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Introduction
Research and development of data-driven artificial intel-
ligence (AI), so-called machine learning, in the intensive 
care unit (ICU) is at an all-time high. Data scientists and 
physicians are exploring the potential of machine learn-
ing in a vast range of domains, including infection man-
agement. From both a data science and a medical point 
of view, infection management in the ICU is an attrac-
tive yet challenging research topic: it is a highly complex 
area where information from several different medical 
specialties and sources has to be integrated for a sin-
gle patient. At the same time, there is an urgent need to 
optimize infection management in the ICU, both for the 
individual patient – as timely and adequate treatment 
determines a patient’s survival – and for society – as ris-
ing antimicrobial resistance and inadequate treatment 
results in increased morbidity and mortality and hence 
increased costs [1]. Evidence-based, data-generated, and 
automated AI support is expected to help ICU clinicians 
and antimicrobial stewardship teams take the next step 
in tackling these problems. Although the main focus of 
AI research in the ICU has been occurrence of sepsis and 
its outcome prediction as well as, more recently, almost 
every aspect of coronavirus disease 2019 (COVID-19), 

important progress has been made in the infection man-
agement field as well [2–4]. In this chapter, we provide 
an overview of the current stance of AI/machine learn-
ing research in different areas of antimicrobial infection 
management, the barriers that hinder clinical adaptation, 
and pitfalls for bedside use.

To this end, we have written a narrative review that 
takes a pragmatic approach using the antimicrobial stew-
ardship cycle as a framework (Fig. 1).

Start of Antimicrobial Therapy
Predicting Infection
A significant number of AI/machine learning models 
have been developed that try to predict the occurrence of 
an event in advance, commonly termed ‘forecasting’. Ven-
tilator associated pneumonia (VAP), central-line associ-
ated blood stream infections (CLABSI), as well as the risk 
of colonization/infection with a multidrug resistant path-
ogen (MDR) are just a few examples for which prediction 
models have been developed [5–8]. The forecasting of 
sepsis and/or septic shock has, however, dominated this 
domain, as illustrated by the no more than 15 retrospec-
tive papers and 1 prospective interventional study car-
ried out solely in the ICU that were identified by Fleuren 
et  al. in their recent systematic review [9]. In these and 
other prediction models, inference of the future risk is 
made by developing machine learning models on (most 
often) routinely collected healthcare data (e.g., medical 
history, clinical parameters, biochemistry results, etc.) 
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from retrospective databases. The rationale behind pre-
diction models is the idea that the clinical course can be 
altered if the physician is aware of the imminent event. 
As some predictions can be seen as preventively action-
able, clinicians can pre-emptively address known risk fac-
tors to try to avert the event from happening. When, for 
example, the model predicts that a certain risk threshold 
of CLABSI is exceeded, catheters could be preventively 
changed or removed to minimize the risk of CLABSI 
occurrence. Other forecasts however are not preven-
tively actionable from a clinical point of view. Patients 
at high risk of VAP or sepsis, for example, do not have 
other known actionable risk factors besides the ones 
that are already being addressed by standard preventive 
measures applied today. At first glance, these prediction 
models will not help in preventing occurrence, but can 
be used to alert healthcare workers to closely monitor 
the patient for imminent infection occurrence and conse-
quently facilitate timely initiation of appropriate therapy. 
Hence, these models could be categorized as early detec-
tion or ‘nowcasting’ models. This concept was illustrated 
in a prospective interventional study by Shimabukuro 
et  al., in which the intervention group was monitored 
by a machine learning algorithm that alerted the nurse 
in charge when it identified that the patient was at risk 
for severe sepsis [10]. The machine learning model was 
able to make predictions up to 4 h in advance of severe 

sepsis occurrence. In this study, the mortality and length 
of stay were significantly lower for patients followed by 
the machine learning algorithm in combination with 
the electronic health record (EHR)-based severe sep-
sis detector compared to patients followed by the latter 
alone. These findings raise the radical question whether 
or not we can decrease infection/sepsis related morbidity 
and mortality by pre-emptively treating selected patients 
at high risk for infection as predicted by highly accurate 
machine learning models.

