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Abstract 

Background:  Timely recognition of hemodynamic instability in critically ill patients enables increased vigilance and 
early treatment opportunities. We develop the Hemodynamic Stability Index (HSI), which highlights situational aware‑
ness of possible hemodynamic instability occurring at the bedside and to prompt assessment for potential hemody‑
namic interventions.

Methods:  We used an ensemble of decision trees to obtain a real-time risk score that predicts the initiation of 
hemodynamic interventions an hour into the future. We developed the model using the eICU Research Institute (eRI) 
database, based on adult ICU admissions from 2012 to 2016. A total of 208,375 ICU stays met the inclusion criteria, 
with 32,896 patients (prevalence = 18%) experiencing at least one instability event where they received one of the 
interventions during their stay. Predictors included vital signs, laboratory measurements, and ventilation settings.

Results:  HSI showed significantly better performance compared to single parameters like systolic blood pressure 
and shock index (heart rate/systolic blood pressure) and showed good generalization across patient subgroups. HSI 
AUC was 0.82 and predicted 52% of all hemodynamic interventions with a lead time of 1-h with a specificity of 92%. 
In addition to predicting future hemodynamic interventions, our model provides confidence intervals and a ranked 
list of clinical features that contribute to each prediction. Importantly, HSI can use a sparse set of physiologic variables 
and abstains from making a prediction when the confidence is below an acceptable threshold.

Conclusions:  The HSI algorithm provides a single score that summarizes hemodynamic status in real time using mul‑
tiple physiologic parameters in patient monitors and electronic medical records (EMR). Importantly, HSI is designed 
for real-world deployment, demonstrating generalizability, strong performance under different data availability condi‑
tions, and providing model explanation in the form of feature importance and prediction confidence.
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Introduction
Fluid resuscitation and vasoactive therapy are essen-
tial in the management of hypotensive patients to sup-
port organ perfusion [1–3]. Current guidelines from 

the 2016 Surviving Sepsis Campaign (SSC) recommend 
early initiation of vasopressors targeting a mean arte-
rial pressure ≥ 65  mmHg [4]. According to the guide-
lines, the need for initiation of vasopressor therapy 
should be assessed if there is ongoing hemodynamic 
instability despite fluid resuscitation. Although the SSC 
guidelines are not precise about the appropriate time to 
initiate vasopressors, recent studies have demonstrated 
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that delayed initiation of vasopressors is associated with 
higher mortality, fewer vasopressor-free days, and longer 
time to achieve target mean arterial pressure [5, 6].

Clinical decision support systems that are designed 
to continuously monitor and identify patients at a high 
risk of developing hemodynamic instability have the 
potential to improve the timely recognition of the need 
for immediate pressure support [7, 8]. Early initiation of 
hemodynamic interventions based on these systems can 
potentially help avoid complications from organ hypop-
erfusion and reduce mortality. Commonly used single 
parameter measurements including blood pressure and 
heart rate are easily acquired at the bedside and can be 
used as a risk stratification tool for detecting changes in 
hemodynamic parameters [9]. However, single param-
eter monitoring does not fully describe the entire patient 
state and can potentially lead to misinterpretation and 
underestimation of instability. Multi-parameter scor-
ing systems using machine learning to quantify associa-
tions between physiologic variables and adverse events 
have been proposed as a way to accurately stratify ICU 
patients.

Hemodynamic interventions including the initiation 
of vasopressors or inotropes, fluid administration, and 
blood transfusions are markers of significant hemody-
namic instability in ICU patients. In this study, we aimed 
to (1) develop a multiparameter risk score that stratifies 
patients with a high probability of receiving a hemody-
namic intervention. (2) Identify the important physiolog-
ical parameters that contribute to the risk and quantify 
the confidence of the model predictions. (3) Evaluate 
model performance on subgroups of ICU patients and on 
an independent validation cohort.

