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Abstract 

Background: A recent randomised trial showed that recombinant thrombomodulin did not benefit patients who 
had sepsis with coagulopathy and organ dysfunction. Several recent studies suggested presence of clinical pheno-
types in patients with sepsis and heterogenous treatment effects across different sepsis phenotypes. We examined 
the latent phenotypes of sepsis with coagulopathy and the associations between thrombomodulin treatment and 
the 28-day and in-hospital mortality for each phenotype.

Methods: This was a secondary analysis of multicentre registries containing data on patients (aged ≥ 16 years) who 
were admitted to intensive care units for severe sepsis or septic shock in Japan. Three multicentre registries were 
divided into derivation (two registries) and validation (one registry) cohorts. Phenotypes were derived using k-means 
with coagulation markers, platelet counts, prothrombin time/international normalised ratios, fibrinogen, fibrinogen/
fibrin-degradation-products (FDP), D-dimer, and antithrombin activities. Associations between thrombomodulin 
treatment and survival outcomes (28-day and in-hospital mortality) were assessed in the derived clusters using a 
generalised estimating equation.

Results: Four sepsis phenotypes were derived from 3694 patients in the derivation cohort. Cluster dA (n = 323) had 
severe coagulopathy with high FDP and D-dimer levels, severe organ dysfunction, and high mortality. Cluster dB had 
severe disease with moderate coagulopathy. Clusters dC and dD had moderate and mild disease with and without 
coagulopathy, respectively. Thrombomodulin was associated with a lower 28-day (adjusted risk difference [RD]: 
− 17.8% [95% CI − 28.7 to − 6.9%]) and in-hospital (adjusted RD: − 17.7% [95% CI − 27.6 to − 7.8%]) mortality only in 
cluster dA. Sepsis phenotypes were similar in the validation cohort, and thrombomodulin treatment was also associ-
ated with lower 28-day (RD: − 24.9% [95% CI − 49.1 to − 0.7%]) and in-hospital mortality (RD: − 30.9% [95% CI − 55.3 
to − 6.6%]).
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Background
The global rate of sepsis-related mortality remains high 
and the annual age-standardised mortality owing to sep-
sis is 148.1 deaths per 100,000 of the global population 
[1]. Recombinant human thrombomodulin (rhTM) has 
anti-inflammatory and anticoagulation activities [2], and 
it has been suggested as an adjunct therapy for patients 
with sepsis, particularly those with sepsis-induced coagu-
lopathy [3]. Nevertheless, a recent phase III randomised 
controlled trial revealed no beneficial effect of rhTM 
in patients with sepsis-induced coagulopathy [4]. This 
result can be explained by the heterogeneity of patients 
with sepsis and inappropriate criteria of coagulopathy 
[5] using the prothrombin time/international normalised 
ratio (PT-INR) and a platelet count based on subgroup 
analysis of an international phase II trial of rhTM [6].

Sepsis is a highly heterogeneous syndrome with vari-
able aetiology and pathophysiology [7]. Thus, a specific 
therapy may benefit some, but not all, patients with 
sepsis. Several recent studies have classified sepsis into 
several phenotypes with distinct characteristics using 
cluster analysis [8–10], an unsupervised machine learn-
ing method that can identify relatively homogeneous 
groups in a heterogeneous population [11]. Furthermore, 
these studies indicated that specific therapies conferred 
benefits only in patients with specific phenotypes of sep-
sis [8–10].

Identifying the target patients receptive to rhTM treat-
ment through grouping based on biomarker cut-offs is 
challenging. To address this issue, we examined latent 
sepsis phenotypes in terms of coagulopathy and identi-
fied which phenotypes would benefit from rhTM using 
machine learning approaches.

Methods
Study design and settings
Details of the methods and analytical processes in the 
present study are provided in the Supplemental Digital 
Content. This was a secondary analysis of the following 
multicentre registries: the Japan Septic Disseminated 
Intravascular Coagulation (JSEPTIC-DIC) study (UMIN-
CTR ID: UNIN000012543) [12], Tohoku Sepsis Reg-
istry (UMIN000010297) [13], and Focused Outcomes 
Research in Emergency Care for Acute Respiratory 

