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Abstract 

Background:  The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical 
phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves 
prognostic outcomes.

Methods:  Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease 
and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering 
analysis to derive clinical COVID-19 phenotypes and to analyze patient’s factors associated with mortality risk. Patient 
features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were 
used to determine ICU morality risk factors. The prognostic models were validated and their performance was meas‑
ured using accuracy test, sensitivity, specificity and ROC curves.

Results:  The database included a total of 2022 patients (mean age 64 [IQR 5–71] years, 1423 (70.4%) male, median 
APACHE II score (13 [IQR 10–17]) and SOFA score (5 [IQR 3–7]) points. The ICU mortality rate was 32.6%. Of the 3 
derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory 
values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A 
phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and 
was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of develop‑
ment shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality 
risk factors and model performance differed between whole population and phenotype classifications.
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Introduction
Since the outbreak of COVID-19 disease began in 
December 2019 in China, soaring cases of confirmed 
SARS-CoV-2 are pummeling the global health system. 
More than 91 million people have developed SARS-
CoV-2 infection, and more than 2 million have died [1]. 
Critical illness from COVID-19 has constrained intensive 
care unit (ICU) material and human resources [2]. As of 
January 18, 2021 more than 2.5 million people in Spain 
have been infected with SARS-CoV-2 and more than 
53,000 have died [3]. Short-term mortality reported rate 
ranges from 16 to 62% of patients admitted to ICU [4–
8]. The heterogeneity of patients that have been treated 
in China [4], Italy [8], USA [5–7] or Spain [9, 10] may 
explain the wide variation of mortality rate due to their 
population characteristics, presence of comorbidities and 
healthcare systems. A recent international survey [11] 
reported significant practice variations in the manage-
ment of severe COVID-19 patients, including differences 
at the regional, hospital, and patient level. Therefore, it is 
necessary to characterize phenotypes, by extending the 
enrolment of patients outside of one ICU site to multi-
ple patients being treated in different hospitals. Allowing 
to adequately measure mortality-related factors adjusted 
by the inter-hospital variation to determine clinical 
outcomes.

Risk factors represent the most important approach 
when defining treatment of hospitalized patients as these 
measures can inform clinical courses most likely for a 
patient given their a priori risk. However, risk factors can 
also interplay differently when they are included in dif-
ferent patient clusters. A single model based on general 
risk factors (one-size-fits-all) might be limited for clinical 
data interpretation and application across sites. Different 
combinations of risk factors may naturally cluster into 
previously undescribed subsets or phenotypes that may 
have different risks for a high mortality rate and that may 
therefore help to determine the response to treatments 
in COVID-19. We hypothesize that the presence of well-
defined phenotypes in COVID-19 could help to more 
appropriately identify patients at risk of ICU mortality 
than general models for the entire population consider-
ing that this disease results in a constellation of symp-
toms, laboratory derangement, immune dysregulation, 
and clinical complications.

The primary objective was to determine the presence of 
distinct clinical phenotypes using unsupervised cluster-
ing methods that were applied to the datasets available on 
ICU admission. The second objective was to assess which 
factors are independently associated with ICU mortality. 
The added value of this large-scale multicenter prospec-
tive study lies to discover phenotypes based on clinical 
data available at ICU admission that can help explain the 
variation in clinical results of COVID-19 disease in the 
ICU.

Material and methods
Study design
A multicenter observational, prospective cohort study 
that consisted of a large-scale data source of hospital ICU 
admissions and patient-level clinical data. The enrolment 
criteria included adult’ patients with laboratory con-
firmed SARS-CoV-2 infection admitted in 63 ICUs across 
Spain due to acute respiratory failure between February 
22, 2020 and May 11, 2020. The study was approved by 
the reference institutional review board at Joan XXIII 
University Hospital (IRB# CEIM/066/2020) and each 
participating site with a waiver of informed consent. All 
data values were anonymized prior to the phenotyping 
which consisted of clustering clinical variables on their 
association with COVID-19 mortality.

