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To the editor
We read with great interest the article published in Criti-
cal Care by Tseng et  al. [1] reporting prediction of car-
diac surgery-associated acute kidney injury (CSA-AKI) 
using machine learning (ML). Using SHapley Additive 
exPlanation (SHAP) analysis, the authors identified a set 
of intraoperative features attribute to AKI, highlighting 
the value of intraoperative data in AKI risk prediction.

Among 94 clinical features, intraoperative urine out-
put (IUO) was identified as the most influential feature, 
which may reflect acute respond for renal function. How-
ever, a majority of patients (70.2%) received cardiopul-
monary bypass (CPB). In the CPB setting, usually, IUO 
does not assure actual renal function as a result of cold 
diuresis and centrally shunted non-pulsatile blood flow 
[2, 3]. More importantly, intraoperative fluid balance was 
significantly different in patients with or without AKI 
(9.8 [7.7–12.8] vs. 11.8 [8.7–15.6] mL/kg/h, P < 0.001) 
and there was a great individual difference among two 
cohorts. The authors defined AKI based on the changes 
in postoperative serum creatinine (Scr) levels, while not 
adjusting the effect of fluid balance may significantly 
underestimate the incidence of AKI, as a positive perio-
perative fluid balance may dilute Scr levels [4]. Taken 
together, the association between IUO and AKI is com-
plex and needs to be further evaluated after adjusting 

potential clinical confounders (e.g., intraoperative fluid 
infusion, conventional ultrafiltration, body temperature).

Typically, the benefits of ML start to become appar-
ent when the sample size exceeds 5000–10,000. The 
authors validated the ML models in a relatively few 
patients cohort (202 patients and 49 AKI cases), with the 
area under the receiver operating characteristic curves 
(AUCs) ranging 0.781–0.843. In addition to AUC, more 
interpretable indicators should be introduced into the 
evaluation of a ML model such as accuracy, sensitiv-
ity, specificity, positive predictive value, negative pre-
dictive value, and F1 score, as adequate discrimination 
(AUC > 0.8) may not imply good performance in the 
sensitivity and positive predictive value of the model. 
In particular, in the serious clinical condition like CSA-
AKI, sensitivity is emphasized over specificity [5]. These 
parameters can be easily obtained from a confusion 
matrix. Therefore, if the authors were able to calculate 
them, we believe that the models will be more credible 
and will present more practical value.

The rapid development of ML techniques will certainly 
facilitate the management of AKI patients. The authors 
made an important contribution in explainable ML tech-
nology (SHAP values). We look forward to more valuable 
researches on CSA-AKI using advanced ML algorithms.

Abbreviations
CSA-AKI: Cardiac surgery-associated acute kidney injury; ML: Machine learning; 
IUO: Intraoperative urine output; Scr: Serum creatinine; AUC : Area under the 
receiver operating characteristic curve.
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