Distress Syndrome, Sepsis, and Trauma (FORECAST) 
sepsis study (UMIN000019742) [14]. All three registries 
include information on consecutive patients admit-
ted to ICUs for severe sepsis or septic shock [15, 16]. 
Briefly, the JSEPTIC-DIC study retrospectively reviewed 
data derived from 3195 consecutive patients with severe 
sepsis or septic shock, aged ≥ 16  years, admitted to 42 
ICUs at 40 institutions in Japan, between January 2011 
and December 2013[12]. The Tohoku Sepsis Registry 
prospectively registered 616 consecutive patients who 
were admitted to ICUs with severe sepsis, or those who 
developed severe sepsis after admission to the ICUs or 
general wards at 10 institutions (three university hos-
pitals and seven community hospitals) in the Tohoku 
District, Northern Japan, between January 2015 and 
December 2015 [13]. The multicentre prospective FORE-
CAST sepsis study included 1184 consecutive patients 
aged ≥ 16 years, who were admitted to 59 ICUs in Japan 
with severe sepsis according to the sepsis-2 criteria [15], 
between January 2016 and March 2017 [14]. These stud-
ies were approved and the need for informed consent was 
waived by the institutional review boards at the partici-
pating hospitals.

Study population
We included all patients (aged ≥ 16  years), who were 
admitted to the ICUs with severe sepsis or septic shock 
as defined in the three registries, according to the Inter-
national Sepsis Definitions Conference criteria [15, 16].

Phenotyping variables
We measured the following coagulation markers upon 
admission to the ICU for phenotyping: platelet counts, 
PT-INR, fibrinogen, fibrinogen/fibrin degradation prod-
ucts (FDP), D-dimer, and antithrombin activities.

Exposure
Patients were exposed to rhTM.

Outcomes
The main outcomes were 28-day and in-hospital mor-
tality in the validation cohort. The secondary outcomes 
were ICU-free days, ventilator-free days, and the type of 
discharge in the validation cohort.

Conclusions: We identified four coagulation marker-based sepsis phenotypes. The treatment effects of thrombo-
modulin varied across sepsis phenotypes. This finding will facilitate future trials of thrombomodulin, in which a sepsis 
phenotype with high FDP and D-dimer can be targeted.

Keywords: Anticoagulants, Disseminated intravascular coagulation, Machine learning, Phenotype, Precision 
medicine, Thrombomodulin
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Definitions
Ventilator-free days were defined as the number of days 
on which a patient did not require mechanical ventilation 
during the initial 28 days following enrolment. The num-
ber of ventilator-free days of patients, who died within 
day 28, was assigned as 0. ICU-free days were calculated 
similarly.

Statistical analysis
Analytical cohorts
We derived sepsis phenotypes from the JSEPTIC-DIC 
study (n = 3195) and Tohoku Sepsis Registry (n = 499) 
and validated the phenotypes using the FORECAST sep-
sis study (n = 1184).

Cluster derivation
We initially assessed the distribution and missingness in 
phenotyping variables. Non-normal data were log-trans-
formed and scaled. Patients without 28-day mortality 
information were excluded. Missing data were imputed 
using the random forest method for each study cohort 
with the missForest package [17]. Random forest impu-
tation is a nonparametric algorithm that accommodates 
nonlinearities and interactions and does not require the 
specification of a specific parametric model [18]. This 
approach generated single-point estimates by random 
draws from independent normal distributions centred on 
conditional means predicted by random forest. Random 
forest applies bootstrap aggregation of multiple regres-
sion trees to reduce the risk of overfitting and combines 
estimates from many trees [17]. Missingness was imputed 
using patient characteristics, laboratory data, outcomes, 
and other covariates, including in-hospital management 
(Additional file 1: Supplemental documents).

We applied k-means with Euclid distance, which is a 
basic and widely used machine learning-based cluster-
ing approach, to derive sepsis phenotypes [9, 11]. We 
then determined the optimal number of clusters using a 
consensus clustering approach that assessed both quan-
titatively and visually to estimate the number of unsuper-
vised classes in a dataset by inducing sampling variability 
with sub-sampling [19]. In consensus clustering, we eval-
uated the separation of consensus matrix heatmaps using 
the elbow method, cumulative distribution function, and 
cluster-consensus plots. We visually evaluated the clus-
tering using t-Distributed Stochastic Neighbour Embed-
ding (t-SNE) for reducing dimensionality and visualising 
high-dimensional datasets [20]. We also derived pheno-
types using a divisive hierarchical clustering approach as 
an alternative to k-means, for confirming the cluster con-
sistency. The number of clusters was determined using 
the dendrogram and the elbow and gap statistic methods 
[21].