Study sites and patients population
The study enrolled consecutive adult patients (> 16 years) 
with laboratory confirmed SARS-CoV-2 infection, 
detected by RT-PCR positive test of nasopharyngeal, oro-
pharyngeal swab or invasive respiratory samples accord-
ing to the WHO recommendations [12]. The follow-up of 
patients was scheduled until August 11, 2020, which con-
firmed ICU discharge or death whichever occurred first. 
A complete list of participating ICUs and their investi-
gators is provided in the acknowledgements section. In 
this cohort, 43 patients were described in a preliminary 
report of a single–center case series in Tarragona, Spain 
[9].

Outcomes
The primary outcome included all-causes of ICU mortal-
ity. Patients who were discharged alive from ICU were 
evaluated in the data as alive considering mortality was 

Conclusion:  The presented machine learning model identified three clinical phenotypes that significantly correlated 
with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical pheno‑
types were observed which may limit the application of a “one-size-fits-all” model in practice.
Keywords:  Severe SARS-CoV-2 infection, Phenotypes, Risk factors, Prognosis, Machine learning
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defined as any in-ICU death. All complications and out-
comes were followed during ICU admission.

Data collection
Data was obtained from a voluntary registry created by 
Spanish Society of Intensive Care Medicine-SEMICYUC. 
All consecutive cases admitted to the ICU were collected. 
There were no patients excluded from the analysis that 
was enrolled to participating ICU and met criteria.

All the collected variables recorded at ICU admis-
sion are listed in the Additional file 1: p. 6. To determine 
severity of illness, the Acute Physiology and Chronic 
Health Evaluation (APACHE) II score [13] and Sequen-
tial Organ Failure Assessment (SOFA) scoring [14] were 
calculated for all patients within the first 24  h of ICU 
admission.

The ICU admission criteria, use of antiviral, antibiotic 
or co-adjuvant treatment, and also the measures that 
would determine the need to intubate and type of ven-
tilator support required (oxygenation, high flow nasal 
cannula [HFNC], noninvasive [NIV] or invasive [IMV] 
mechanical ventilation) were not standardized between 
centers and were left to the discretion of the attending 
physician, according to SEMICYUC and National Minis-
try of Health [15] and were included in the case report 
form and confirmed by the medical records. We also 
collected hospital-level data including city, county and 

number of hospital beds available. The study definitions 
used in the present analysis are shown in the Additional 
file 1: p. 2.

Statistical analysis
No statistical sample size calculation was performed 
a priori, and sample size was equal to the number of 
patients admitted to the participant’s ICUs with con-
firmed COVID-19 during the study period. To describe 
baseline characteristics, the continuous variables were 
expressed as median (interquartile range [IQR]) and 
categorical variables as number of cases (percentage). 
For patient demographics and clinical characteristics, 
differences between groups were assessed using the 
chi-squared test and Fisher’s exact test for categorical 
variables, and the Mann–Whitney U or Wilcoxon test 
for continuous variables. To performed the analysis, we 
first assessed the candidate variables, missing values, and 
correlation. Multiple imputation was used to account for 
missing data (Additional file 1: p. 2). After evaluating cor-
relation, highly correlated variables were excluded (Addi-
tional file 1: p. 5).

An overview of the primary analysis plan is outlined 
in Fig.  1. In a first step, a multilevel conditional logis-
tic modelling and the intraclass correlation coefficient 
(ICC) was calculated (Additional file 1: p. 2) with patients 
nested in hospital to characterize hospital-level variation 
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Fig. 1  Overview of the primary analysis plan. ICU Intensive care units, PAM partition around medoids clustering analysis, GLM Generalized Linear 
model
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of ICU mortality and determine if a significant inter-hos-
pital variation is present.

