) 125 (56.0%) 0.005

 Chronic renal disease, n (%) 53 (11.3%) 6 (2.4%) 47 (21.0%)  < 0.001

 COPD, n (%) 50 (10.7%) 31 (12.7%) 19 (8.5%) 0.14

 Chronic liver disease, n (%) 31 (6.6%) 14 (5.7%) 17 (7.6%) 0.89

 Active cancer, n (%) 69 (14.7%) 37 (15.1%) 32 (14.3%) 0.99

Organ dysfunction

 Septic shock (Sepsis-3), n (%) † 127 (27.1%) 57 (23.3%) 70 (31.3%) 0.04

 SAPS II† 51 (38–61) 48 (36–59) 53 (41–65)  < 0.001

 SOFA at inclusion 8 (5–10) 6 (4–9) 9 (6–11)  < 0.001

 SOFA at ICU discharge 1 (0–5) 0 (0–4) 1 (0–5) 0.22

ICU stay and organ support

 Duration of ICU stay, days 13 (8–22) 14 (9–22) 12 (8–22) 0.26

 Mechanical ventilation, n (%)† 426 (91.2%) 231 (94.6%) 195 (87.4%) 0.41

 Duration of mechanical ventilation, days 7 (4–14) 7 (4–14) 10 (5–16) 0.27

 Vasopressors use, n (%)† 403 (86.2%) 202 (82.7%) 201 (90.1%) 0.003

 RRT during ICU stay, n (%) 109 (23.3%) 25 (10.2%) 84 (37.6%)  < 0.001

Primary outcome

 One-year mortality, n (%) 115 (24.6%) 39 (16.0%) 76 (34.1%)  < 0.001

Secondary outcomes

 Duration of hospitalization after ICU discharge, days 11 (4–24) 11 (4–27) 12 (2–22) 0.68

 Rehospitalization at 3 months, n (%)§ 113 (36.5%) 54 (32.1%) 59 (41.5%) 0.086

 SF-36 PCS at 3 months‖ 40 (24–54) 41 (23–58) 36 (22–51) 0.43

 SF-36 MCS at 3 months‖ 45 (33–67) 45 (32–67) 44 (31–65) 0.80

 Mortality at 3 months, n (%)‡ 78 (16.7%) 21 (8.6%) 57 (25.7%)  < 0.001

 Rehospitalization at 6 months, n (%)¶ 131 (47.0%) 61 (40.1%) 70 (55.1%) 0.012

 SF-36 PCS at 6 months$ 44 (29–66) 47 (34–69) 37 (25–62) 0.009

 SF-36 MCS at 6 months$ 50 (27–77) 50 (21–74) 62 (31–91) 0.52

 Mortality at 6 months, n (%) 92 (19.7%) 30 (12.3%) 62 (27.9%)  < 0.001

 Rehospitalization at 12 months,

 n (%)ǀ 160 (50.3%) 87 (48.6%) 73 (52.5%) 0.48

 SF-36 PCS at 12 months• 50 (31–74) 60 (37–81) 47 (23–63) 0.34

 SF-36 MCS at 12 months• 58 (39–76) 43 (16–90) 28 (4–50) 0.22
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Subtypes discrimination with reduced number 
of biomarkers
The initial multivariable regression model to discriminate 
the two classes was built with inflammatory and organ 
dysfunction biomarkers associated with at ICU discharge 
classes in univariate analysis. Thereafter, backward selec-
tion was applied to identify the main circulating markers 
associated with sepsis-survivors classes at ICU discharge. 
A reduced five-biomarker classification model includ-
ing procalcitonin, plasmatic cystatin C, galectin 3, brain 
natriuretic peptide and bio-adrenomedullin measured at 
ICU discharge emerged (Additional file 1: Table 9).

Discussion
Two sepsis-survivors classes were derived from 15 clini-
cal and biological data available at the time of ICU dis-
charge using an unsupervised analysis. When adjusted 
for standard risk factors (e.g., age, comorbidities, dura-
tion of ICU stay, severity of illness and renal function), 
subtype B was independently associated with increased 
one-year mortality after ICU discharge. This work was 
conducted in line with a recent 2018 colloquium on sep-
sis survivorship sponsored by the International Sepsis 
Forum suggesting a research road map to include pheno-
typing as an enrichment strategy to further understand 
heterogeneity among sepsis-survivors [4].