Evaluation of rhTM effects in derived phenotypes
We examined the associations between rhTM and the 
clinical outcomes in each derived cluster, using a gen-
eralised estimating equation to adjust for hospital-level 
variance. We analysed the associations after adjusting for 
the potential confounders of age, sex, comorbidities, and 
sequential organ failure assessment (SOFA) scores. In the 
derivation cohort, we did not adjust for the management 
before and after admission to the hospitals because the 
information on when each management was initiated 
was not available. We examined the cluster-level effects 
of rhTM by including the interaction term, rhTM use –x– 
cluster, in the model to examine different effects of rhTM 
across clusters. In addition, to confirm the robustness of 
the association of interest, we applied a Bayesian regres-
sion model to assess the associations between rhTM and 
the clinical outcomes for each derived cluster, based 
on k-means in the derivation cohort [21, 22]. Bayesian 
regression was performed using a Markov chain Monte 
Carlo procedure with four chains of 2000 iterations per 
chain. The results are shown as beta coefficients with 95% 
credible intervals and displayed as odds ratios with 95% 
credible intervals for simplicity.

Cluster validation and evaluation of rhTM effects
We predicted patient phenotypes in the FORECAST sep-
sis study as external data based on coagulation markers 
of clusters in the derivation cohort (derived from JSEP-
TIC-DIC and Tohoku Sepsis Registry). Predictions arose 
from the Euclidean distance from each patient to the cen-
troid of each FORECAST phenotype. In each predicted 
cluster in the FORECAST sepsis study, we first described 
the frequency and clinical characteristics of the clusters. 
Thereafter, we used a generalised estimating equation to 
account for patient clustering within hospitals to assess 
associations between rhTM and clinical outcomes in 
each predicted cluster in the external data. The adjusted 
variables were age, sex, comorbidities, SOFA scores, 
and in-hospital management, including renal replace-
ment therapy, and treatment with steroids, intravenous 
immunoglobulin, antithrombin, and vasopressors. As the 
FORECAST sepsis data included information on the time 
of management, we included management before or after 
admission as a covariate to estimate the effects of rhTM 
on clinical outcomes. For sensitivity analyses, we used a 
generalised estimating equation, applying the acute phys-
iology and chronic health evaluation (APACHE II) score 
and source of infection as adjusted variables, instead of 
the SOFA score. The source of infection was categorised 
into respiratory, abdominal, skin and soft tissue, uri-
nary tract, and others. As in the derivation cohort, we 
analysed the association by Bayesian regression with a 
Markov chain Monte Carlo procedure with four chains.
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Values with p < 0.05 were considered statistically sig-
nificant. All data were analysed using Stata version 14.1 
(StataCorp, College Station, TX, USA) and R version 
3.4.1 package for t-SNE (https ://cran.r-proje ct.org/web/
packa ges/tsne/tsne.pdf) (R Foundation, Vienna, Austria).

Results
Patients in the derivation cohort
We excluded 117 patients without 28-day mortality infor-
mation in the derivation cohort from the two multicen-
tre registries, leaving 3694 patients who were eligible 
for analysis (3195 from JSEPTIC-DIC and 499 from the 
Tohoku Sepsis Registry). Table 1 summarises the patients’ 
characteristics. The median age was 72 years, and 40% of 
patients were female. Overall, rhTM was administered to 
26.2% of patients (the distribution of the proportion of 
patients in the institutes is shown in Additional file 3: Fig-
ure S1). The in-hospital mortality and 28-day mortality 
rates were 32.1% and 20.4%, respectively.

Derivation of clinical sepsis phenotypes
We assessed the distributions and missingness among 
the phenotyping variables. Antithrombin activity was the 
most lacking variable, 51.3% and 45.8% in derivation and 
validation datasets, respectively (Table  2). According to 
clustering using k-means, a four-class model including 
the phenotype clusters derivation dA, dB, dC, and dD (“d” 
represents “derivation”) may be an optimal fit. The heat-
map matrix (Additional file 3: Figure S2), elbow method 
(Additional file  3: Figure S3), and cumulative distribu-
tion function curve (Additional file  3: Figure S4), indi-
cated that the four-class model was optimal, whereas the 
cluster-consensus plot suggested that two, three, or four 
clusters were optimal (Additional file  3: Figure S5). The 
four-class model was supported by the t-SNE plot with 
clear separation (Fig. 1). Additional file 3: Figure S6 shows 
a cluster dendrogram obtained using a divisive hierarchi-
cal clustering approach. The elbow method showed that 
a two- or four-cluster model is optimal (Additional file 3: 
Figure S7), whereas the gap statistic method [21] showed 
that the four-cluster model was optimal (Additional file 3: 
Figure S8).

