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Abstract 

Background:  Acute respiratory distress syndrome remains a heterogeneous syndrome for clinicians and researchers 
difficulting successful tailoring of interventions and trials. To this moment, phenotyping of this syndrome has been 
approached by means of inflammatory laboratory panels. Nevertheless, the systemic and inflammatory expression of 
acute respiratory distress syndrome might not reflect its respiratory mechanics and gas exchange.

Methods:  Retrospective analysis of a prospective cohort of two hundred thirty-eight patients consecutively admit-
ted patients under mechanical ventilation presenting with acute respiratory distress syndrome. All patients received 
standardized monitoring of clinical variables, respiratory mechanics and computed tomography scans at predefined 
PEEP levels. Employing latent class analysis, an unsupervised structural equation modelling method, on respiratory 
mechanics, gas-exchange and computed tomography-derived gas- and tissue-volumes at a PEEP level of 5cmH2O, 
distinct pulmonary phenotypes of acute respiratory distress syndrome were identified.

Results:  Latent class analysis was applied to 54 respiratory mechanics, gas-exchange and CT-derived gas- and tissue-
volume variables, and a two-class model identified as best fitting. Phenotype 1 (non-recruitable) presented lower res-
piratory system elastance, alveolar dead space and amount of potentially recruitable lung volume than phenotype 2 
(recruitable). Phenotype 2 (recruitable) responded with an increase in ventilated lung tissue, compliance and PaO2/FiO2 
ratio (p < 0.001), in addition to a decrease in alveolar dead space (p < 0.001), to a standardized recruitment manoeu-
vre. Patients belonging to phenotype 2 (recruitable) presented a higher intensive care mortality (hazard ratio 2.9, 95% 
confidence interval 1.7–2.7, p = 0.001).

Conclusions:  The present study identifies two ARDS phenotypes based on respiratory mechanics, gas-exchange and 
computed tomography-derived gas- and tissue-volumes. These phenotypes are characterized by distinctly diverse 
responses to a standardized recruitment manoeuvre and by a diverging mortality. Given multicentre validation, the 
simple and rapid identification of these pulmonary phenotypes could facilitate enrichment of future prospective clini-
cal trials addressing mechanical ventilation strategies in ARDS.
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Background
The first description of the acute respiratory distress syn-
drome (ARDS) dates back more than 50 years [1]. Since 
then, multiple attempts have followed to provide the ideal 
definition for this syndrome [2, 3]. Nonetheless and albeit 
the definition of ARDS as acute hypoxemia concomi-
tant to diffuse bilateral lung infiltrates of non-cardiac 
aetiology should have unified diagnosis and treatment 
of ARDS, an ever-growing body of research has proven 
its poor ability to effectively detect the syndrome in first 
place [4–6].

The pathophysiology of ARDS is characterized by an 
intense lung inflammation caused by the highly hetero-
geneous interplay between host and insult, depending 
on the aetiology of the latter [7]. This heterogeneity in 
ARDS presentation mainly reflects on the greatly varying 
severity of hypoxemia, amount of lung oedema, timing of 
onset and underlying cause of disease, as well as on the 
presence of the histopathological hallmark of ARDS: dif-
fuse alveolar damage [2, 8–11]. It is thus not surprising 
that most randomized controlled trials targeting ARDS 
in its entirety have failed [2, 12].

In order to identify more homogeneous subgroups of 
ARDS, several subclassifications have been proposed 
based on simple variables such as the severity of hypox-
emia or the level of positive end-expiratory pressure 
(PEEP) applied [13, 14]. Consideration of these subsets of 
ARDS has enabled the design of successful interventional 
randomized control trials [15, 16]. Recently, latent class 
analysis (LCA), a well-validated statistical method that is 
able to identify clusters of similar patients [17], has been 
used to describe two distinct phenotypes of ARDS char-
acterized by a different degree of inflammatory response 
[18, 19]. These hypo- and hyperinflammatory phenotypes 
have been associated with contrasting natural histories, 
biological characteristics and outcomes to clinical and 
pharmacological interventions [19, 20].

Predictive and prognostic enrichment of immunomod-
ulatory trials in ARDS by considering inflammatory 
phenotypes may potentially prove ground-breaking. Nev-
ertheless, the cornerstone of ARDS therapy—mechanical 
ventilation—is mainly governed by respiratory mechan-
ics and gas exchange, for which paucity of information 
regarding ARDS phenotyping exists.