Diagnosing Infection
Increasing Diagnostic Accuracy and Patient Surveillance
Some infections in the ICU are very well described and 
diagnosis is straightforward. Other infection types have 
a more subtle clinical course and are defined by different 
combinations of criteria, making their diagnosis more 
sensitive to a clinician’s interpretation. In the case of VAP 
for example, different combinations of clinical symptoms, 
biochemistry results, radiographic anomalies, and micro-
biological features can lead to the same diagnosis. When 
disease criteria are dependent on human evaluation, 
assistance by AI has the potential to improve interpreta-
tion objectivity and hence diagnostic accuracy. Hwang 
et al. added a machine learning algorithm to human read-
ing of chest X-rays and as a result enhanced the diagnos-
tic performance and accuracy of non-radiologists and 

Fig. 1 The antimicrobial stewardship (AMS) cycle. AI artificial intelligence, ML machine learning
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radiologists [11]. The implementation of machine learn-
ing is not restricted to established diagnostic procedures; 
new diagnostic approaches are also being combined with 
machine learning in an attempt to enhance them. Chen 
et al., for example, explored the possibility of combining 
electronic nose sensor signals with machine learning for 
the diagnosis of VAP and attained good accuracy [12].

For early infection detection or nowcasting, elec-
tronic systems are already being used in clinical practice 
for automated patient surveillance and early diagnosis 
of healthcare-associated infections (HAI). Most pack-
ages, however, are based on hardcoded rules designed 
by humans that classify infections as either being present 
or absent, and hence do not take into account the con-
tinuum that is typical of the development of an infection 
(Fig. 2). A more advanced package is Moni-ICU, whereby 
first a degree of compatibility (i.e., not compatible, partly 
compatible, and fully compatible) is expressed between 
observed/measured patient data and a clinical concept 
using fuzzy sets (e.g., compatibility between measured 
blood pressure and heart rate on the one hand, and the 

concept of shock or drop in blood pressure on the other 
hand) [13]. Subsequently, combinations of these clini-
cal concepts are being evaluated against higher order 
concepts (e.g., blood stream infection) by fuzzy rules. 
Ultimately this leads to the classification of a patient as 
‘normal’, ‘borderline infected’ or definitely ‘infected’, and 
hence early identification of patients in the ‘gray zone’.

Differentiating Inflammation from Bacterial Infection
From an antimicrobial stewardship point of view, prob-
ably the most difficult but also most impactful distinction 
to make is whether the patient actually has an infection 
or rather has systemic inflammation without any infec-
tion involved. Differentiating between these two disease 
states requires integration of different types of data, none 
of which are highly sensitive or specific since abnormal 
values for these variables is common in both disease 
states and highly discriminative tests are currently lack-
ing. Lamping et  al. however have demonstrated that a 
machine learning approach, based on random forests 
using eight routinely available parameters, outperforms 

Fig. 2 Continuum of infection development in relation to developing technologies. Current clinical detection of infection is often late in the 
continuum of infection development (red line). Hard-coded rule-based automatic surveillance systems for early detection only diagnose infection 
when the clinical threshold of infection has been passed. Fuzzy based surveillance systems are able to identify patients in the preclinical infection 
zone (“gray zone”), while nowcasting and forecasting models make predictions when infection has not yet been clinically diagnosed. Hence, the 
time gain to take pre-emptive measures or start appropriate antimicrobial therapy in comparison with current clinical practice can be substantial. O 
patient state at given time, RBSS rule-based surveillance system, CP current clinical practice
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currently available biomarkers to discriminate infec-
tious versus non-infectious states in critically ill children 
[14]. When identification of 100% of sepsis cases was 
targeted, the model correctly categorized 28% of non-
infectious cases. If external validation and clinical trials 
confirm the validity of the model, it could be associated 
with a significant reduction in unnecessarily prescribed 
antimicrobials. A more recent example, where differ-
entiating between inflammation and bacterial infection 
proved to be burdensome, was the COVID-19 pandemic 
during which the diagnosis of co-infection of bacterial 
origin was very difficult to make. This led Rawson et al. 
to develop machine learning models that support the 
diagnosis of bacterial infection using only routinely avail-
able blood test results [15]. Prospective evaluation of the 
algorithms is underway, but a preliminary area under the 
receiver operator curve (AUROC) of 0.96 on 54 patients 
is encouraging.

Initiating Antimicrobial Therapy
Today, antimicrobials are either prescribed on an empiri-
cal basis or complemented with information from sur-
veillance cultures when available. In either case, the 
causative pathogen is unknown. In addition, the anti-
microbial susceptibility of the causative pathogen is 
only known long after antimicrobial therapy has been 
initiated. Ideally, rapid diagnostics would lead to the 
identification of the pathogen and antimicrobial suscepti-
bility directly from clinical samples within approximately 
30 min as this would greatly diminish the need for empir-
ical treatment or allow adjustments to the antimicrobial 
therapy to be made before a second dose is adminis-
tered, thereby leading to more timely and more appropri-
ate therapy [16]. Also for this domain, researchers have 
shown that AI/machine learning can play a role.