$ Values calculated for 169 patients
• Values calculated for 119 patients

No significant difference in SF-36 response rate was found between subtypes A and B at 3, 6 and 12 months (Chi square test)

Primary outcome is presented at one year after ICU discharge. Secondary outcomes are presented at 3 months, 6 months and 12 months after ICU discharge. A higher 
SF-36 score indicated a better mental and physical function

Table 1  (continued)

Fig. 2  Comparison of class-defining variables using latent class analysis and consensus k means clustering. Description: continuous variables 
were plotted after natural log transformation. Every normalized variable was standardized such that all means are scaled to 0 and SDs to 1. Group 
means of standardized values are shown by subtype classes (A and B). A value of + 1 for the standardized variable (y-axis) indicates that the mean 
value for a given subtype was one SD higher than the mean value in the whole sepsis-survivors cohort (N = 467). Subtype classes sizes (n): Latent 
class analysis: subtype A N = 244, subtype B N = 223; consensus k means clustering: subtype A N = 255, subtype B N = 212 (concordance rate 
(accuracy) = 81%). The mean (± SD) of percent missingness of the 15 class-defining variables was 12% (± 6). No significant difference in missing 
information for class-defining variables was found between subtypes A and B at ICU discharge (Chi square test). Abbreviations: SD standard 
deviations, BUN blood urea nitrogen, CRP C-reactive protein, SBP systolic blood pressure, WBC white blood cell, ICU intensive care unit
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Several studies have used an unsupervised approach 
(i.e., phenotyping) including physiologic variables 
measured on admission to identify clinical subtypes 
of early sepsis with different outcomes [8, 9]. Nonethe-
less, only few studies used an unsupervised approach in 
sepsis-survivors.

In the study of Yende et al., two phenotypes of sepsis-
survivors’ trajectories were identified in 483 patients 
using inflammation and immunosuppression biomarkers 
measured at five time points during and after hospitaliza-
tion for sepsis for one year [11]. The hyperinflammation 
and immunosuppression phenotype was independently 

Fig. 3  Comparison of host response biomarkers levels at ICU discharge between subtypes. Biomarkers data at ICU discharge were available for 
350 patients (subtype A N = 191, subtype B N = 159). No significant difference in missing information for biomarkers at ICU discharge was found 
between subtypes A and B (Chi square test). Comparison for each biomarker was performed using the Mann–Whitney U test. Data are shown 
as median (IQR). Abbreviations: ICU intensive care unit, PCT procalcitonin, IL6 interleukin-6, DPP3 circulating dipeptidyl peptidase 3, Bio-ADM 
bio-adrenomedullin, BNP brain natriuretic peptide
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associated with higher one-year mortality when com-
pared with the normal phenotype.

In Puthucheary et al. study, 291 adult sepsis-survivors 
were followed for 24 months. Physical function was the 
primary outcome and was mainly assessed using the PCS 
of the SF-36 [32]. Groups of longitudinal trajectories of 
PCS of the SF-36 were clustered using factor analysis. 

Two different physical recovery trajectories were identi-
fied. Older patients with more comorbidities and lower 
educational levels were more likely to have a poor physi-
cal recovery. A summary of these two studies is provided 
in Additional file 1: Table 10.

In the current study, sepsis-survivors assigned to sub-
type B had worse kidney function, were more anemic, 
had more coagulopathy and increased inflammation at 
ICU discharge when compared to subtype A. Further-
more, subtype B patients showed elevated markers of 
cardiovascular injury, though hemodynamically stable 
with low prognostic markers, including lactate and DPP3. 
Most of the circulating marker levels differences per-
sisted between subtypes after subgroup analysis stratified 
by traditional patient groupings using Charlson age–
comorbidity index terciles, at ICU discharge SOFA score 
terciles and sepsis syndrome severity on admission (i.e., 
SAPS II). When added to standard risk factors, subtype 
membership significantly improved post-ICU risk strati-
fication and was independently associated with one-year 
mortality. Mortality at three and six months after ICU 
discharge was also significantly higher in sepsis-survi-
vors assigned to subtype B. Hospital readmission rate 
was significantly higher in sepsis-survivors assigned to 
subtype B at six months. There was a significant differ-
ence between the two subtypes regarding SF-36 PCS at 
6  months (i.e., lower physical quality of life in subtype 
B patients) but not at the other timepoints. A potential 
explanation of the mortality, readmissions and SF-36 
PCS results differences at different timepoints after ICU 

Fig. 4  One-year post-ICU survival curves according to subtype 
membership. The log-rank test between the survival curves of the 
two subtypes at ICU discharge showed a p < 0.001

Table 2  Cox proportional hazards models to adjust for confounding (Charlson age–comorbidity index, duration of ICU stay, SAPS II on 
admission, SOFA score at ICU discharge) for one-year mortality

After adjustment for Charlson age–comorbidity Index, duration of ICU stay, SAPS II on admission and SOFA score at ICU discharge, membership in subtype B at ICU 
discharge was independently associated with one-year mortality. The model calibration was good according to the Grønnesby–Borgan test (p = 0.66)

A significant improvement in Cox regression model discrimination was found when adding subtype membership at ICU discharge on top of Charlson age–
comorbidity Index, duration of ICU stay, SAPS II on admission and SOFA score at ICU discharge with an increase in Harrell’s C-index by 2% (p = 0.006)

HR hazard ratio, CI 95% 95% confidence interval, ICU intensive care unit, SAPS II Simplified Acute Physiologic Score, SOFA Sequential Organ Failure Assessment