Methods
We developed a machine learning model using retro-
spective data from patients in the ICU to predict the 
onset of hemodynamic interventions one-hour in the 
future. The eICU Research Institute (eRI) database was 
used for the purposes of training and validation (Pol-
lard et  al.). The full dataset is comprised of 3.3 million 
patient encounters from 364 ICUs across the USA. To 
ensure that charting of hemodynamic intervention data 
was accurate in the training and validation cohorts, we 
restricted our analysis to patients admitted to hospi-
tals with reliable infusion and ventilation charting data 
between 2012 and 2016. Hospitals were considered reli-
able if they had charted ≥ 7 infusion drug entries per 
patient per day, included patients with ≥ 0.75 ventilation 
and airway records per patient per day in the patient care 
plan, and ≥ 10 entries per patient per day in respiratory 
charting tables in eRI database. We further limited our 
cohort to adult patients ≥ 18 years old who did not have 

a do not resuscitate (DNR) indication in the ICU. This 
filtering step reduced the initial dataset size to 292,856 
patient encounters from 54 ICUs (Fig. 1).

ICU patients were classified into stable and unstable 
groups. Stable patients did not receive any of the hemo-
dynamic interventions in Table  1. Unstable patients 
received at least one of the interventions in Table 1 dur-
ing the ICU stay, including the initiation of pressors or 
inotropes, administration of a significant dose of fluids 
in a short time period, or packed red blood cell (PRBC) 
transfusions. An intervention segment started when 
any of the intervention criteria was satisfied [10–12]. 
The intervention segment continued until there was a 
gap of more than 12 h between consecutive pressors or 
inotropes, fluid administrations, or PRBC transfusions. 
The last set of physiological variables observed 1-h 
before intervention was used as a positive class sample 
and a random time from a stable patient was selected 
as the negative class sample for model training. We did 
not include any samples from the first 6  h of the ICU 
stay in either the hemodynamically stable or unstable 
groups during training. A stratified subsample of 20% 
of the eRI data were held out and reserved for model 
evaluation, while the remaining 80% were used to train 
the model. Samples were stratified so that a patient 
appears in only one of the train or test sets, but not 
both. Additionally, we validated the model trained on 

Fig. 1  Extraction of HSI cohort
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eRI patients on an external dataset from an independ-
ent hospital, namely the MIMIC III database [13]. We 
extracted the stable and unstable samples from MIMIC 
III following the same process described above, how-
ever, the outcome label included only pressor or ino-
trope administration.

Clinical observations
We selected 33 variables that are routinely acquired in 
the ICU, including vital signs, laboratory measurements, 
blood gas measurements, and ventilation settings (Addi-
tional file 1: Figure S3). Variables were forward filled up 
to 2 h for heart rate and systolic blood pressure, and up 
to 26 h for laboratory measurements and ventilator set-
tings. Invasive and noninvasive blood pressures were 
combined into a single variable with invasive blood pres-
sure prioritized over noninvasive measurements when 
both are available. We require at least a heart rate and 
systolic blood pressure be available for the calculation of 
a risk score during training and evaluation. If a variable 
was missing because it was not measured or the forward 
filled value expired, the value was imputed using the 
training data population mean of ICU patients for all fea-
tures except the three ventilation parameters: fraction of 
inspired oxygen (FiO2), mean airway pressure (MAWP), 
and positive inspiratory pressure (PIP). FiO2 is imputed 
to room oxygen level of 0.21, and MAWP and PIP are 
left as missing to avoid imputing ventilation settings for 
patients who were not mechanically ventilated.

Supervised learning of hemodynamic interventions
We trained an Abstain-Boost model [11], which is a 
powerful ensemble of univariate classifiers composed 
of decision trees of depth one that predict future hemo-
dynamic status (stable or unstable) based on individual 
patient measurements. Each of the 33 classifiers (one for 
each physiologic variable) outputs a real value, with more 
positive values indicating a greater risk for hemodynamic 
interventions. Variable-wise risks are summed and sig-
moid transformed for the final probability of hemody-
namic intervention. The model was trained with 200 
rounds of boosting with learning rate set to 0.1. The pre-
dicted probabilities are calibrated using Platt scaling [14] 
after model training to match the empirical instability 
rate observed in the data. We define the hemodynamic 
stability index such that higher probability indicates a 
lower risk of hemodynamic interventions (stability). We 
include the TRIPOD Checklist to report model develop-
ment and validation steps.

