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Introduction

The use of non-invasive neuromonitoring in patients
without brain injury has increased over the past decades
[1]. Most common clinical applications of noninvasive
neuromonitoring in the non-neurological setting include
the study of patients without primary brain injury but
with a potential for neurological derangement. These
clinical conditions include liver failure, post-cardiac
arrest syndrome, severe respiratory failure with or with-
out extracorporeal membrane oxygenation (ECMO) or
extracorporeal carbon dioxide removal (ECCO2R), pol-
ytrauma, stroke, sepsis, pregnancy, pediatric population,
and the surgical population in the periop-erative period
[1]. In recent years, a growing literature has suggested the
use of non-invasive techniques in this population, and
these are becoming increasingly popular among general
critical care physicians for daily and bedside patient man-
agement [1, 2]. The aim of this chapter is to provide anes-
thesiologists and intensiv-ists with an up-to-date view
of the most frequent clinical conditions with potential
for neurological complications in patients without brain
injury, and to describe the role of non-invasive multi-
modal neuromonitoring in the early identification and
management of these complex scenarios.
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Basics of Neuromonitoring in Anesthesia

and Critical Care

In this paragraph, we will introduce the most commonly
used non-invasive neuro-monitoring tools in anesthe-
sia and in the critical care settings. However, a detailed
description of each neuromonitoring system is beyond
the aim of the present manuscript, and the reader should
refer to the dedicated literature.

Table 1 presents the methodology, strengths, and limi-
tations of the main neuromonitoring techniques (elec-
troencephalography [EEG], processed EEG [pEEG],
somatosensory evoked potentials [SSEPs] and motor-
sensory potentials [MEPs], transcranial Doppler [TCD],
optic nerve sheath diameter [ONSD], pupillometry, and
near-infrared spectroscopy [NIRS]).

Clinical Applications

Neuromonitoring in the Operating Room

Intraoperative and postoperative neurological complica-
tions, such as delirium, postoperative cognitive decline,
stroke, spinal cord ischemia, and postoperative visual
loss, are frequently underestimated [2]. These complica-
tions have the potential to increase mortality and mor-
bidity and should therefore be promptly identified and
prevented [2]. Some types of surgery are more suscep-
tible than others to cerebral complications. In major
vascular surgery, registries have reported an intra/post-
operative stroke rate of 7% after carotid stenting and of
3.2% after endarterectomy [3]. During aortic procedures,
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the T4-T8 segment is particularly susceptible to reduced
blood perfusion, because of the variable location of the
radiculomedullary arteries and of the artery of Adamk-
iewicz; this may influence pathological processes and
the metabolic state of the tissue during aortic surgery,
thus causing paralysis in the worst cases [3]. During
thoracic aorta surgery, following the circulatory arrest
with consequent transient ischemia, an early phase of
parenchymal hypoperfusion is present, with consequent
systemic inflammation and possible reperfusion injury.
This results in a potential for severe temporary or perma-
nent neurologic dysfunction including possible ischemic
stroke, prolonged obtundation, disorientation, Parkin-
son-like movements, and loss of cognitive function [3, 4].

Similarly, in cardiac surgery, neuronal and vascular
damage, inflammation, and embolism may result in inad-
equate oxygen delivery to the brain and altered cerebral
autoregulation, predisposing to neurological complica-
tions [4]. Indeed, neurocognitive dysfunction, including
postoperative delirium, effects up to 50% of patients after
cardiac surgery, with stroke affecting 2%, and postopera-
tive neurocognitive dysfunction up to 42% [4].

In addition, neurological complications can also
occur following non-high-risk surgery. Some trials have
revealed that use of adequate neuromonitoring dur-
ing anesthesia can prevent or limit the occurrence of
adverse effects [2]. Standard monitoring during anes-
thesia includes mainly hemodynamic and respiratory
parameters among essential minimum monitoring data
[5]. However, the primary targets of anesthetics and anal-
gesics are the central and peripheral nervous systems [2].
It seems logical to assume that this ironic clinical gap in
standards of monitoring during anesthesia deserves fur-
ther revision, or at least should be individualized and
implemented in case of predisposing comorbidities, peri-
operative events, and high-risk procedures [2].

In this section, we describe the most common clinical
scenarios for potential of brain injury in the operating
room and the utility of each neuromonitoring system in
the early identification of such devasting complications.
Table 2 resumes the most common clinical applications
of neuromonitoring in the operating room.