The aim of this study was to identify different phe-
notypes of ARDS considering respiratory mechanics, 
gas-exchange and computed tomography (CT)-derived 
gas- and tissue-volumes by implementing the LCA 

methodology, further assessing the natural history and 
response to a standardized recruitment manoeuvre of 
these phenotypes.

Methods
Population
Retrospective analysis of a cohort of prospectively and 
consecutively admitted patients diagnosed with ARDS 
at intensive care unit (ICU) admission between 2003 and 
2017 to the Ospedale Policlinico Maggiore (Milan) and 
from 2017 to 2019 to the Azienda Socio Sanitaria Terri-
toriale Santi Paolo e Carlo (Milan); sub-cohorts of these 
patients were already included into seven published tri-
als [10, 21–26]. The institutional review boards of both 
hospitals approved the data collection plan and informed 
consent was obtained according to the respective hospi-
tal regulations.

Patients were enrolled if they met the “American-Euro-
pean Consensus Conference on ARDS” criteria between 
2003 and 2012 [27], and if they met the “Berlin” criteria 
from 2012 onwards [3]. Exclusion criteria were an age 
of less than 16 years, pregnancy and chronic obstructive 
pulmonary disease.

At intensive care unit (ICU) admission, all patients 
were sedated and paralyzed, mechanically ventilated with 
a tidal volume between 6 and 8 mL of ideal body weight 
and PEEP and the fraction of inspired oxygen (FiO2) were 
titrated in order to obtain an arterial oxygen saturation 
between 93 and 98%. Patients underwent a standardized 
recruitment manoeuvre coupled to two prespecified CT 
studies (inspiratory hold at 5 and 45 cmH2O) and a PEEP 
trial (5 and 15  cmH2O) a median of 2  [1–4]  days after 
intubation. Further specifications on the collection of 
respiratory mechanics and gas-exchange variables, per-
formance of CT studies and recruitment manoeuvres are 
described in Additional file 1: Appendix 1.

Missing data
To account for missing data (Additional file 1: Table S1), 
multiple imputation by fully conditional specification 
with predictive mean matching was performed under 
the missing at random assumption [28]. For each vari-
able, a unique linear regression model was specified; all 
118 independent variables recorded in the data set were 
included. Ten parallel imputation models with 1000 itera-
tions each were run. Quality of imputation models was 
assessed by analysis of mean and standard deviation con-
vergence plots and comparison of distribution plots for 
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every imputation model and imputed variable (Addi-
tional file 1: Figures S1, S2). Finally, for every model and 
variable, t tests and standard mean differences (SMD) 
between imputed and original distribution were calcu-
lated, with SMDs below 0.1 being regarded as optimal 
and above 0.2 as suboptimal imputation [29, 30]. No out-
come variables were imputed.

Statistical analysis
LCA was performed using a combination of respiratory 
mechanics, gas-exchange characteristics and CT-derived 
gas- and tissue-volumes at PEEP 5  cmH2O as defining 
variables; clinical outcomes were not considered dur-
ing model design and latent class analysis. In light of the 
scale variance between variables, and reflecting the cat-
egorical design of LCA models, all variables were refitted 
to an interval scale based on a decile subdivision.

Full LCA including all 54 variables violated model 
independence constraints; therefore, a swap-stepwise 
algorithm based on a Bayes factor comparison was used 
to select the variables best defining the latent classes 
[31, 32]. To avoid overfitting of the LCA model to this 
specific cohort, a minimal improvement of 10% in the 
maximum likelihood of the model was required for each 
swap-stepwise iteration to be accepted. The best fitting 
latent model regarding the number of latent classes was 
determined by using a combination of Bayesian infor-
mation criterion (BIC), entropy, bootstrap likelihood 
ratio test (BLRT) inferred p values and class size [33, 34]. 
In order to assess the internal validity of the LCA and 
to ensure that the overall classification was not overly 
dependent on a sub-cohort, the LCA was refitted while 
repeatedly eliminating one of the sub-cohorts (~ 70 
patients) based on the years of recruitment (2003–2006, 
2007–2010, 2011–2014, 2015–2019) (Additional file  1: 
Table  S2, Figure S3). Latent class analysis optimization 
was performed solely on the first imputation model. As 
imputation sensitivity analysis, latent class analysis with 
the final variable selection was performed on all impu-
tation models, and imputation-dependent transition of 
patients between latent classes as well as diverging class 
inference on outcome was analysed (Additional file  1: 
Table S3, Figure S4). To identify a subgroup of variables 
with the ability to dichotomize between the latent classes 
obtained by means of the LCA, in a first step a least abso-
lute shrinkage and selection operator (LASSO) method 
was applied. Two different variable subsets were defined 
for the LASSO, one including all variables considered in 
the LCA, and a second considering all variables but the 
CT inferred parameters. The meta-parameter λ in the 
LASSO was defined so that the final model would only 
contain up to four variables. The resulting two subsets 
of four variables each were then employed in a nested 