Enhancing Available Techniques
Machine learning applications have been investigated to 
enhance currently available phenotypic and genotypic 
pathogen and resistance identification techniques. Roux-
Dalvai et al. for example developed a proteomics library 
for the 15 most prevalent bacterial species in urinary 
tract infections (making up 84% of all urinary tract infec-
tions) using a liquid chromatography with tandem mass 
spectrometry technique combined with machine learn-
ing, which enables detection of the presence of one of 
these 15 species within 4 h without the need for bacterial 
culture [17]. In another study, Feretzakis et al. tested mul-
tiple machine learning models that only needed limited 
information (including source of specimen, presumed 
site of infection, Gram stain of the pathogen, and previ-
ous susceptibility data) to predict susceptibility to a spe-
cific antibiotic with 72.6% accuracy in patients admitted 

to the ICU [18]. But the most promising study from 
a clinical point of view was by Ho et  al. who combined 
Raman spectroscopy on blood samples and deep learn-
ing to develop a base classification model for the 30 most 
common bacterial and yeast isolate classes in the ICU 
worldwide [19]. Not only does their method achieve a 
very high performance in pathogen and resistance identi-
fication while only needing ten bacterial cells to function, 
they also demonstrated that their initial model could be 
continuously improved with the addition of new Raman 
spectrums. As the authors state that this technique can 
process blood, sputum, or urine samples in a few hours 
without the need for an incubation period, this technique 
has the potential to greatly diminish the time to pathogen 
and antimicrobial resistance identification while provid-
ing a very high accuracy for certain infections.

Susceptibility Prediction
Although drastically reducing the time to identification, 
the above mentioned techniques still require sampling 
and sample processing, and hence will not be able to 
guide the choice of antimicrobial therapy at the time of 
initiation. Alternatively, models that can aid in predicting 
the causative organism and/or antimicrobial resistance 
at sampling time are also under investigation. Prediction 
models have been developed, mostly using supervised 
machine learning, on routinely collected and readily 
available healthcare data, collected at or before sampling 
time. A variety of sample types, pathogens of interest, 
and antimicrobials of concern have already been investi-
gated using this approach with variable degrees of success 
[20–24]. An advantage of some models is their imple-
mentation potential in low and middle income countries. 
For example, a study performed by Oonsivilai et al. in a 
Cambodian children’s hospital tested multiple machine 
learning models to predict the result of the Gram stain 
and the susceptibility of the pathogen to ampicillin and 
gentamicin, ceftriaxone or none of the former using only 
variables derived from clinical and demographic data as 
well as information regarding their living conditions [24]. 
Their best performing model had fair predictive perfor-
mance with an area under the curve (AUC) of 0.71 for the 
Gram stain result, 0.8 for ceftriaxone susceptibility, 0.74 
for ampicillin and gentamicin susceptibility, and 0.85 for 
resistance to the afore mentioned antimicrobials.

Antimicrobial Dose and Dosing Interval
Pharmacometrics has historically led dose and dosing 
intervals by means of linear regression, population phar-
macokinetic models, and Bayesian forecasting. Devel-
oped models are mostly still in the research phase, trying 
to find their way into the wards as dosing software, but 
wide implementation in clinical practice is lacking [25, 
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26]. Introduction of machine learning into pharmaco-
metrics is still in its infancy although the potential of a 
partnership is increasingly being recognized [27]. At 
the same time, machine learning research is ongoing 
to improve antimicrobial dosing, as is illustrated by the 
vancomycin dose prediction model using XGBoosting 
developed by Huang et al. [28]. However, more research 
is needed here as the error is rather high to have potential 
in clinical practice.

During Antimicrobial Therapy
Machine Learning and the Microbiology Laboratory
By contrast to the pharmacometrics domain, machine 
learning applications are being explored in all aspects of 
the microbiology laboratory. For an in-depth review on 
this topic we refer to the article by Peiffer-Smadja et  al. 
[29]. From microscopic images over spectroscopy data 
and transcriptomics to gene sequences, no stone is being 
left unturned. In general, the goal of most of these mod-
els is microorganism identification/quantification and 
evaluation of antimicrobial resistance with the purpose of 
reducing the turnaround time. As an example, Inglis et al. 
demonstrated that supervised machine learning could 
expedite the identification of antimicrobial resistance by 
using data generated through flow-cytometer-assisted 
antimicrobial susceptibility testing [30]. Their prototype 
was able to generate a predictive inhibitory concentra-
tion within 3 h of identification of a positive blood cul-
ture, where standard methods take approximately 24  h 
after culture positivity. By combining machine learning 
with infrared spectroscopy, Lechowicz et al. were able to 
bring the turnaround time even further down to 30 min, 
but it should be noted that their machine learning mod-
els, based on artificial neural networks, did not achieve 
perfect classification results [31].