Electroencephalography

pEEG monitoring was primarily introduced into the
operating room to reduce the risk of awareness dur-
ing surgery, to optimize anesthetic titration, and to
individualize the depth of anesthesia [6]. The main raw
traces identified by pEEG are shown in Fig. 1, panel A,
while an example of a density spectral array (DSA) trace
is presented in Fig. 1, panel B. In 2017, the European
Society of Anesthesiology (ESA) produced a consensus
suggesting that all patients undergoing surgery should
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have anesthesia depth monitored [7]. EEG responses to
anesthesia depend on the interaction between surgical
stimulus, sedatives, and anesthetic plane. The phase of
induction of anesthesia is characterized by an increase
in beta activity (13-30 Hz), followed by the maintenance
phase which is characterized by an increase of alpha
(8—12 Hz) and delta (0—4 Hz) activities, while during the
emergence phase, a reverse order of frequencies appears.
A numeric index between 40-60, which is the result of
the integration of the raw signals, is recommended to
avoid awareness and excessive sedation [2]. The use of
PEEG devices has been validated to reduce awareness in
patients receiving volatile anesthetics with a minimum
alveolar concentration (MAC) value<0.7, and during
total intravenous anesthesia [2]. Moreover, pEEG may
reduce drug consumption, thus reducing the incidence
of postoperative nausea and vomiting and facilitating
extubation and earlier discharge [2]. The intraoperative
use of pEEG has been shown to reduce the incidence of
delirium, cognitive dysfunction, and ischemic stroke in
the postoperative period [2].

In major vascular surgery settings, the presence of beta
bands, a decrease of more than 50% of background activ-
ity, a reduction in amplitude of 60%, an increase in delta
and slow wave activities, or a complete loss of signal is
highly suggestive for ischemic complications [8]. Of note,
during carotid endarterectomy, changes in cerebral blood
flow (CBF) frequently reflect on the EEG within 20-30 s
after clamping [3]. When using pEEG, a reduction in
bispectral index (BIS) value has also been correlated to
ischemia and neurological deficit [9].

In cardiac surgery, long-term EEG burst suppression
has been associated with postoperative neurocogni-
tive dysfunction and delirium [4], while decreased alpha
and beta waves can be indicative of a CBF<22 ml/100 g
brain tissue/ minute, and further reduction to 7-to-
15 ml/100 g/min can result in an isoelec-tric EEG [4].
However, a recent large randomized controlled trial
(RCT) did not support the use of EEG-guided anes-
thetic administration for the prevention of postoperative
delirium in major surgery [10]. EEG or pEEG monitoring
might also be useful to detect and avoid periods of burst
suppression, which have been associated with postopera-
tive delirium. However, evidence is still lacking on this
topic [4].

Evoked Potentials

Evoked potentials are restricted to specific procedures,
since their use often requires dedicated equipment and
training. During carotid endarterectomy, hypoperfusion
of the middle cerebral and anterior cerebral arteries could
be detected by abnormalities in the SSEP signal at the
median and tibial nerves [3]. Information from evoked
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Table 2 Clinical application of neuromonitoring in the operating room

Type of surgery/ procedure Neurological complications Neuromonitoring Evidence

Major vascular surgery Stroke, delirium, cognitive decline, paralysis EEG or pEEG Beta bands, slow background, reduction of
amplitude on EEG, reduction of BIS on pEEG are
signs of ischemia (carotid surgery)

Evoked potentials  Abnormalities in the SSEPs of median and tibial
nerves if hypoperfusion (carotid surgery). MEPs
correlate with NIRS

TCD TCD can allow detection of stenosis, turbulence,
and emboli (carotid surgery)
NIRS Cerebral rSO2 < 70% is indicative of possi-

ble hypoperfusion (carotid surgery), lumbar
rSO2 < 75% for 15 min can cause spinal cord
injury (aortic repair)

Cardiac surgery Delirium, cognitive dysfunction, stroke EEG or pEGG Long-term EEG burst suppression is associ-
ated with cognitive dysfunction and delirium.
Decrease in alpha and beta waves is indicative of
tissue hypoperfusion

Evoked potentials  Help in the detection of ischemia, not specific

TCD TCD can detect changes in CBF, microemboli,
flow asymmetries
NIRS An rSO2 value which falls by 10-20% or < 50% is

associated with postoperative complications. The
threshold of rSO2 > 80% prevents complications