general linear regression model (GLM) analysis. To assess 
nested model fit and prediction performance, the Akaike 
information criterion (AIC) as well as receiver operating 
characteristics (ROC) analysis and computed area under 
the ROC curve (AUROC) were applied; bootstrapping 
was used for AUROC confidence interval (CI) calcula-
tion. First-order interaction terms between the predictor 
variables were tested for all models, and excluded if not 
improving the final model fit. A Fine and Gray competing 
risk analysis considering ICU mortality as primary event 
and alive ICU discharge as single competing event, with 
adjustment for SAPS II and the paO2/FiO2 ratio at PEEP 
5 cmH2O was generated to evaluate the latent class effect 
on ICU-mortality [35]. Proportional hazard assumptions 
were assessed through inspection of Schoenfeld residu-
als. ICU survival functions were generated by imple-
menting the Kaplan–Meier estimator. Only patients with 
complete outcome data were regarded in these analy-
ses. Comparisons of population characteristics between 
classes were performed using Student’s t test or Wilcoxon 
signed-rank test, as appropriate, and the Chi-squared test 
for categorical variables. The specific phenotype response 
to recruitment manoeuvres was tested using linear mixed 
effects model analysis. As independent variable fixed 
effects, recruitment manoeuvre pressure and pheno-
type were entered into the model, respectively, with and 
without interaction terms, which were retained only if 
they were found to contribute to the model. As random 
effects, intercepts for subjects were employed. P values 
were calculated using a likelihood ratio test of the full 
model with the effect in question against a “null model” 
without the effect in question. P values for individual 
fixed effects were obtained by Satterthwaite approxima-
tion in a multi-dimensional model comprising recruit-
ment manoeuvre pressure and phenotype. A two-sided 
p < 0.05 was considered statistically significant. For all 
statistical analysis, a fully scripted data management 
pathway was created within the R environment for sta-
tistical computing, version 3.6.1 [36]. Values are reported 
as median with interquartile ranges or proportions and 
percentages as appropriate.

Results
Population
A total of 238 ARDS patients were included in the analy-
sis. The baseline characteristics are presented in Table 1. 
The median age and the Simplified Acute Physiology 
Score (SAPS) II at admission were 61 [48–73] years 
and 42 [33–53], respectively. The paO2/FiO2 ratio was 
168  mmHg [127–213]; 29 (12%) patients presented a 
severe ARDS, while 74 (31%) and 135 (57%) presented 
a moderate and mild ARDS, respectively. The driving 
pressure was 13 [10–16] cmH2O, and respiratory system 
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elastance was 26 [20–32]  cmH2O/mL. Intensive care 
mortality amounted to 40%. Further respiratory mechan-
ics and computed tomography data are presented in 
Additional file 1: Tables S4, S5 and S6.

Identification of latent class analysis
Table 2 presents model-fit statistics for LCA models con-
sidering one to five classes. All LCA models presented an 
entropy above 0.8, indicating overall robust class sepa-
ration. BIC was lowest for a two-class model and after-
wards increased proportionally to the number of added 
classes, suggesting that additional classes do not add sub-
stantial information to the model. The BLRT inferred p 
value favoured the two-class model over the one-class 
model; additional classes did not improve model fit. 
In light of these findings, a two-class latent model was 
judged as most suitable.

The chosen two-class latent model assigned 106 (45%) 
patients to phenotype 1 and 132 (55%) patients to pheno-
type 2. The median latent class assignment probability for 
phenotype 1 was 100 [99.8–100] % and 99.9 [94.4–100] 
% for phenotype 2. In phenotype 1, 87 (82.1%) of the 
patients and in phenotype 2, 117 (88.6%) of the patients 
presented class assignment probabilities above 90%, sug-
gesting an excellent class differentiation.