In a second step, to determine presence of distinct clin-
ical phenotypes in our population of COVID-19 patients, 
an unsupervised clustering analysis was applied to the 
database at ICU admission. In order to carry out this 
analysis, a discretization of the numerical variables into 
categorical ones was done using “ChiMerger” packages 
for R software. The information provided by each vari-
able regarding ICU mortality was defined using the Infor-
mation Value (IV). A IV greater than 0.03 was considered 
clinically important and this variable was included in 
the multivariate logistic regression analysis. Model per-
formance was examined using accuracy test, Sensitivity, 
Specificity and AUC modeling. Subsequently, the unsu-
pervised cluster analysis was performed using the impor-
tant variables. The Podani distance was used to calculate 
the distance between patients and the “partition around 
medoids” (PAM) algorithm to perform the clustering 
[16]. The optimal number of clusters were determined 
after studying the silhouette [17] and the PAM objective 
for different numbers of clusters (Additional file  1:  p. 
12). Each of these clusters represent a specific patient’s 
phenotype. To visualize the clusters in a lower dimen-
sional space, we used a Principal Component Analysis 
(PCA). We obtain important variables according to IV 
for each phenotype, and the OR of these variables were 
obtained after applying a GLM (Generalize linear Regres-
sion model) analysis. GLM is how statistical software R 
performs multiple logistic regression analysis when the 
command family = “binomial” is indicated. Multinomial 
regression models were fit to further compare patient 
comorbidities across phenotype classification. Model 
performance in each phenotype was examined using 
accuracy test, Sensibility, Specificity and AUC.

Lastly, a traditional multivariate analysis GLM was per-
formed to investigate the association between baseline 
(on ICU admission) variables and ICU-mortality. The 
GLM model comprised factors of clinical interest and all 
significant covariates (p < 0.05) in the univariate analysis 
of ICU mortality and presence of collinearity was stud-
ied by variance inflation factors (VIF). The results are 
presented as odds ratios (OR) and 95% confidence inter-
vals (CI). To determine our model, we checked adequate 
model performance between groups with a cross valida-
tion model (K-fold = 10) and the model with better per-
formance was chosen.

For all model validation, database was randomly split 
into two subsets: (a) a “training set” (80%), and (b) a “vali-
dation set” (20%). Model performance was examined 
using accuracy test, precision, sensitivity, specificity and 
area under ROC curve (AUC). Data analysis was per-
formed using R software (cran.r-project.org).

Results
Patients characteristics at ICU admission
From February 29, 2020 to June 11, 2020 a total of 2,022 
critically ill patients from 63 ICUs were enrolled in the 
present analysis. Forty percent of ICUs belonged to hos-
pitals with more than 500 beds, 40% to hospitals between 
200 and 500 beds and the remaining 20 percent to hos-
pitals with fewer than 200 beds. To determine if a sig-
nificant inter-hospital variation is present, multilevel 
conditional logistic modelling with patients nested in 
hospital to characterize hospital-level variation of ICU 
mortality was done. According to intraclass correlation 
coefficient (ICC) obtained 0.04 when considering all hos-
pital (n = 63) and of 0.04 when excluded hospitals that 
submitted data on few than 10 patients, no significant 
inter-hospital variation was observed (Additional file  1: 
e-Fig. 2,  p. 7).

The median (IRQ) age was 64 (55–71) years, and 1,423 
(70.3%) were men. The median of time between the onset 
of symptoms and diagnosis was 7 (4–9) days. A total of 
1,467 (72.6%) patients had at least one coexisting comor-
bidity. Arterial hypertension (936 [46.7%]), obesity (655 
[32.4%]) and diabetes mellitus (420 [20.7%]) were the 
most frequently comorbid conditions reported. The 
severity of illness was high according to the APACHE 
II (14; IQR 11–18) and SOFA (5.7; IQR 4–7.3) scores. 
The PaO2/FiO2 ratio on the day of ICU admission was 
132(IQR 96–163) and 1131 (55·9%) patients meet criteria 
of severe and 198(9·8%) of mild acute distress respiratory 
syndrome (ADRS) profile at ICU admission, 1174 (58.0%) 
patients required invasive mechanical ventilation (MV), 
906 (44.8%) developed shock and 580 (28.7%) meet crite-
ria of acute kidney injury (AKI). The overall ICU length 
of stay (LOS) was 14 (8–26) days and similar for survi-
vors (14 [8–27]) days and non-survivors (14 [8–24]) days 
(p = 0.10).

The most frequent prescribed co-adjuvant treatments 
for COVID-19-related infection were hydroxychlo-
roquine (1866 [92.3%]) and lopinavir/ritonavir (1662 
[82.2%]). Empiric antibiotic treatment was administered 
in 1818 (89.9%) of the patients and intravenous corticos-
teroids in 1174 (58.6%). Further clinical characteristics of 
patients and laboratory finding are shown in Additional 
file 1: e-Table 3, p. 8.