Antimicrobial Stewardship Support
In recent years, a lot of effort has gone into the develop-
ment and maintenance of hospital tailored antimicrobial 
stewardship programs. Implementation of these anti-
microbial stewardship programs has already had a sig-
nificant impact on the length of stay and antimicrobial 
expenditure [1]. One essential element in most of these 
plans is antimicrobial prescription review and prescriber 
feedback, where several key parameters for prescribed 
antimicrobials (e.g., indication, dosage, route of adminis-
tration, duration) are evaluated. Suggestions are made by 
the reviewer if adaptations are deemed necessary. Since 
this is a time-consuming job, computerized systems 
are often used to help identify patients where a review 
is warranted. It should however be noted that these 
clinical decision support systems (CDSS) often have an 
expert and rule-based knowledge base, which mandates 

that development and maintenance of these systems to 
changing guidelines are also time and resource intensive. 
In addition, resource constraints lead to certain antibi-
otics of interest being singled out instead of evaluating 
all prescribed antibiotics. To overcome these shortcom-
ings, Bystritsky et  al. tried to develop linear regression 
and boosted-tree models using routinely available health 
care data to identify patients that could possibly benefit 
from prescription review and prescriber feedback [32]. 
Although the discriminatory power of these retrospec-
tively developed models was only fair and the number 
of patients that needed to be reviewed by the model to 
identify one patient who required an intervention was 
high, the premise that all patients with a prescribed anti-
microbial could be evaluated in an automated way could 
yield a large advantage. Another approach could be to 
combine the currently available CDSS systems for anti-
microbial stewardship with machine learning. Research-
ers from the Université de Sherbrooke demonstrated that 
their supervised learning module could identify clinically 
relevant new rules complementing the rules already in 
their knowledge base by evaluating past recommenda-
tions from clinical pharmacists [33]. Although promis-
ing, incorporating new rules, learned through machine 
learning, into the already available knowledge base and 
automating rule maintenance remains an important 
challenge.

End of Antimicrobial Therapy
At present, sometimes empiric antimicrobials are pre-
scribed for patients who do not need it, or they are not 
stopped in a timely manner. Eickelberg et al. investigated 
whether machine learning could help identify patients 
at low risk for bacterial infection and hence suitable for 
antimicrobial discontinuation [34]. Different machine 
learning models were investigated, using clinical parame-
ters and characteristics, blood gas and laboratory results, 
as well as certain administered medications, to evaluate 
the bacterial infection risk at three time points after ini-
tiation of empirical antimicrobial therapy: 24 h, 48 h and 
72  h. Interestingly, there was little variation in perfor-
mance between the 24 h and the 72 h models. The best 
performing models identified patients with a low risk 
of bacterial infection with a negative predictive value of 
more than 93%.

Future Directions
From Research to Clinical Practice
Based on the information provided above, AI and 
machine learning research are more and more inter-
twining with every aspect of the antimicrobial steward-
ship cycle, albeit to varying degrees. However, clinical 
implementation has only sporadically been realized as 
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most models are still in the design/prototype phase, or 
have only been tested on internal clinical data [35, 36]. 
Validation of these models, prior to implementation on 
external datasets and in clinical trials, will be paramount 
and adequately designing these trials will be a challenge. 
Choosing the correct reference standard as a compara-
tor for models for which the ground truth is objective 
(e.g., prediction of an antimicrobial concentration) is 
more straightforward than determining this standard 
for a task where human interpretation and hence sub-
jectivity is involved (e.g., the diagnosis of VAP) [37]. At 
the same time, a decision will have to be made as to what 
level of performance we, as clinicians, deem sufficient 
for a model to be put into clinical practice depending 
on the given task. Expecting flawlessness from machine 
learning models is a utopian dream as long as we are 
not able to incorporate variables that resemble the com-
plete causal pathophysiological process. And even then 
it is unlikely that models will be flawless, as for even the 
most objective ground truth, repeated measurements can 
vary owing to the measurement method used (e.g., the 
between-run and within-run imprecision of high-perfor-
mance liquid chromatography with tandem mass spec-
trometry for antimicrobial concentration determination).