Mean imputation model effect on phenotype identifi-
cation was 11 ± 2% (Additional file 1: Table S3). Further, 
complete case analysis of the cohort evidenced a phe-
notype misclassification of 7% compared to the imputed 
cohort; thus, imputation effect on latent class model-
ling was deemed small (Additional file  1: Appendix  2). 
Additionally, no mayor influence on outcome was pat-
ent between latent class analyses using different imputa-
tion models or complete case analysis; therefore, further 
results are only presented for the first imputation model 

Table 1  Baseline characteristics of study population

Quantitative data are expressed as median [interquartile range] or counts (and percentages) as appropriate

ARDS acute respiratory distress syndrome, BMI body mass index, ICU intensive care unit, SAPS simplified acute physiology score
† p value < 0.05

Total population
N = 238

Phenotype 1 Phenotype 2
“Non-recruitable”
N = 106

“Recruitable”
N = 132

Age (years) 62 [48–73] 61 [49–73] 62 [49–73]

Sex (male) 162 (68) 75 (71) 87 (66)

Body mass index (kg m−2) 25 [22–29] 25 [23–29] 25 [22–29]

SAPS II 42 [33–53] 41 [30–52] 43 [35–52]

Vasopressors, n (%) 131 (55) 55 (52) 76 (58)

Cause of ARDS, n (%)†

 Aspiration 18 (8) 9 (8) 9 (7)

 Pneumonia 116 (49) 37 (35) 79 (60)

 Sepsis 60 (25) 35 (33) 25 (19)

 Trauma 12 (5) 9 (8) 3 (2)

 Other 32 (13) 9 (8) 9 (7)

ARDS category, n (%)†

 Mild 74 (31) 49 (46) 25 (19)

 Moderate 135 (57) 54 (51) 81 (61)

 Severe 29 (12) 3 (3) 26 (20)

PaO2/FiO2 (mmHg) † 169 [127–213] 193 [156–231] 144 [112–189]

Arterial pCO2 (mmHg)† 43 [37–50] 39 [36–47] 45 [40–52]

Respiratory rate (min−1)† 16 [14–20] 15 [13–19] 17 [15–20]

Tidal volume (mL)† 500 [420–560] 515 [441–600] 480 [420–535]

Tidal volume/ideal body weight (mL kg−1)† 7.7 [6.7–8.7] 7.9 [7.0–9.3] 7.4 [6.6–8.3]

Clinical PEEP (cmH2O) 10 [10–12] 10 [10–12] 10 [10–13]

Driving pressure (cmH2O)† 13 [10–16] 12 [10–15] 17 [15–20]

Respiratory system elastance (cmH2O mL−1)† 26 [20–32] 22 [18–28] 28 [23–33]

Time on mechanical ventilator (days) 3 [2–6] 3 [2–6] 2 [2–5]

Intensive care unit stay (days) 18 [10–28] 18 [11–28] 18 [9–27]

ICU mortality, n (%) † 96 (40) 27 (23) 69 (52)
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(Additional file  1: Table  S3, Figure  S4, Appendix  2). 
Finally, LCA refitting while repeatedly eliminating one 
of the sub-cohorts based on the years of recruitment did 
not influence LCA fit, suggesting internal robustness of 
the inferred classes (Additional file  1: Table  S2, Figure 
S3).

Characteristics and of ARDS phenotypes
In Fig.  1, the LCA phenotype defining variables at 5 
cmH2O are shown (Additional file 1: Table S7, Figure S5, 
Table S8). Phenotype 1 presented a lower respiratory sys-
tem elastance, dead space and total lung tissue, as well 
as a higher paO2/FiO2 ratio, a more physiological pH 
and a less inhomogeneous lung than phenotype 2 (Addi-
tional file  1: Table  7). On the other hand, vasopressor 
requirements, SAPS II, age as well as BMI were compa-
rable between both phenotypes (Table  1). Most promi-
nently, phenotype 1 presented a lower proportion of, CT 
inferred, potentially recruitable lung than phenotype 2, 
leading to the terming of phenotype 1 as non-recruitable 
and phenotype 2 as recruitable phenotype (Additional 
file 1: Table 6).