ICU mortality
Overall, 660 patients (32.6%) died. The crude ICU mor-
tality increased significantly with the increase in prede-
fined age cut-off and was greater than 80% in patients 
over 80 years old (Additional file 1: p. 7). Age, male sex, 
severity of illness (APACHE II and SOFA), presence of 
arterial hypertension, diabetes, coronary arterial disease, 
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chronic obstructive pulmonary disease (COPD), chronic 
kidney disease (CKD), immunosuppression and hemato-
logic disease markers were significantly higher in ‘non-
survivor’ patients. Non- survivor patients compared 
with those that survived had higher levels of D-Lactate 
dehydrogenase (LDH), white blood cells, serum creati-
nine, C-reactive protein (CRP), Procalcitonin (PCT), 
serum lactate, serum D-dimer and serum ferritin. Non-
survivor patients developed more frequent complica-
tions such as shock, kidney and myocardial dysfunction 
at ICU admission. High Flow Nasal Cannula (HFNC) was 
more frequent in survivors, while invasive mechanical 
ventilation (MV) was more common in non-survivors. 
Mortality for those who received MV during their ICU 
stay (n = 1554; 76.8%) was 37.3% (n = 580) higher than 
observed in patients who did not require MV 17.0% 
(80/468, p < 0.001). Complete characteristics of patients 
according outcome are shown in Table 1.

Unsupervised analysis (cluster) to determine different 
phenotypes in critically ill patients
Once the variables were categorized, 5 patients (0.24%) 
were excluded for outlier’s data, and the analysis was 
performed with 2,017 patients. Of the 50 variables con-
sidered, only 25 were considered as predictors according 
to the IV (Additional file 1: p. 11) and were included in 
the model. Remarkably, no treatment option was a pre-
dictive factor for ICU-mortality. The categorized vari-
ables independently associated with ICU-mortality are 
shown in Additional file 1: p. 12. The performance of the 
model was adequate with an accuracy of 0.77, sensitiv-
ity of 0.88, specificity of 0.54 and AUC of 0.82. Accord-
ing to the Podani’s distance and the Shilouette and 
PAM plots (Additional file  1: p. 13) the optimal num-
ber of clusters in our dataset was 3. Cluster A included 
537 patients (26.7%), cluster B included 623 (30.8%) and 
cluster C included 857 patients (42.5%). The clusters in 

A: Covid-19 MILD
• <65 years
• APACHE II <15
• SOFA <5
• LDH <500
• D Dimer <1000
• Ferritin <1500 
• No hypertension
• No shock 
• No AKI 
• No myocardial dys. 

C: Covid-19 SEVERE
• >65 years
• APACHE II >15
• SOFA >5
• LDH >500
• D Dimer >2000
• Ferritin >1800 
• Hypertension
• Shock 
• AKI 
• Myocardial dys. 

B: Covid-19 MODERATE
• <65 years
• APACHE II <15
• SOFA <5
• LDH <500
• D Dimer <1500
• Ferritin <1500 
• No hypertension
• Shock 
• No AKI 
• No myocardial dys. 

Clustering type
A phenotype

B phenotype

C phenotype

Fig. 2  Phenotype clinical characterization (APACHE II Acute Physiology and Chronic Health Evaluation II, SOFA Sequential Organ Failure Assessment, 
LDH D-Lactate dehydrogenase, U/L, AKI Acute Kidney injury)
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Table 1  Characteristics of 2022 patients according ICU outcome

Variablea,l Survival No survival p value

General characteristics and severity of illness

No. of patients (%) 1362 (67.4) 660 (32.6)