Abdominal surgery Neurological deterioration, intracranial hyper- ~ TCD TCD can allow non-invasive calculation of ICP,
tension identification of changes in CBF due to high ICP
or carbon-dioxide vasodilatation

Orthopedic surgery Cerebral deoxygenation NIRS Cerebral rSO2 monitoring can prevent cerebral
deoxygenation and neurological complications

EEG electroencephalogram, pEEG processed EEG, TCD transcranial Doppler; NIRS near infrared spectroscopy, BIS Bispectral index, rSO2 regional saturation of oxygen,
MEPs motor evoked potentials, SSEPs sensory evoked potentials, CBF cerebral blood flow, ICP intracranial pressure

a
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Fig. 1 Processed electroencephalography (pEEG). The main raw traces identified by pEEG are shown in Panel A: (a) small amplitude, fast frequency
wave (patient awake), (b) moderate sedation, (c) large amplitude, slow frequency wave (general anesthesia), (d) slow oscillations (deep anesthesia),
(e) isoelectric trace and burst suppression. The density spectral array (DSA), a colored trace obtained from EEG and transformed into decibels of
bi-hemispheric activity that can change from red (highest powers) to blue (lowest powers), is shown in Panel B. The white line in the DSA represents
the spectral edge frequency (SEF) (in Hertz); 95% of the power of the brain resides below that line. The purple line in the DSA in the median
frequency (MF). BIS bispectral index
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potentials has the advantage of being objective and pro-
viding quantitative information on neurological compli-
cations, but during surgery the signal may be modified
by general anesthetics, and in particular volatile agents.
SSEPs may also have high false-positive rates (40—-67%)
and a moderate false-negative (13%) rate, and a delayed
response for spinal cord ischemia. Indeed, during aortic
surgery, the blood flow is more often compromised in the
anterior motor tract than in the sensory dorsal column,
and the limited ability of evoked potentials to detect
altered motor function during ischemia in case of iso-
lated spinal injury becomes even more worrisome [11].

Transcranial Doppler
TCD flows of the main intracranial arteries are shown
in Fig. 2. There are still no clear indications for TCD in
the perioperative setting, but some authors have sug-
gested its use during liver transplant for the detection
of cerebral complications and in particular brain edema
[12]. During pneumoperitoneum and the Trendelenburg
position, TCD can also be considered for the detection of
episodes of high intracra-nial pressure (ICP) [13] follow-
ing increases in carbon dioxide (CO2) that can result in
cerebral vasodilatation [14].

The beach chair position is a technique used for shoul-
der surgery, which has shown to put the patient at risk
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of neurological complications as it may decrease cer-
ebral perfusion due to blood pressure fall [15]. Moreo-
ver, major orthopedic surgery is a discipline at high risk
of microembolic complications and TCD may help in
the early diagnosis of embolic stroke in the perioperative
period [16].

TCD in major vascular surgery can detect isolated
arterial stenosis, which results in focal velocity increase
and turbulence, inadequate collateral flow after proximal
carotid cross-clamping by detecting compromised flow,
and high-intensity signals at the Doppler spectral wave-
forms that can be indicative of emboli [17].

Finally, TCD is frequently used in cardiac surgery to
detect changes in flow velocities and flow asymmetries
and can be a valid option to assess anterograde cerebral
perfusion during aortic arch surgery and for the detec-
tion of high-intensity signals related to microemboli [18,
19].

Near-Infrared Spectroscopy

NIRS can provide important information on changes in
cerebral oxygenation during the perioperative period, but
NIRS signals can be modified by anesthetics and seda-
tives. In orthopedic surgery, NIRS has been used together
with TCD during the beach chair position to prevent cer-
ebral deoxygenation with good effect [16], but its use is

ACA

MCA/ACA
bifurcation

Fig. 2 Transcranial Doppler monitoring. The circle of Willis is represented in red with specific transcranial color Doppler sonographic images for
each intracranial artery. MCA mean cerebral artery, PCA posterior cerebral artery, ACA anterior cerebral artery, VA vertebral artery, BA basi-lar artery
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specifically recommended in major vascular and cardiac
surgery [4, 20].