We also calculate confidence intervals to quantify 
uncertainty in model predictions. Figure  2 shows the 
HSI score along with confidence intervals for an illus-
trative patient case. Uncertainty in model predictions 
can be decomposed as model uncertainty, which is 
the level of uncertainty derived from model under-
specification (e.g., if the algorithm does not capture 
nonlinear relationships), and from feature uncertainty, 
which is driven by noisy measurements and missing 
variables. We quantify these sources of uncertainty to 

Table 1  Criteria used to define hemodynamic instability

The fluid trigger criteria were derived from clinical consensus of a panel of clinical experts in fluid and hemodynamic management. Some are multiples of standard 
dosing regimens (10 cc/kg, 20 cc/kg) or multiples of the size of bags of solution that are used for fluid resuscitation (500 cc or 1 L). The starting bolus for an adult 
is 500 cc OR 10 cc/kg. For significant hypovolemia, this might be 1400 cc (20 cc/kg) or 1 L (the size of a 1-L bag of solution). The fluid triggers represent what was 
considered a significant intervention in response to hypovolemia. Additional details describing the rationale for each fluid trigger can be found in the Additional file 1

A segment was labeled “intervention” under any of the following conditions

Administration of any quantity of any of the following inotropic and vasopressor medications:
 Dobutamine
 Dopamine
 Epinephrine
 Norepinephrine
 Phenylephrine
 Vasopressin
Administration of Fluid Therapy (colloid or crystalloid) in the following dosages:
 2400 cc in 8 h
 3000 cc in 12 h
 700 cc in 1 h
 1500 cc total in 4 h
 500 cc twice in 4 h
Administration of Packed Red Blood Cells (PRBCs) in either of the following dosages:
 800 cc PRBC over course of 24 h
 500 cc in two hours followed by fluid therapy within 12 h. (What qualifies as “fluid therapy” is described in this table, titled “Administration of Fluid 
Therapy.”)
 500 cc PRBC not followed by fluid therapy within the following 24 h. (What qualifies as “fluid therapy” is described in this table entry titled “Admin‑
istration of Fluid Therapy.”)
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calculate confidence intervals (see Additional file 1 for 
details). The model can abstain from making predic-
tions based on the degree of overlap between the con-
fidence interval and a critical threshold of the HSI risk 
score where patients transition from stable to unstable. 
A high degree of overlap between the confidence inter-
val and the critical threshold indicates greater uncer-
tainty about whether the patient needs an intervention 
and thus we can abstain from making a prediction. See 
Additional file  1 for technical details and experiments 
on abstention.

Clinical risk prediction models are susceptible to 
learning patterns of clinical actions and not just the 
patient physiology [15]. During model training, we 

attempted to remove the bias from clinicians’ actions 
by (1) merging invasive and noninvasive blood pres-
sure to remove the influence of the invasive measure-
ment. The presence of invasive measurements indicates 
higher clinical concern, and the model would learn 
to assign higher risk simply based on the presence of 
the invasive variable. (2) Missing values were mean 
imputed with the population mean so the model is not 
learning from missingness patterns. (3) We experi-
mented with adding missing variable indicators to the 
model and it improved model performance. However, 
we decided to exclude missing-variable indicators to 
learn purely from the physiology and not patterns of 
clinical practice.

Fig. 2  Illustrative patient case showing individual features (top) the hemodynamic interventions administered for this patient, the HSI model 
predictions with confidence intervals (middle), and univariate risk scores contributed by select features from the HSI model (bottom). There 
is an emergent hemodynamic situation within the first day of ICU admission leading to a blood transfusion along with fluid and dopamine 
administration. HSI acts as an early indicator by responding to a sudden decrease in blood pressure and initiation of invasive mechanical ventilation
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Evaluation
We report model performance using the area under 
the receiver operator curve (AUC); sensitivity (Se) also 
known as recall, which is the model’s capacity at predict-
ing the hemodynamic interventions received by patients; 
specificity (Sp), which quantifies the false predictions of 
a hemodynamic intervention when the patient did not 
receive one; and the positive predictive value (PPV) also 
known as precision, which is the fraction of all predic-
tions that truly resulted in an intervention. Performance 
metrics are reported at the breakeven point (BE), where 
precision equals recall, at 90%, and at 95% specificity. The 
model, trained using all 33 input variables, was evalu-
ated under four distinct operating modes representative 
of realistic hospital deployment conditions with varying 
levels of integration of different data sources: (1) a “Basic” 
mode where the model has access to a small set of vital 
signs including heart rate, blood pressures, shock index 
and age, (2) a “Basic + Labs” mode where available labo-
ratory measurements are used by the model in addition 
to variables from the basic mode, (3) a “Basic + Ventila-
tion” mode where ventilator settings, when available, 
are used in addition to basic mode variables, and (4) an 
“All Features” mode where all available variables are pre-
sented to the predictive model. Operating modes were 
simulated by treating variables that are not included in 
the respective operating modes as missing values. We 
also report model performance on patient subgroups, 
including ICU stay type (e.g., stepdown, transfer from 
general ward, readmission), ICU unit type (e.g., Med-
Surg, Cardiac), admission source (e.g., Floor, ICU), and 
ventilation status at the time of prediction.