Response to recruitment and outcome of ARDS 
phenotypes
Reflecting its designation, the recruitable phenotype pre-
sented an increased recruitment of ventilated lung tissue 
(Δ: 21 vs. 9%, p < 0.001) as well as an increase in compli-
ance (Δ: 3.1 vs. 0 ml/cmH2O, p < 0.001) and paO2/ FiO2 
ratio (Δ: 68 vs. 46  mmHg, p < 0.001), in addition to a 
decrease in alveolar dead space (Δ: − 3.1 vs. 1%, p < 0.001) 
in response to a standardized recruitment manoeuvre 
(inspiratory hold manoeuvre at 5 and 45 cmH2O and 
PEEP increase from 5 to 15 cmH2O) when compared to 
the non-recruitable phenotype (Fig.  2, Additional file  1: 
Figure S6, Table S9). The amount of potentially recruita-
ble lung was, independently of the applied PEEP level 

and of the severity of ARDS at said PEEP level, systemati-
cally higher in the recruitable than in the non-recruitable 
phenotype (p < 0.001) (Additional file 1: Figure 7). Addi-
tionally, increasing ARDS severity and the amount of 
potentially recruitable lung were only associated in the 
recruitable phenotype (p < 0.001 vs. p = 0.59). The dis-
tributions of paO2/FiO2 ratios between both pulmonary 
phenotypes were highly dependent on the level of PEEP 
applied (Additional file 1: Figure S8).

Intensive care mortality rate, but not length of mechan-
ical ventilation or ICU length of stay, was higher in the 
recruitable compared to the non-recruitable phenotype 
as evidenced by a crude HR of 2.9 with a 95% CI of 1.7 
to 4.7 (p = 0.001) (Fig.  3). Adjustment for SAPS II and 
P/F ratio at a PEEP level of 5cmH2O did not influence 
this association. Additionally, to reject the hypothesis 
that the increased mortality in the recruitable phenotype 
was mainly influenced by a higher severity of ARDS, a 
sub-group analysis was performed including only those 
patients with a moderate severity of ARDS (paO2/FiO2 
ratio 100–200 mmHg) at PEEP 5cmH2O. In this subgroup 
analysis, the crude and adjusted association between the 
recruitable phenotype and mortality remained patent 
(Additional file 1: Figure 9).

Simplified phenotype identification
The combined LASSO and nested GLM identified two 
subsets of variables at a PEEP level of 5 cmH2O, differ-
ing on the inclusion of CT-derived parameters, as highly 
explanatory for phenotype identification (Additional 
file  1: Figure S10, Tables S10–S14). The first subset was 
composed of dead space, respiratory system elastance 
and the paO2/ FiO2 ratio (Additional file 1: Tables S11–
S12). The second subset included dead space, respiratory 
system elastance, lung inhomogeneity and the propor-
tion of non-aerated lung tissue (Additional file 1: Tables 
S13–S14). Both subsets presented outstanding AUROCs 

Table 2  Fit statistics for latent class models

°Bayesian information criterion (BIC) is a likelihood function derived criterion for model selection among a set of models; lower BICs indicate better model fit

*Entropy is a measure to assess the degree of association between an individual and a class based on the posterior class membership probabilities; values above 0.8 
define good class distinction
† The p value is calculated by means of the bootstrap likelihood ratio test; it addresses if a model with k classes provides increased fit compared to a model with k − 1 
classes

No. of classes Bayesian information 
criteria°

Entropy* Number of individual per class p value†

1 2 3 4 5

1 10,227 238

2 10,202 0.84 132 106 0.001

3 10,317 0.90 65 107 66 0.205

4 10,472 0.92 71 75 47 45 0.266

5 10,639 0.95 37 59 53 44 45 0.676
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(between 0.94 [CI 95% 0.91–0.96] and 0.99 [CI 95% 0.98–
0.995]) for the recognition of the recruitable phenotype; 
the use of alveolar instead of physiological dead space did 
not greatly impair the prognostic capacity of the models 
(Additional file 1: Figure S10, Table S10). In comparison, 
the use of SAPS II or the paO2/FiO2 ratio alone only pre-
sented poor to moderate AUROCs for the identification 
of the recruitable phenotype.

Discussion
The present study identified two distinct ARDS pheno-
types with diverging responses to a standardized recruit-
ment manoeuvre and intensive care outcomes by means 
of LCA. In contrast to other published LCA analyses, 
only respiratory mechanics, gas-exchange and CT-
derived gas- and tissue-volumes at a PEEP of 5  cmH2O 
were employed for this analysis. In order to simplify pul-
monary phenotype identification, a small subset of vari-
ables with high explanatory potential was described.