In carotid surgery, a regional cerebral oxygen saturation
(rSO2) of<70% (50 to 75%) has been suggested as a pos-
sible indicator of hypoperfusion, and in patients under-
going aortic repair, a lumbar rSO2 of<75% for 15 min
predicted the development of spinal cord injury [4, 20].
The sensitivity of NIRS in detecting cerebral ischemia is
60-100% with good specificity (94—98%) [20], although
neurological monitoring and awake anesthesia remain
the gold standard [21].

NIRS has also been recommended in cardiac surgery,
both in the preoperative and intraoperative periods, to
detect patients at higher risk of neurological complica-
tions and to identify episodes of acute cerebral hypoper-
fusion, which are common in these settings [22]. Cerebral
oximetry should be cautiously interpreted, considering
the baseline values and its trend, as well as preoperative
patient status [22]. A recent meta-analysis assessing pre-
operative rSO2 values in cardiac surgery found a refer-
ence range of between 51 and 82%, with a mean baseline
value of 66% [23]. According to the literature, interven-
tion is needed when the rSO2 values decrease by 10-20%
from baseline or below the absolute value of 50%; more-
over, the time spent with rSO2<50% is significantly
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associated with the occurrence of postoperative delirium
during coronary artery bypass graft surgery [23].

Figure 3 shows an example of cerebral oximetry using
the Masimo (Masimo Corp., Irvine, CA) device.

Neuromonitoring in the Emergency Department

and Intensive Care Unit

Neuromonitoring in the emergency department (ED) and
ICU might be a valuable complement to clinical diagno-
sis and diagnostic images in patients without primary
brain injury who are at risk of cerebral hemodynamic
impairment [24]. Neurological impairment is common in
patients admitted to the ED and ICU with sepsis, meta-
bolic, renal, or hepatic diseases, and intoxication as these
conditions can cause encephalopathy, cognitive decline,
and delirium [24]. Additionally, a large potential for brain
injury should be considered in patients with polytrauma,
in the context of focused assessment with sonography in
trauma (FAST) [25, 26].

Despite the diagnostic and prognostic potentiality of
non-invasive multimodal neuromonitoring in the ED,
use of these techniques is still limited in these settings,
and they are currently more frequently adopted in post-
emergency settings after ICU admission. Table 3 resumes

Baseline

Abase % of rSO2

“\,

 1S02 %

TT—AcHbi
T~ AHHbi

T~_AOHbi

Trend respect to baseline

Fig. 3 Near infrared spectroscopy. This figure represents two possible traces, one with normal values and the other with abrupt decrease in
regional oxygen saturation (rSO2) values. AO2Hbi index associated with variation of the oxygenated component of the hemoglobin in the total
calculation of rSO2 (arterial component of rSO2), AHHbi an index associated with variation of the deoxygenated component of hemoglobin within
the total calculation of rSO2 (venous component of rSO2), AcHbi is the sum of AHHbi+ AO2Hbi. SpO2—rSO?2 is the difference between the value of
peripheral saturation of oxygen (Sp0O2) and rSO2
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Table 3 Clinical application of neuromonitoring in the emergency department and intensive care unit

Setting Neurological complications

Neuromonitoring Evidence

Cardiac arrest Neurological outcome EEG or pEEG

Evoked
potentials

TCD
Pupillometry
EEG or pEGG
TCD
Pupillometry
EEG or pEGG
TCD
NIRS
EEG or pEGG

Brain death Diagnosis

ECMO

Neurological outcome

ARDS and COVID-19
ARDS

Neurological complications, delirium
TCD
NIRS

Pupillometry
TCD
NIRS
Pupillometry

Liver diseases Encephalopathy

TCD
NIRS
TCD

Kidney disease Encephalopathy

Sepsis Encephalopathy

NIRS
Pupillometry

Prognostication after cardiac arrest
Prognostication after cardiac arrest (SSEPs) after 48-72 h

Detection of CBF abnormalities and intracranial hypertension
Prognostication after cardiac arrest

Electrocerebral silence

Detection of flow inversion, intracranial hypertension. Ancillary test
No response

Prognostication in patients receiving ECMO

CBF alterations, stroke

Association with neurological injury

Typical EEG includes abnormal background, epileptiform discharges
in only 20%

Pulmonary shunt, microemboli, CBF alterations, cerebral autoregula-
tion

To detect brain deoxygenation, and responses to hemodynamic and
respiratory maneuvers