Adjusted HRs CI 95% p value

Model with subtypes at ICU discharge

Harrell’s C-index = 0.73 (95% CI 0.69–0.77) Optimism < 0.01

 Subtype (A as reference) 1.74 (1.16–2.60) 0.006

 Charlson age–comorbidity index 1.23 (1.14–1.33)  < 0.001

 Duration of ICU stay (days) 1.00 (0.99–1.01) 0.31

 SAPS II on admission (per 10-points increase) 1.07 (0.96–1.19) 0.18

 SOFA score at ICU discharge 1.08 (1.02–1.13) 0.004

Model without subtypes at ICU discharge

Harrell’s C-index = 0.71 (95% CI 0.68–0.76) Optimism < 0.01

 Charlson age–comorbidity index 1.25 (1.16–1.35)  < 0.001

 Duration of ICU stay (days) 1.00 (0.99–1.01) 0.35

 SAPS II on admission (per 10-points increase) 1.08 (0.97–1.20) 0.11

 SOFA score at ICU discharge 1.08 (1.02–1.14) 0.002
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discharge between subtypes A and B is that long-term 
mortality may be acting as a competing event for rehos-
pitalization and physical disability as of 6  months after 
ICU discharge.

There are scarce data to elucidate mechanisms of 
long-term consequences of sepsis and how to optimize 
health post-sepsis. Our work suggests that persistent 
inflammation and worsening organ dysfunction (heart 
and kidney) in stabilized sepsis-survivors at ICU dis-
charge may be associated with increased mortality 
and worsening underlying pathology. While persistent 
inflammation has been linked to accelerated athero-
sclerosis, plaque rupture and cardiovascular deaths; 
prolonged immunosuppression is probably related to 
post-sepsis syndrome associated infections [3, 34, 35].

Accordingly, identification of physiologic subtypes 
at ICU discharge may allow a better understanding of 
sepsis-survivors trajectory in the ICU (e.g., sustained 
organ dysfunction, hyperinflammation in stabilized 
patients) and improve the identification of patients at 
higher risk of poor long-term outcomes (e.g., physical 
disability and skeletal muscle dysfunction, readmis-
sions, cardiovascular events, infection, death). This 
enrichment approach may increase the probability of 
identifying a treatment benefit in a given subtype. [36]. 
Moreover, modifiable risk factors at ICU discharge 
(e.g., anemia, hyperglycemia) as well as biomarker-
guided interventions and follow-up using immu-
nomodulation or cardiorenal protective treatments 
(e.g., renin–angiotensin–aldosterone system inhibitors) 
should be assessed in future sepsis-survivors trials with 
specific physiologic subtypes which are not necessarily 
associated with initial severity of illness. Cardiorenal 
and immune disorders could be positively modulated 
by renin–angiotensin–aldosterone system inhibition 
in stabilized sepsis-survivors at ICU discharge with 
potentially a reduction in the progression of organ dys-
function and an improvement in long-term outcomes 
[37–39].

While the major strength of our study is the availability 
of detailed data collected at ICU discharge and one-year 
outcomes linked to well annotated biological biospeci-
mens collected at ICU discharge, our study has poten-
tial limitations. First, the study is from 2011 to 2013, and 
changes in the management of sepsis-survivors may have 
occurred in the interim. Second, the study was not exter-
nally validated as the performance of the different models 
wasn’t assessed in other external datasets. Nonetheless, 
large datasets with clinical and biomarker data at ICU 
discharge with a one-year follow-up are rare and no other 
studies were available for validation. Third, this study 
only included patients with sepsis within 24 h after inclu-
sion. The original FROG-ICU study was not designed 

for a daily monitoring of sepsis criteria during ICU 
stay. Therefore, it was not possible to include patients 
who developed sepsis during their ICU stay because of 
unavailable data at the time of sepsis onset. Finally, the 
observational design of this study does not allow us to 
draw any firm conclusions regarding a causal relationship 
between subtypes membership and long-term outcome.

Conclusion
In this reanalysis of the multicenter prospective FROG-
ICU study, two distinct, and almost equally prevalent, 
physiologic subtypes were identified within sepsis-sur-
vivors using readily available clinical and biological data 
at ICU discharge. Mortality was higher in subtype B 
patients as of three months after ICU discharge. When 
adjusted for standard risk factors (e.g., age, comorbidities, 
severity of illness, renal function and duration of ICU 
stay), subtype B membership was independently associ-
ated with one-year mortality. Future sepsis-survivors 
adaptive trials using enrichment strategies (e.g., evalua-
tion of subtype and biomarker-based treatment) should 
be designed. This will allow a more effective identifica-
tion of therapeutic and prevention strategies to improve 
long-term outcome in sepsis-survivors.

We suggest the following roadmap in this exciting 
and growing post-critical care subtyping research: (i) To 
encourage subtyping centered on the biological/molecu-
lar drivers of the post-sepsis syndrome to identify and 
largely validate distinct mechanistic signatures in sepsis-
survivors (i.e., endotypes). (ii) To develop an integrative 
subtyping approach using unsupervised machine learn-
ing and biomarker data to inform effective new therapies 
in future clinical trials. (iii) To set up trials with an inno-
vative design (i.e., subtype-based trials) for a more effec-
tive drug assessment in sepsis-survivors.
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