Patients in cluster dA were likely to have a severe 
physiological status and organ dysfunction (high 
APACHE II and SOFA scores), coagulopathy (low 
platelet counts, prolonged PT-INR, low fibrinogen, 
and extremely high FDP and D-dimer levels), high lac-
tate levels, and high mortality (Table 1). Approximately 
90% of patients in this cluster required vasopressors. 
The characteristics of patients in cluster dB were simi-
lar to that in cluster dA in terms of severity, but likely 
to have abdominal infection with normal white blood 
cell counts, moderate coagulopathy with moderate 

FDP and D-dimer levels, and low antithrombin activ-
ity. Patients in clusters dC and dD had moderate and 
mild disease, respectively. Although patients in cluster 
dC had coagulopathy with high FDP and D-dimer lev-
els, those in cluster dD were likely to have respiratory 
infection without coagulopathy. The phenotypes were 
similar according to the four-cluster hierarchical clus-
tering (Additional file 2: Table S1).

Evaluation of rhTM effects in the derivation cohort
Recombinant human thrombomodulin was administered 
to 128 (44.1%), 184 (31.5%), 334 (33.6%), and 210 (15.5%) 
patients in clusters dA, dB, dC, and dD, respectively. 
Clinical outcomes in cluster dA were better with than 
in those without rhTM (adjusted risk difference [RD], 
− 17.8% [95% CI, − 28.7 to − 6.9%] for 28-day mortality; 
RD, −  17.7% [95% CI −  27.6 to −  7.8%] for in-hospital 
mortality (Table  3). Analysis of the rhTM effect modifi-
cation across clusters using cluster dA as the reference 
showed that the effects of rhTM differed across clusters 
(all, p < 0.05), except for in-hospital mortality in cluster 
dB (p = 0.31). The associations were similar according to 
the four-cluster hierarchical clustering (Additional file 2: 
Table S2). Furthermore, rhTM treatment was associated 
with better clinical outcomes in cluster dA according to 
Bayesian regression (Additional file 2: Table S3).

Characteristics of phenotypes in the validation cohort
Additional file 2: Table S4 shows the patients’ character-
istics in each cluster in the validation cohort. The median 
age was 73 years, 40% of the patients were women, and 
rhTM was administered to 21.2% of patients. In-hospital 
and 28-day mortality rates were 23.4% and 19.0%, respec-
tively. These characteristics were similar to those in the 
derivation cohort but the rate of rhTM treatment and 
mortality were relatively lower.

We used only coagulation markers to predict clusters 
in the validation cohort, and the characteristics were 
similar to those in the derivation cohort (“v” represents 
“validation”). Similar to the patients in cluster dA, those 
in cluster vA were likely to have a severe physiologi-
cal status and organ dysfunction (high APACHE II and 
SOFA scores), coagulopathy (low platelet counts, pro-
longed PT-INR, low fibrinogen, and extremely high FDP 
and D-dimer levels), high lactate levels, and moderately 
high mortality. Patients in cluster vB had a high mortality 
rate with moderate coagulopathy and moderate FDP and 
D-dimer levels. Patients in clusters vC and vD had mod-
erate and mild disease, respectively. Patients in cluster 
vC had coagulopathy with high FDP and D-dimer levels, 
whereas those in cluster vD did not have coagulopathy.

https://cran.r-project.org/web/packages/tsne/tsne.pdf
https://cran.r-project.org/web/packages/tsne/tsne.pdf
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Table 1 Characteristics of patients in the derivation cohort according to clusters

Overall Cluster dA Cluster dB Cluster dC Cluster dD P*

Variables n = 3694 n = 323 n = 629 n = 1147 n = 1595

Age*, median (IQR) 72.0 (62.0, 81.0) 72.0 (58.0, 80.0) 72.0 (63.0, 81.0) 73.0 (63.0, 81.0) 72.0 (62.0, 80.0) 0.25

Sex*, female 1468 (39.7%) 164 (50.8%) 268 (42.6%) 483 (42.1%) 553 (34.7%) < 0.001

Body weight kg, median (IQR) 54.7 (46.6, 64.2) 55.0 (47.5, 64.0) 52.0 (45.0, 61.1) 55.0 (46.8, 64.3) 55.0 (47.0, 65.0) < 0.001

Comorbidity*

 Liver 149 (4.0%) 28 (8.7%) 73 (11.6%) 30 (2.6%) 18 (1.1%) < 0.001

 Respiratory 141 (3.8%) 8 (2.5%) 23 (3.7%) 43 (3.7%) 67 (4.2%) 0.52

 Cardiovascular 316 (8.6%) 20 (6.2%) 49 (7.8%) 97 (8.5%) 150 (9.4%) 0.23

 Renal 306 (8.3%) 24 (7.4%) 50 (7.9%) 111 (9.7%) 121 (7.6%) 0.23

 Immunodeficiency 709 (19.2%) 62 (19.2%) 119 (18.9%) 233 (20.3%) 295 (18.5%) 0.69

Infection site < 0.001

 Unknown 218 (6.8%) 32 (11.0%) 49 (8.4%) 64 (6.4%) 73 (5.5%)