Inconclusive evidence

High resistances on TCD, CBF alterations

Association with outcome

Pupillary abnormalities are associated with neurological complica-
tions

CBF alterations
Association with outcome

High resistances on TCD, altered CBF, high PI. Association between Pl
and delirium

Association with outcome

Pupillary abnormalities are associated with neurological complica-
tions

EEG electroencephalogram, pEEG processed EEG, TCD transcranial Doppler, NIRS near infrared spectroscopy, BIS Bispectral index, rSO2 regional saturation of
oxygen, SSEPs sensory evoked potentials, CBF cerebral blood flow, ICP intracranial pressure, Pl pulsatility index, ARDS acute respiratory distress syndrome, COVID-19

coronavirus disease 2019, ECMO extracorporeal membrane oxygenation

some of the most common clinical applications of neu-
romonitoring in the ED and ICU.

Electroencephalography

EEG is mainly used in the ED for the early diagnosis of
first-time seizures that are often caused by non-primary
brain injury, such as with systemic fever and metabolic
disturbances [27]. The utility of pEEG in the ED has been
poorly investigated, but it may potentially be used in
patients who need sedation for various reasons, to assess
the occurrence of burst suppression, to help in the induc-
tion of anesthesia, and to monitor brain activity for any
causes [9, 28, 29].

In the ICU setting, in addition to the detection of sei-
zures or status epilepticus, one of the main applications
of EEG is in the assessment of patient prognosis [30], in
particular with the detection of a suppressed EEG in case
of vegetative state and electrocerebral silence in brain

death [31]. This is particularly useful in cardiac arrest
patients [31].

In patients receiving ECMO, EEG has shown to be use-
ful in the identification of patients at risk for neurologi-
cal complications and to predict poor outcome, by the
identification of specific patterns, such as suppression
[32] and absence of EEG reactivity [33]. Abnormal back-
ground abnormalities have also been demonstrated to be
common EEG features of patients with coronavirus dis-
ease 2019 (COVID-19), with an incidence of 96%, while
epileptiform discharges were present in 20% of patients
[34].

Evoked Potentials

Evoked potentials are frequently used for neuroprognos-
tication in specific diseases (e.g., traumatic brain injury
[TBI], cardiac arrest) as part of multimodality algo-
rithms that include clinical examination, electrophysi-
ologic testing, imaging, and laboratory markers (e.g.,
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serum enolase) [31]. Following cardiac arrest, SSEPs are
still considered a cornerstone of prognostic algorithms,
especially when delayed 48—72 after cardiac arrest [31].
Typical patterns of SSEPs in the median nerve following
cardiac arrest include: bilaterally negative N20, which
is indicative of death or vegetative state and poor prog-
nosis; presence of N20 potentials and absent mismatch
negativity, which is diagnostic of indeterminate progno-
sis; and presence of N20 with mismatch negativity, which
represents a 95% chance of recovery with good neurolog-
ical function [31].

Transcranial Doppler

TCD has considerable diagnostic potential in the ED and
the ICU. Hepatic encephalopathy is a complication which
occurs in up to 70% of patients with liver cirrhosis, and
that manifests with psychomotor, attentive, and executive
alterations [35].

Higher vascular resistances and pulsatility index in
the middle and posterior cerebral arteries of cirrhotic
patients have been reported in comparison to controls,
with 74% accuracy of the middle cerebral artery resistive
index for discriminating the presence of hepatic encepha-
lopathy [35].

Alterations in CBF have also been found in patients
with uremia and chronic kidney disease, typically with a
decrease in CBF observed after hemodialysis [36].

Sepsis-associated encephalopathy is considered as
an independent risk factor for mortality [37] that is
characterized by a decrease in the density of cerebral
microvessels that can alter cerebrovascular resistances,
with potential for inadequate oxygen supply and cer-
ebral dysfunction. On TCD, the pulsatility index was
higher in septic patients than in controls [38], and high
pulsatility index values on the first day of sepsis diag-
nosis were associated with a positive CAM-ICU delir-
ium assessment [39]. TCD after cardiac arrest has been
extensively studied, and includes four different features:
pulsatility index<0.6 (very low resistance), associated
with possible hyperemia, vasospasm or stenosis; pul-
satility index 1.2-1.6 (high resistance) with possible
microangiopathy or mild intracranial hypertension; pul-
satility index 1.7-1.9 (very high resistance) with severe
intracranial hypertension; and pulsatility index >2 with
cerebral hypoperfusion. In patients who remain coma-
tose >20 min after return of spontaneous circulation the
main pattern described is a high pulsatility index [40].