The heterogeneity of the Berlin definition and the dis-
appointing number of randomized controlled trials hav-
ing attempted to propose pharmacological interventions 
and ventilator strategies to improve outcome in ARDS 
have led to a plethora of attempts to identify homogene-
ous subgroups of this syndrome. In order to minimize 
heterogeneity, identification of different ARDS subgroups 
by means of severity of hypoxemia [13], pulmonary or 
extrapulmonary origin [8], focal and non-focal pulmo-
nary consolidations [37, 38], the fraction of dead space 
[49] and response to PEEP [10, 39] among others have 
been proposed. Strikingly, the two pulmonary pheno-
types described by the LCA model in the present study 
contain many of these previous ARDS subclassifying 
characteristics. As such, phenotype 1 was characterized 
by a lower severity of hypoxemia at clinical PEEP, a lower 
proportion of ARDS of pulmonary origin, a lower frac-
tion of dead space and a less inhomogeneous lung than 
phenotype 2. Indeed, the main describing feature of these 
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two phenotypes was their response to a standardized 
recruitment manoeuvre, therefore leading to the designa-
tion of phenotype 1 as non-recruitable and phenotype 2 
as recruitable phenotype.

The notion that patients with a potentially highly 
recruitable lung are at a higher risk of mortality is not 
precisely novel [10]. Nonetheless, to this moment, it has 
generally been regarded as a direct correlate to the sever-
ity of ARDS as described by the paO2/FiO2 ratio [10, 22, 
40]. In the present study nevertheless, the association 
between higher proportions of potentially recruitable 
lung and increasing ARDS severity were only patent in 
the recruitable phenotype, indicating a more complex 
relationship than assumed up until now. Furthermore, 
the increased mortality in the recruitable phenotype was 
not primarily precipitated by the increased proportion of 
lower paO2/FiO2 ratios, remaining after statistical correc-
tion for the paO2/FiO2 ratio and in a subanalysis consid-
ering only those patients with moderate ARDS severity. 

Overall, the two pulmonary phenotypes here presented, 
congruently contained many previously described risk 
factors of ARDS, but could not be solely explained by the 
presence of one characteristic, thus suggesting the exist-
ence of two complex and distinct pulmonary entities.

Recent trials having enriched their patient recruit-
ment by selecting patients with paO2/ FiO2 ratios below 
150–200  mmHg have been able to prove the positive 
effect of clinical interventions, which were disappointing 
in previous more heterogeneous trials [15, 16, 39, 41]. It 
can be argued that prognostic enrichment, by severity of 
ARDS, was the main factor responsible for the success of 
these trials. Indeed, a paO2/FiO2 ratio < 150 mmHg con-
comitant to a PEEP ≥ 10 cmH2O has been independently 
associated with mortalities in the range of 60% [42]. 
Nonetheless, most of these trials targeted recruitment 
interventions, such as prone positioning or an increased 
PEEP [16, 39], and by recruiting severer patients might 
have been predictively enriching their studies with a high 
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proportion of patients belonging to the recruitable phe-
notype, which, as opposed to the non-recruitable pheno-
type, presented a more prominent physiological response 
to recruitment and higher PEEP.

The recruitable phenotype was not only characterized 
by an impaired oxygenation, but also by a concomitantly 
reduced ventilation capacity. The higher proportion of 
physiological dead space coincident with a low respira-
tory system compliance probably characterize the high 
proportion of inhomogeneously ventilated, mainly col-
lapsed and potentially recruitable lung in the recruitable 
phenotype [10]. A recent trial assessing the use of per-
sonalized mechanical ventilation, including recruitment 
manoeuvres and higher PEEP settings, in non-focal, 
inhomogeneous, as opposed to focal ARDS, suggested 
a survival benefit [43]. Most importantly, misclassifica-
tion of lung morphology had a large effect on mortal-
ity. If a personalized ventilation approach would have 
led to reduced mortalities in the recruitable phenotype 
remains hypothetical; nonetheless, clinical PEEP levels 
employed in the recruitable phenotype were lower than 

personalized approaches would have targeted [43–45] 
and mortality was as high as in the misclassified lung 
morphologies in the LIVE study [43].