 Catheter-related 44 (1.4%) 1 (0.3%) 6 (1.0%) 19 (1.9%) 18 (1.4%)

 Bone/soft tissue 374 (11.7%) 20 (6.9%) 60 (10.3%) 108 (10.9%) 186 (14.0%)

 Cardiovascular 68 (2.1%) 13 (4.5%) 4 (0.7%) 26 (2.6%) 25 (1.9%)

 Central nervous system 63 (2.0%) 14 (4.8%) 1 (0.2%) 26 (2.6%) 22 (1.7%)

 Urinary tract 509 (15.9%) 71 (24.5%) 40 (6.8%) 210 (21.1%) 188 (14.2%)

 Lung/thoracic 827 (25.9%) 38 (13.1%) 117 (20.0%) 243 (24.4%) 429 (32.3%)

 Abdomen 1032 (32.3%) 94 (32.4%) 294 (50.3%) 279 (28.1%) 365 (27.5%)

 Other 60 (1.9%) 7 (2.4%) 13 (2.2%) 19 (1.9%) 21 (1.6%)

APACHE II, median (IQR) 22.0 (17.0, 28.0) 26.0 (20.0, 33.0) 26.0 (19.0, 32.0) 23.0 (17.0, 29.0) 20.0 (15.0, 26.0) < 0.001

SIRS score, median (IQR) 3.0 (2.0, 4.0) 3.0 (3.0, 4.0) 3.0 (2.0, 4.0) 3.0 (2.0, 4.0) 3.0 (2.0, 4.0) < 0.001

SOFA scores* 9.0 (6.0, 12.0) 13.0 (10.0, 16.0) 11.0 (9.0, 14.0) 10.0 (7.0, 12.0) 7.0 (5.0, 10.0) < 0.001

Lab data

 White blood cell  (103/μL), median 
(IQR)

11.3 (4.8, 17.8) 12.2 (4.6, 19.7) 7.8 (2.2, 15.5) 11.7 (6.0, 18.6) 11.6 (6.0, 17.5) < 0.001

 Platelet (103/μL), median (IQR) 122.0 (65.0, 194.0) 59.5 (32.0, 92.0) 78.0 (46.5, 128.0) 103.0 (54.0, 162.0) 178.0 (121.0, 252.0) < 0.001

 PT-INR, median (IQR) 1.3 (1.2, 1.6) 1.6 (1.4, 2.1) 1.7 (1.5, 2.2) 1.3 (1.2, 1.5) 1.2 (1.1, 1.4) < 0.001

 Fibrinogen (mg/mL), median (IQR) 421.0 (296.0, 528.9) 231.0 (151.0, 311.0) 245.3 (157.0, 350.0) 452.0 (367.0, 563.0) 476.9 (395.3, 576.0) < 0.001

 FDP (μg/mL), median (IQR) 17.6 (10.1, 36.2) 120.2 (79.2, 266.0) 16.0 (10.4, 24.0) 34.3 (22.8, 55.1) 10.0 (7.6, 13.8) < 0.001

 D-dimer (μg/mL), median (IQR) 7.8 (3.9, 17.2) 51.9 (35.2, 113.0) 7.7 (4.8, 11.7) 15.4 (10.5, 25.0) 3.8 (2.7, 5.6) < 0.001

 Antithrombin (%), median (IQR) 60.0 (50.8, 69.0) 52.0 (42.4, 60.5) 42.6 (33.0, 50.4) 60.1 (54.0, 68.0) 66.0 (59.0, 73.7) < 0.001

 Lactate (mmol/L), median (IQR) 2.9 (1.7, 5.7) 5.3 (2.9, 10.1) 4.3 (2.3, 8.0) 2.7 (1.5, 5.4) 2.3 (1.4, 4.1) < 0.001

ISTH DIC score < 0.001

 0 685 (18.7%) 0 (0.0%) 15 (2.4%) 25 (2.2%) 645 (41.1%)

 1 239 (6.5%) 2 (0.6%) 17 (2.7%) 15 (1.3%) 205 (13.0%)

 2 701 (19.2%) 3 (0.9%) 104 (16.6%) 116 (10.2%) 478 (30.4%)

 3 592 (16.2%) 25 (7.8%) 99 (15.8%) 327 (28.8%) 141 (9.0%)

 4 530 (14.5%) 42 (13.0%) 143 (22.8%) 261 (23.0%) 84 (5.3%)

 5 441 (12.1%) 79 (24.5%) 105 (16.7%) 240 (21.1%) 17 (1.1%)

 6 250 (6.8%) 78 (24.2%) 83 (13.2%) 88 (7.7%) 1 (0.1%)