Other aspects that need to be solved are the ethical and 
legal responsibilities when, for example, clinicians fol-
low off-label dosing suggestions, or follow the advice of a 
model that later turns out to be flawed. Closely linked to 
this aspect is the need to educate physicians to critically 
appraise and evaluate model capabilities and associated 
studies. As clinicians will be the end-users of these AI 
systems, education is needed, not only to ensure appro-
priate usage, but also to empower physicians to identify 
and report emerging problems.

Finally, all models mentioned in this paper have a stan-
dalone design and are focused on one particular aspect of 
antimicrobial stewardship. Incorporating and managing 
the variety of engineered models into everyday practice 
in a meaningful way so that the whole domain of antimi-
crobial stewardship is supported while not chaining the 
physician to a screen might pose the greatest challenge 
of all.

Post‑implementation Surveillance of Machine Learning 
Models
Since deployment of machine learning models into 
clinical practice is foreseeable in the very near future, 
governance of these models will be a new task that will 
have to be taken up by clinicians, at the very least par-
tially. As end-users, clinicians will become the first line of 
defense to identify circumstances where AI fails to per-
form reliably. This possibility of failure is not unrealistic, 
as was recently demonstrated by Finlayson et al. for the 

proprietary Epic Sepsis prediction model that suffered 
from a phenomenon called dataset shift [38]. Dataset 
shift occurs when a machine learning system underper-
forms after it is deployed because of a mismatch between 
the data/context it was developed for and the data/con-
text it is deployed in [39]. Translated to clinical prac-
tice, this means that any difference or change in patient 
demographics or delivery of care between the patients 
the model was developed upon and the actual patients 
for which the model is asked to give a suggestion, can 
flaw the suggestion of the model. These differences or 
changes can be readily identifiable (e.g., evolving anti-
microbial resistance epidemiology, or introduction of a 
new first-line antimicrobial) but can also be very subtle 
(e.g., behavioral changes of the clinicians induced by the 
AI system after its implementation, or change of a diag-
nostic test, which alters the reference values). As clinical 
practice is changing more rapidly than ever before, keep-
ing models accurate and up to date will be an undertak-
ing in which clinicians will have to take a key role within a 
medicine-transcendent multidisciplinary team to ensure 
patient safety. Machine learning solutions such as online 
learning might prove to be of use in this area as well.

Emerging Research Possibilities
Personalization through the ‘Internet of Things’
The diagnostic process of infection is often triggered 
by a change in clinical parameters (e.g., body tempera-
ture) or laboratory results (e.g., increase in C-reactive 
protein). For the latter category, increases above a set 
threshold value as well as trends over time are typically 
used in clinical practice. For the former category, how-
ever, current guidelines use hard thresholds to differenti-
ate a pathological from a normal state, which obviously 
does not hold true for all patients. For example, fever in 
adult patients is often defined as a temperature ≥ 38  °C, 
whereas, depending on the measurement method and 
age of the patient, the normal population range varies 
between 35.61 °C and 37.76 °C [40]. Often, older patients 
do not experience fever while they are having an infec-
tion. By integrating information from currently wide-
spread used wearables through the ‘internet of things’, 
new research opportunities arise to determine –at an 
individual level– which thresholds should be used to 
identify significant changes in physiological parameters. 
Disclosing these baseline physiological characteristics 
to the physician could help to personalize treatment at 
a patient level and may also help in the development of 
machine learning models to do the same. Several compa-
nies and healthcare systems have already taken initiatives 
to enable integration of wearable health technology data 
into the electronic health record (EHR), but actual clini-
cal impact has not yet been demonstrated [41].
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Omics
In addition to AI and machine learning, different types 
of omics are also being intensively researched in every 
aspect of healthcare, as it is believed that omics might 
provide the tools necessary to advance clinical practice 
toward precision medicine [42]. A difficulty in omics 
research, however, is the amount of generated data that 
has to be analyzed and the computational power needed 
to do so. As AI and machine learning are capable of han-
dling these kinds of issues, combining the two domains 
might create new insight by integrating information from 
different omics research fields, as has been illustrated by 
the ShockOmics research project [43].

Conclusion
AI and machine learning research for antimicrobial 
stewardship in the ICU is at an all-time high, but to 
date, implementation into clinical practice has only 
been sporadic. Internal validation results are promis-
ing, so an increase in external validation studies and 
randomized controlled clinical trials is to be expected 
in the coming years. Providing the prerequisites to 
safely validate and implement these models will be 
necessary for bedside clinical deployment in the near 
future. Within new beyond-the-borders-of-medicine 
multidisciplinary teams, bedside clinicians will have an 
important role in facilitating this process.
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