Results
The cohort selection criteria (Fig.  1) identified 32,896 
unstable events leading to a hemodynamic intervention 
and 183,420 stable events where patients did not receive 
any hemodynamic intervention (prevalence = 18%). 
Patients in the unstable group had longer ICU length of 
stay (median; Stable: 29 h; Unstable: 95 h), more days on 
invasive mechanical ventilation (Stable: 22  h; Unstable: 
75 h), greater hospital mortality rate (Stable: 1.9%, Unsta-
ble: 9.0%), and had higher APACHE IV score at ICU 
admission (Stable: 46, Unstable: 62). Of the 32,896 unsta-
ble events, 19,044 resulted in pressor administration 

(58%), 5,159 events resulted in PRBC transfusions (16%), 
and 11,918 events resulted in significant fluids (36%).

Using the available measurements from all 33 physi-
ologic variables, the HSI model has an AUC of 0.82 
(Sp = 0.92, PPV = 0.52 at the breakeven point) on the 
held-out dataset from the eRI database when predict-
ing all outcomes including pressors or inotropes, fluids, 
and PRBC administrations (prevalence = 15%) one hour 
before the event. The AUC improves to 0.88 (Sp = 0.95, 
PPV = 0.55) in predicting pressor administrations alone 
(prevalence = 11%) (Table  2). HSI has high predictive 
accuracy even up to 12 h prior to the event and signifi-
cantly outperforms single parameters like shock index 
and systolic blood pressure in predicting hemodynamic 
interventions (Fig. 3).

Model performance with missing variables
HSI was able to predict instability accurately under more 
restricted data conditions where some measurements 
were not available, as shown in in Table  3 (see “Evalua-
tion” section in “Methods” for a detailed definition of 
operating modes). The AUC decreases to 0.72 (PPV: 
0.39, AUPRC) when only age, heart rate, blood pressures, 
and shock index (Basic mode) are available and labora-
tory measurements and ventilation settings are treated as 
missing variables, still outperforming blood pressure and 
shock index. Laboratory measurements are responsible 
for an 8% increase in AUC when we compare the Basic 
mode to the Basic + Labs mode (AUC from 0.72 to 0.8; 
PPV from 0.39 to 0.48).

Model performance in patient subgroups
We verified that the HSI model generalizes well across 
different patient groups defined by ICU stay type, ICU 
unit type, admission source, and ventilation status. As 
reported in Additional file  1: Table  S1, HSI performs 
significantly worse in stepdown units (PPV decreases 
from 0.529 to 0.146) where there was low prevalence of 
hemodynamic interventions and in neurological ICUs. 
Detailed analysis is given in Additional file 1.

External validation
HSI was externally validated on MIMIC III database, 
which is independent from the eRI database used for 
training. We identified 15,981 ICU stays matching our 
extraction criteria following the same procedure as in the 

Table 2  HSI model performance (all features operating mode)

Outcome AUC​ Sp (BE) PPV (BE) Se (Sp = 90%) PPV (Sp = 90%) Se (Sp = 95%) PPV (Sp = 95%)

Pressors, fluids, PRBC 0.82 0.92 0.52 0.55 0.49 0.43 0.6

Pressors (11%) 0.88 0.95 0.55 0.68 0.44 0.55 0.56
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eRI database. The outcome label included patients that 
received pressors or inotropes but not fluids and PRBC. 
The prevalence was significantly higher in the MIMIC 
III database (37.8%). We observed a higher AUC 0.90 in 
MIMIC III (PPV: 0.79, Sp: 0.87 at the breakeven point) 
when evaluated one-hour prior to intervention. Adjust-
ing the MIMIC III prevalence to the eRI prevalence of 
11% of pressors—only by subsampling—gave an AUC of 

0.90 (PPV: 0.61, Sp: 0.95). These results suggest that our 
model trained from various hospitals is generalizable to 
different institutions and care settings.