 7 169 (4.6%) 72 (22.4%) 38 (6.1%) 59 (5.2%) 0 (0.0%)

 8 40 (1.1%) 20 (6.2%) 15 (2.4%) 5 (0.4%) 0 (0.0%)

 ISTH DIC score ≥ 5 1430 (39.2%) 291 (90.7%) 384 (62.0%) 653 (57.5%) 102 (6.5%)

Managements

 rhTM 969 (29.3%) 128 (44.1%) 184 (31.5%) 334 (33.6%) 210 (15.8%) < 0.001

 Vasopressor use 2789 (75.5%) 289 (89.5%) 558 (88.7%) 882 (76.9%) 1060 (66.5%) < 0.001

 Renal replacement therapy 971 (26.3%) 135 (41.8%) 220 (35.0%) 339 (29.6%) 277 (17.4%) < 0.001

 Steroids 894 (24.2%) 112 (34.7%) 214 (34.1%) 285 (24.8%) 283 (17.7%) < 0.001

 Intravenous immunoglobulin 1088 (29.5%) 116 (35.9%) 239 (38.0%) 362 (31.6%) 371 (23.3%) < 0.001
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Evaluation of the effects of rhTM in the validation cohort
All 1184 patients in the FORECAST sepsis study data-
set were analysed for validation. Recombinant human 
thrombomodulin was administered to 44 (44.4%), 54 
(31.2%), 98 (26.3%), and 46 (9.3%) patients in clusters vA, 
vB, vC, and vD, respectively. Clinical outcomes in clus-
ter vA were better than in those without rhTM (adjusted 
RD, − 24.9% [95% CI − 49.1 to − 0.7%] for 28-day mortal-
ity; RD − 30.9% [95% CI − 55.3 to − 6.6%] for in-hospital 
mortality; Table 3). In contrast, rhTM was not associated 
with better outcomes in the other clusters. As secondary 
outcomes, rhTM was associated with increased number 
of ventilator-free days (6.7 days [95% CI 0.8–12.7 days]) 
in Cluster vA, but not with the number of ICU-free days 
or discharge location in any of the clusters (Additional 
file  2: Table  S5). In the sensitivity analyses, rhTM was 
associated with better outcomes, when APACHE II score 
and source of infection were applied as adjusted vari-
ables, instead of the SOFA score (adjusted RD, − 0.24% 
[95% CI −  0.45 to −  0.02%] for 28-day mortality; RD 
−  0.26% [95% CI −  0.47 to −  0.04%] for in-hospital 
mortality; Additional file  2: Table  S6). The associations 
between rhTM, and 28-day and in-hospital mortalities 
were consistent with the findings of the Bayesian regres-
sion analysis (Additional file  2: Table  S3 and Additional 
file 3: Figure S9).

Discussion
This secondary analysis of the sepsis registries identified 
four phenotypes with various coagulation features among 
patients with severe sepsis. Treatment with rhTM was 
associated with lower in-hospital mortality rates only in 
the phenotype with severe coagulopathy, characterised 
by low platelet counts, extremely high levels of FDP and 
D-dimer (phenotype clusters dA and vA), and severe 
organ dysfunction. These results were not identified in 
the other phenotypes.

The severity of coagulopathy is defined by the DIC 
scoring systems, such as the International Society on 
Thrombosis and Haemostasis (ISTH) scoring system 
for diagnosing overt DIC [23] and Japanese Association 
for Acute Medicine DIC scoring system [24], both of 
which have been applied in many studies. The difference 
between these systems and machine learning-based clus-
tering is the use of a trivial cut-off. Table  1, Additional 
file 2: Tables S1, and S4 show that each phenotype cluster 
included patients with various ISTH DIC scores without 
a clear cut-off that overlapped with the other clusters. 
This suggests that clustering based on machine learning 
can detect novel phenotypes that cannot be identified 
using the conventional scoring systems.

Recombinant human thrombomodulin has anticoagu-
lation effects and was shown to be beneficial for patients 

Six coagulation markers (bold font) were used for clustering

APACHE acute physiology and chronic health evaluation, DIC disseminated intravascular coagulation, FDP fibrinogen/fibrin degradation product, IQR interquartile 
range, PT-INR prothrombin time-international normalised ratio, SIRS systemic inflammatory response syndrome, SOFA sequential organ failure assessment, WBC white 
blood cells

Variables with asterisk (*) were potential confounders that were adjusted in a generalised estimating equation. *P between clusters

Table 1 (continued)