In patients with polytrauma admitted to the ED at risk
for intracranial hypertension or with contraindications to
invasive ICP placement, TCD and ONSD can be a valid
option for the assessment of high ICP and for excluding
extracranial hypertension [25, 26].
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In mechanically ventilated patients with acute res-
piratory distress syndrome (ARDS) (including COVID-
19 ARDS), TCD has been extensively used and has the
potential to indicate the effect of mechanical ventila-
tion strategies on cerebral function, to detect secondary
brain dysfunction, and to assess cerebral autoregulation
during hemodynamic and respiratory rescue maneuvers
[41-43].

Near Infrared Spectroscopy
The use of NIRS is gaining increasing interest in the ED
and ICU settings to detect microcirculatory changes in
patients with septic or metabolic alterations. Although
the majority of studies have been conducted in the ICU,
some studies in the ED have concluded that NIRS may
correlate with severity of illness, especially after cardiac
arrest, with variable association between rSO2 values and
outcome [44, 45]. NIRS has been also used for the evalu-
ation of cerebral complications and out come in sepsis,
with a rSO2 cut-off of 75% as predictor of neurological
sequelae [46]. Similarly, an increase in rSO2 during hos-
pitalization, and lower tissue oxygen extraction rates
detected using NIRS, have been shown to be associated
with improved survival in polytrauma patients [47].
Finally, in mechanically ventilated patients with ARDS
(and COVID-19 ARDS), NIRS has been shown to be use-
ful in assessment of the effect of hemodynamic and res-
piratory maneuvers on brain oxygenation and cerebral
hemodynamics [42, 43, 48].

Automated Pupillometry
In the critical care setting, pupillary size and reactiv-
ity to light may provide information about intracranial
disease, including elevated ICP and altered perfusion,
sedation and analgesia, delirium assessment, brain meta-
bolic derangements, and prognostication [49, 50]. Some
studies have used pupillometry to assess the pupil-lary
response to a light stimulus before painful procedures in
order to assess adequacy of analgesia. In addition, pupil-
lometry has been shown to be useful to assess the level
of sedation, with a good correlation with BIS values [50].

Metabolic disorders can impair the sympathetic sys-
tem and affect pupillary light reactivity. This can also
be observed in patients with sepsis or liver-associated
encephalopathy, and neurological disorders. Some
authors have suggested that patients with a delayed
recovery of pupillary reflexes developed demyelinating
encephalopathy or dementia, suggesting that pupillary
abnormalities may be associated with potential neuro-
logical derangements [49, 50].

Automated pupillometry is also gaining interest as part
of the prognostication algorithms adopted after cardiac
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arrest [49]. A pupillary light reflex < 6%, neurologic pupil-
lary index (NPi) of 0 at 6 h from the cardiac arrest, and a
pupillary light response <13% have shown to be predic-
tive of poor outcome [49]. Pupillary light reactivity, when
used in combination with EEG and SSEP has also been
shown to improve sensitivity to 100% for the prediction
of outcome after cardiac arrest [49].

Intracranial hypertension can also occur in non-pri-
mary brain injured patients. Automated pupillometry
can detect and even predict elevated ICP. For example,
unilateral pupillary dilation and loss of reactivity can be
detected as a sign of trans-tentorial herniation [49]. An
altered constriction velocity has been identified during
and before ICP elevation, and improvement in constric-
tion velocity has been described after osmotic treatment
to reduce brain edema [49].

At present, no consensus exists concerning the routine
use of automated pupil-lometry in ED and ICU settings,
although recent research supports its use to obtain objec-
tive information on pupillary function compared with
manual pupillary examination [49, 50].

Conclusion

Increasing evidence suggests that the use of brain moni-
toring— EEG, evoked potentials, TCD, and NIRS —is
gaining popularity even in non-neurocritical care set-
tings, e.g., in the perioperative setting, ED, and ICU, to
improve patient care. Neuromonitoring devices can be
non-invasive, low-cost, safe tools available at the bedside,
with a great potential for both diagnosis and monitoring
of patients at risk of brain insult.

Further clinical and research developments, train-
ing and teaching programs are urgently needed to sup-
port implementation of neuromonitoring in daily clinical
practice.
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