Feature importance
Global feature importance can be visualized as risk 
curves like in Fig.  4. HSI learns that early physiologi-
cal signs of shock, including elevated heart rate and 

Fig. 3  HSI model performance at different operating modes and at different prediction times before hemodynamic interventions. Legends on 
the receiver-operator curve (ROC) and the precision-recall curve (PRC) report the AUC and AUPRC, respectively. Laboratory measurements gave 
a significant increase in model performance (10% increase in AUC and 14% increase in AUPRC) compared to using basic vital signs like heart rate, 
blood pressures, and shock index

Table 3  HSI trained on all features is evaluated under specific operating modes where limited set of features are accessible to the 
model

The outcome label includes pressors, fluid, and PRBC administration. We report the area under the receiver operator curve (AUC), Specificity (Sp), Sensitivity (Se) and 
Positive Predictive Value (PPV) at the breakeven point (BE) where precision equals recall, and at both 90% and 95% Specificity

Operating mode AUC​ Sp (BE) PPV (BE) Se (Sp = 90%) PPV (Sp = 90%) Se (Sp = 95%) PPV (Sp = 95%)

All features 0.82 0.92 0.52 0.55 0.49 0.43 0.6

Basic 0.72 0.89 0.39 0.37 0.4 0.26 0.48

Basic + labs 0.8 0.91 0.48 0.5 0.47 0.37 0.57

Basic + ventilation 0.76 0.9 0.45 0.46 0.45 0.35 0.55
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low blood pressure, increase the risk of a hemodynamic 
intervention. Lower than normal hematocrit levels, indi-
cating an insufficient supply of healthy red blood cells, 
leads to a higher risk of hemodynamic interventions like 
blood transfusions. Figure 2 shows for an example patient 
the univariate risk scores for individual physiologic vari-
ables. Univariate risks (which are added to calculate the 
total HSI score) are used to identify the top features con-
tributing to the risk and give caregivers context for the 
prediction as well as cues for how to react to it.

Discussion
The HSI model provides an early warning of hemody-
namic instability by detecting the need for significant 
hemodynamic interventions. The major finding of the 
current study was that HSI, a novel, multi-parameter 
machine learning model, far outweighed traditional 
metrics such as shock index and systolic blood pressure 
at predicting the need for hemodynamic interventions. 
Although the discrimination accuracy was best when 
used to predict hemodynamic interventions 1-h before 
the events, it was also highly predictive even at 12-h 
before the initiation of the hemodynamic interventions. 
Importantly, HSI learns clinically meaningful and inter-
pretable relationships between physiological variables 
and the risk of a hemodynamic intervention.

HSI generalizes well across most subgroups and in an 
independent validation cohort. On the external valida-
tion dataset where the outcome label included only pres-
sors, HSI had the same AUC as our held-out evaluation 

data in the eRI database. However, the performance on 
patients in the stepdown unit was worse than other units. 
This is because there exists significant mismatch between 
feature distributions and label distributions of the step-
down units and those of the general ICU patient popula-
tion. Specifically, we find the unstable patient group that 
received a hemodynamic intervention in the stepdown 
units are physiologically more stable with higher systolic 
blood pressure and lower prevalence of ventilation. These 
factors lead to a lower predicted risk of hemodynamic 
interventions in the unstable patients of the stepdown 
units (higher rate of false negatives), making the separa-
tion of the unstable patients from stable patients using 
HSI more difficult on stepdown patients.

Similarly, although HSI has strong predictive perfor-
mance on most ICU units, it had a low AUC and PPV 
on neurological ICU patients. In the unstable group, 
neurological ICU patients have significantly lower risk 
of hemodynamic instability than patients in other care 
units, and as a result, the model has a lower true posi-
tive rate. Unstable patients in neurological ICUs have 
significantly higher systolic blood pressure, lower heart 
rate, higher hematocrit, and hemoglobin. Clinically, neu-
rological patients are intentionally made hypertensive 
using vasopressors, which overlap with those used to 
define interventions for the model. The administration of 
vasopressors to neurological ICU patients does not nec-
essarily indicate the onset of hemodynamic instability but 
reflects routine treatment patterns in patients admitted 
to the neurological ICU unit.