Overall Cluster dA Cluster dB Cluster dC Cluster dD P*

Variables n = 3694 n = 323 n = 629 n = 1147 n = 1595

 Antithrombin 1092 (29.6%) 161 (49.8%) 296 (47.1%) 367 (32.0%) 268 (16.8%) < 0.001

Outcomes

 28-day death 753 (20.4%) 117 (36.2%) 198 (31.5%) 200 (17.4%) 238 (14.9%) < 0.001

 In-hospital death 1186 (32.1%) 151 (46.8%) 301 (47.9%) 358 (31.0%) 376 (23.6%) < 0.001

Table 2 Missingness in phenotyping variables based on study cohorts

FDP fibrinogen/fibrin degradation product, PT-INR prothrombin time-international normalised ratio

Variables JSEPTIC-DIC (n = 3195) Tohoku sepsis registry (n = 499) FORECAST (n = 1184)

n (%) n (%) n (%)

Platelets 10 (0.3%) 74 (14.8%) 6 (0.5%)

PT-INR 187 (5.9%) 155 (31.1%) 38 (3.2%)

Fibrinogen 753 (23.6%) 269 (53.9%) 226 (19.1%)

FDP 1101 (34.5%) 243 (48.7%) 376 (31.8%)

D-dimer 839 (26.3%) 220 (44.1%) 301 (25.4%)

Antithrombin activity 1550 (48.5%) 346 (69.3%) 542 (45.8%)
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with sepsis and coagulopathy in observational studies 
and in a subgroup analysis of a phase II trial [3, 6]. The 
latest phase III trial focused on patients with sepsis with 
cardiovascular or respiratory dysfunction as well as coag-
ulopathy according to subgroup analysis of the phase II 
trial [4]. However, the phase III trial did not identify a 
positive effect of rhTM on survival, suggesting that dif-
ferentiating a subgroup that may benefit from rhTM is 
difficult using conventional methods with clear cut-offs. 
In our study, despite overlapping characteristics, vari-
ous DIC scores, and differences in severity among clus-
ters, cluster vA (dA) was the only phenotype in which 
rhTM was associated with better survival outcomes. This 
suggests that machine learning clustering can identify 
optimal clinical phenotypes for rhTM treatment. Addi-
tionally, the machine learning clustering described herein 
used only six variables, all of which are general markers 
that can be measured in most hospitals. Additionally, 
the results can be available soon after admission before 
deciding to administer rhTM in an emergency room or 
ICU.

Other studies using machine learning-based cluster-
ing for patients with sepsis also suggest that several 
specific therapies have beneficial effects only in patients 
with specific phenotypes. A Toll-like receptor 4 antago-
nist, protocol-based resuscitation, activated protein C, 
and fluid input affected each phenotype differently [9, 
10]. The effectiveness of rhTM also varied across phe-
notypes in our study. Therefore, selecting an optimal 
clinical phenotype may be key to the success of a spe-
cific therapy for patients with sepsis. Including entire 
populations with sepsis may explain why previous ran-
domised trials found no beneficial effects of adjunc-
tive therapies [25–28]. The goal of precision/tailored 
medicine is to select the optimal therapy for patients, 
for which machine learning-based clustering can be 
effective. Although our study does not fully address 
the definite endotypes of coagulation in sepsis biologi-
cally or pathophysiologically, our findings improve the 
understanding of the true endotypes of sepsis with 
coagulation.

Fig. 1 t-SNE plot. This t-Distributed Stochastic Neighbour Embedding (t-SNE) plot is a dimensionality reduction technique for graphically 
simplifying extensive datasets. Four clusters are plotted, and some patients are on the borderlines between clusters. Circles represent individual 
patients (green, cluster dA; purple, cluster dB; blue, cluster dC; red, cluster dD)
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Limitations
This study had several limitations. We used three regis-
tries that included different variables. Therefore, unmeas-
ured confounders, and a lack of information such as the 
timing of rhTM administration may have biased our find-
ings. Nevertheless, the data included detailed clinical 
information that is generally used for adjustment, and the 
results in the validation cohort accounted for manage-
ment before or after admission. The number of missing 
variables for clustering was not small; therefore, miss-
ingness may have limited our findings. However, miss-
ing data imputation using the random forest approach is 
considered valid and valid imputation reduces bias, even 
when the proportion of missingness is high [29]. Our data 
did not include information on the long-term outcomes 
(i.e. 6-/12-months mortality) and SOFA score at several 
weeks after admission, although long-term outcomes are 
also important. Our data did not include the duration 
of rhTM administration, which was presumably 6  days, 
according to the generally prescribed dose and duration 
in Japan. We could not evaluate whether the phenotypes 
and efficacy of rhTM are applicable for patients with sep-
sis defined by the Sepsis-3 criteria [30], as three obser-
vational studies enrolled patients with sepsis using the 
Sepsis-2 definition [16], and the datasets did not include 
SOFA scores before admission. Heparin is commonly 
used for anticoagulant therapy, worldwide. However, we 
could not include heparin treatment for sepsis-induced 
coagulopathy in the model, because two of three 