The pulmonary phenotypes in the present study differ 
in their inception from the hypo- and hyperinflamma-
tory phenotypes proposed in the seminal study by Cal-
fee et  al., as no inflammatory or laboratory parameters 
were available for the LCA analysis. Indeed, the two pul-
monary phenotypes identified in this study differ from 
the inflammatory phenotypes in multiple aspects. The 
recruitable and non-recruitable phenotype had similar 
vasopressor requirements at admission, one of the main 
clinical features differentiating the two inflammatory 
phenotypes. Furthermore, the phenotypes described by 
Calfee et  al. present similar paO2/FiO2 ratios and differ 
in severity scoring, much opposed to the here presented 
pulmonary phenotypes. Nonetheless, other features 
of both phenotype descriptions overlap; as such, the 
recruitable and hyperinflammatory phenotype both 
present lower respiratory system compliances and a 
more pronounced acidosis. The lack of biological data 
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in this study prevents identification of a direct correla-
tion between the pulmonary and inflammatory pheno-
types. Nonetheless, multiple studies have independently 
shown associations between high recruitability, pulmo-
nary inhomogeneity, predominance of a primary ARDS, 
all characteristics of the recruitable phenotype and the 
presence of increased pulmonary inflammatory biomark-
ers such as sRAGE [46–48] which have been linked to the 
hyperinflammatory phenotype [20, 49]. A certain overlap 
between the recruitable and the hyperinflammatory phe-
notype would also explain the positive response to PEEP 
in the hyperinflammatory phenotype [19].

Differences and overlaps between phenotypes are 
not surprising; indeed, the description of the hypo- 
and hyperinflammatory phenotype does not preclude 
the existence of further phenotypes in ARDS. As in 
many other diseases and syndromes, a plethora of dif-
ferent phenotypes, overlapping in multiple facets and 
with clear-cut differentiation in others, might very well 
exist [50]. Identification of the pulmonary and inflam-
matory phenotypes may thus be complementary, while 
enrichment of immunomodulatory trials could profit 
from phenotypisation by inflammatory phenotypes, tri-
als targeting personalized mechanical ventilation and 
recruitment strategies might benefit from enrichment 
by pulmonary phenotypes [51]. This admittedly complex 
customization of trials might be the key to success in per-
sonalized ARDS medicine, in analogy to the great vari-
ance of phenotype-enriched trials in oncology [52].

The present study has to account for certain limita-
tions. First and foremost, this study is a retrospective 
analysis of a prospective cohort with all the limitations a 
post hoc analysis may encompass to the generalizability 
of the discussed results. Nonetheless, multiple sensitivity 
analyses suggest internal robustness of the LCA model 
and the inferred pulmonary phenotypes. Second, due 
to the extended inclusion period of 16  years, the mod-
erate inclusion rate of one patient per month and the 
ARDS criteria changing in 2012, the possibility cannot 
be ruled out, that clinical diagnosis of ARDS was missed 
and a reduced number of patients were not included in 
the present cohort. However, as the characteristics of 
the described ARDS population are comparable to other 
cohorts and the pulmonary phenotyping was indifferent 
to temporality in the sensitivity analyses, selection bias 
can be regarded as residual. Third, the follow-up of the 
patients was limited to ICU outcome status and no data 
regarding hospital mortality were available. To mitigate 
the resulting presence of right informative censoring, 
Fine and Gray competing risk modelling was employed. 
Fourth, the presence of a moderate proportion of miss-
ing values, albeit mitigated by use of a multiple imputa-
tion methodology, might have influenced the final LCA 

phenotype description. Fifth, no biomarkers were col-
lected in the framework of this study, precluding com-
parison of the here proposed pulmonary phenotypes 
with the inflammatory phenotypes and preventing the 
investigation of a deeper biological association between 
the phenotypes. Sixth, time from ICU admission to CT-
scans and respiratory mechanics assessment was vari-
able between patients, as such, temporal influence on 
the LCA results cannot be ruled out. Likewise, the sta-
bility of the pulmonary phenotypes over time has not 
been assessed. Seventh, no information on longitudinally 
employed ventilation settings was available, preventing 
stratified analysis of the effect of these settings on mor-
tality in the different phenotypes. Finally, this study and 
the here described phenotypes lack external validation in 
an independent cohort.

Conclusions
In conclusion, the present study identifies two ARDS 
phenotypes based on respiratory mechanics, gas-
exchange and CT-derived gas- and tissue-volumes. 
These phenotypes are characterized by distinctly diverse 
responses to a standardized recruitment manoeuvre and 
by a diverging mortality. Given multicentre validation, 
the simple and rapid identification of these pulmonary 
phenotypes could facilitate enrichment of future pro-
spective clinical trials addressing mechanical ventilation 
strategies in ARDS.
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