Fig. 4  Examples of univariate risk curves (black) and feature distribution histograms for stable (blue) and unstable (orange) patients
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Our work shares some similarities with prior work on 
early detection of adverse hemodynamic events where 
pressor administration was used as an outcome label 
as a surrogate marker of hemodynamic instability [8, 
16–18]. In contrast to prior work, we defined hemody-
namic interventions using a broader category of treat-
ments including significant fluid administration within 
a short time and blood transfusions with PRBC in addi-
tion to pressor or inotrope initiation. Hyland et al. (2020), 
for example, defines circulatory failure using thresholds 
on lactate, mean arterial pressure, and administration of 
vasopressors or inotropes. Our definition of an adverse 
hemodynamic event captures a more general case. For 
instance, our labels include the case where resuscita-
tion leads to a rapid increase in fluid administration in a 
short period of time before pressors are initiated. Other 
technical differentiators between HSI and prior work are 
that we achieve good predictive performance and gen-
eralization using a few commonly measured vital signs 
and laboratory measurements. In contrast to prior work, 
our model also provides confidence intervals, can abstain 
from making predictions when uncertainty is high, and is 
inherently interpretable because we use an ensemble of 
decision stumps. This contrasts with Hyland et al. (2020) 
where the final model uses an ensemble of deep decision 
trees with 4-levels of interactions and relies on post hoc 
explanation methods (Shapley values) to provide a global 
feature importance. The TREWScore is another alterna-
tive to HSI, designed to predict the onset of septic shock 
[19]. The TREWScore was developed on a cohort or sep-
sis patients, unlike HSI which is trained on a larger more 
heterogenous patient population, including patients with 
septic shock. We hypothesize that the adjunct analyses 
(operating modes, subgroups) and algorithm enhance-
ments (confidence intervals, abstention, feature impor-
tance) we described will support deployment of HSI 
and similar decision support algorithms in real clinical 
settings.

HSI has been trained by learning from clinician’s 
actions such as administration of vasopressors, inotropes, 
fluids, and PRBCs. The approach follows the rationale 
that clinicians’ decisions to intervene consider broad and 
diverse information about the patient (part of which is 
not even captured or not captured timely in EMR sys-
tems), of which the experienced clinician makes sense of, 
due to their years of training and experience. By learning 
from clinicians’ actions on thousands of patients rather 
than from arbitrary definitions of hemodynamic insta-
bility events based on physiological or laboratory meas-
urements crossing a fixed, pre-defined one-size-fits-all 

threshold, HSI gets one step closer to personalized care. 
Additionally, HSI uses the result of a laboratory test 
instead of the presence (or absence) of a laboratory test 
to model patient physiology instead of the institution-
specific care pattern [15].

The present study has several limitations. First, our 
model is tested on retrospectively collected datasets only. 
However, using a training dataset that captures practice 
variations of ICUs all over the U.S. gives the algorithm 
a good chance of being generalizable. Furthermore, we 
show high external validity of the predictive performance 
on an external dataset and on patient subgroups, sug-
gesting potential generalizability. Second, an advantage 
of HSI—using a limited set of physiologic variables—can 
also be considered a limitation because we lack advanced 
hemodynamic measurements like cardiac output, stroke 
volume and stroke volume variation, which would likely 
add predictive power to HSI and make HSI more applica-
ble in assessing fluid responsiveness [7, 20]. We also don’t 
include medication information in our model. Intuitively, 
certain physiologic parameters could be conditionally 
dependent on medications. Future work will focus on 
prospective validation of HSI in the ICU setting to show 
that such a system can impact patient outcome.

Conclusions
We developed an accurate and automated early pre-
diction algorithm to identify ICU patients at risk of 
developing hemodynamic instability using commonly 
measured physiological variables. The HSI model dem-
onstrates generalizability across ICU units, patient 
subpopulations, institutions, and operating modes. 
Importantly, we develop the algorithm into a decision 
support tool that provides interpretable feature impor-
tance, measures uncertainty in real time, abstains from 
making predictions with high uncertainty, and gives 
actionable prompts to take new measurements based 
on a feature impact score. The analysis and support-
ing algorithms presented around HSI will be especially 
critical in real-world deployment scenarios that require 
good generalizability, handing of different data avail-
ability, and explanation of algorithm output in the form 
of feature importance and prediction confidence.
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