registries did not collect the data. Only 5% (167/3195) of 
the patients were treated with heparin for coagulopathy 
with sepsis (excluding use for venous thromboembolism) 
in JSEPTIC-DIC study [12]. We need to develop a model 
to determine the phenotypes of individual patients to be 
able to perform a clinical trial in the future. Finally, our 
data were derived from Japanese patients; therefore, the 
generalisability of the results may be limited.

Conclusions
The findings derived using machine learning cluster-
ing indicated that rhTM can benefit only patients with 
a severe coagulopathy phenotype. Identifying patients 
for whom a therapy will have a beneficial effect can 
lead to precision/tailored medicine in critical care. To 
achieve this goal, the accuracy of phenotyping should 
be increased by analysing more patients, and through 
further validation. A randomised trial focusing on suit-
able phenotypes determined by effective phenotyping is 
warranted.

Appendix: The core investigators FORECAST Study
Satoshi Gando 1, 2), Yasuhiro Otomo 3), Shigeki Kushi-
moto 4), Hiroshi Ogura 5), Seitaro Fujishima 6), Atsu-
shi Shiraishi 7), Daizoh Saitoh 8), Toshihiko Mayumi 9), 
Kiyotsugu Takuma 10), Taka-aki Nakada 11), Yasukazu 
Shiino 12), Takehiko Tarui 13), Toru Hifumi 14), Kohji 

Table 3 Unadjusted and adjusted risk difference between recombinant thrombomodulin use and outcomes

In the derivation cohort, the adjusted variables were age, sex, comorbidities, and sequential organ failure assessment (SOFA) scores

In the validation cohort, the adjusted variables were age, sex, comorbidities, SOFA scores, and in-hospital management, including renal replacement therapy, and 
treatment with steroids, intravenous immunoglobulin, antithrombin, and vasopressors

rhTM recombinant human thrombomodulin

Outcomes Cluster dA p value Cluster dB p value Cluster dC p value Cluster dD p value

Associations in the derivation cohorts, risk difference, % (95%CI)

Unadjusted association (vs. non rhTM use)

 28-Day death − 10.8 (− 21.5 to − 0.1) 0.047 3.5 (− 4.6 to 11.5) 0.40 − 1.9 (− 6.9 to 3.2) 0.47 2.2 (− 2.8 to 7.1) 0.39

 In-hospital death − 10.9 (− 20.8 to − 1.1) 0.03 1.6 (− 7.2 to 10.3) 0.73 − 8.0 (− 13.8 to − 2.3) 0.01 0.8 (− 5.2 to 6.8) 0.78

Adjusted association (vs. non rhTM use)

 28-Day death − 17.8 (− 28.7 to − 6.9) 0.001 0.7 (− 7.1 to 8.6) 0.85 − 3.1 (− 8.3 to 2.1) 0.24 − 0.7 (− 4.5 to 6.0) 0.79

 In-hospital death − 17.7 (− 27.6 to − 7.8) < 0.001 0.2 (− 7.9 to 8.3) 0.97 − 10.2 (− 15.9 to − 4.6) < 0.001 − 1.3 (− 7.6 to 4.9) 0.67

Cluster vA p value Cluster vB p value Cluster vC p value Cluster vD p value

Associations in the validation cohorts, risk difference, % (95%CI)

Unadjusted association (vs. non-rhTM use)

 28-Day death − 15.0 (− 32.2 to 2.2) 0.09 3.2 (− 12.5 to 18.9) 0.69 4.4 (− 5 to 13.8) 0.36 7.1 (− 2.4 to 16.6) 0.14

 In-hospital death − 22.2 (− 39.6 to − 4.9) 0.01 8.8 (− 7.3 to 24.8) 0.29 5.7 (− 4.9 to 16.2) 0.3 14.2 (3.8 to 24.7) 0.008

Adjusted association (vs. non rhTM use)

 28-Day death − 24.9 (− 49.1 to − 0.7) 0.04 − 5.7 (− 29.9 to 18.5) 0.64 1.4 (− 12.8 to 15.7) 0.84 − 6.7 (− 19.4 to 6.0) 0.3

 In-hospital death − 30.9 (− 55.3 to − 6.6) 0.01 − 3.7(− 27.9 to 20.5) 0.77 − 0.5 (− 16.1 to 15.1) 0.95 0.7 (− 13.0 to 14.5) 0.92
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