Age, median (IQR), y 61 (53–69) 69 (63–74) .001

Male, No. (%) 939 (68.9) 484 (79.8) .001

APACHE IIb, median (IQR) 13 (10–17) 17 (12–21) .001

SOFAc, median (IQR) 5 (3–7) 7 (5–8) .001

Laboratory findings

D-Lactate dehydrogenase, median (IQR), U/L 507 (397–667) 600 (475–808) .001

White blood cell, median (IQR), × 109 8.4 (6.1) 9.7 (6.6–13.6) .001

Serum Creatinine, median (IQR), mg/dL 0.8 (0.6–1.0) 0.9 (0.7–1.3) .001

C-Reactive Protein, median (IQR) mg/mL 15 (8.7–23.5) 17 (10.2–26.4) .001

Procalcitonin, median (IQR),ng/mL 0.3 (0.1–0.7) 0.5 (0.2–1.4) .001

Serum lactate, median (IQR) mmol/L 1.4 (1.1–1.9) 1.7 (1.3–2.4) .001

D dimer, median (IQR), ng/mL 1280 (634–2900) 2230 (1000–5190) .001

Ferritin median (IQR), ng/mL 1530 (1200–2000) 1900 (145–2500) .001

Treatments

Corticosteroids, No. (%) 777 (57.0) 397 (65.5) .20

Antibiotics, No. (%) 1223 (89.8) 595 (98.1) .86

Lopinavir/ritonavir, No. (%) 1111 (81.6) 551 (90.9) .32

Hydroxychloroquine, No. (%) 1268 (93.1) 598 (98.6) .06

Tocilizumab, No. (%) 407 (29.9) 170 (28.0) .06

Interferon β, No. (%) 456 (33.5) 259 (42.7) .01

Coexisting condition and Comorbidities

Arterial hypertension, No. (%) 561 (41.2) 375 (61.9) .001

Obesityd, No. (%) 431 (31.6) 224 (37.0) .32

Diabetes, No. (%) 245 (17.9) 175 (28.8) .001

Coronary arterial disease, No. (%) 58 (4.2) 66 (10.9) .001

COPD, No. (%) 74 (5.4) 74 (12.2) .001

Chronic renal diseasee, No. (%) 42 (3.0) 43 (7.0) .001

Hematologic diseasef, No. (%) 36 (2.6) 37 (6.1) .001

Asthma, No. (%) 83 (6.0) 38 (6.3) .84

HIV, No. (%) 4 (0.3) 1 (0.1) .89

Pregnancy, No. (%) 4 (0.3) 0 (0.0) .38

Autoimmune disease, No. (%) 48 (3.5) 26 (4.3) .73

Chronic heart diseaseg, No. (%) 34 (2.5) 23 (3.8) .26

Neuromuscular disease, No. (%) 7 (0.5) 9 (1.5) .07

Other immunosuppressionh, No. (%) 25 (1.8) 28 (4.6) .002

Oxygenation and ventilator support

PaO2/FiO2, median(IQR), mmHg 135 (101–170) 121 (85–151) .001

PaO2/FiO2 < 150 mmHg, n (%) 814 (59.7) 475 (71.9) .01

Oxygen mask, No. (%) 235 (17.2) 93 (15.3) .08

High Flow nasal cannula, No. (%) 295 (21.6) 80 (13.2) .001

Non-invasive ventilation, No. (%) 98 (7.2) 42 (6.9) .55

Invasive mechanical ventilation, No. (%) 716 (52.2) 458 (75.5) .001

Complications

Shocki, No. (%) 539 (39.6) 367 (60.5) .001

Acute kidney dysfunctionj, No. (%) 258 (18.9) 322 (53.1) .001

Community-acquired co-infectionk, No. (%) 117 (8.6) 73 (12.0) .08

 > 2 Quadrant infiltrates in chest x-ray, No. (%) 865 (63.5) 468 (77.2) .001
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a lower dimensional space are shown in the Additional 
file  1: p. 14. The size and characteristics of the pheno-
types in the 3-class model are shown in Table 2. Patients 
with the cluster A phenotype (mild COVID-19 disease) 
had < 65  years, lower severity of illness, fewer abnormal 
laboratory values and less development of complications, 
with a crude ICU mortality of 20.3%; those with the clus-
ter B phenotype (moderate COVID-19 disease) had simi-
lar characteristics as seen in the A phenotype but were 
more likely to present shock at ICU admission with a 
crude ICU-mortality of 25.5%. Patients with the cluster 
C phenotype (severe COVID-19 disease) had > 65 years, 
a high level of severity of illness, more likely to have ele-
vated measures of inflammation (e.g. D dimer, LDH and 
ferritin), high frequency of shock, AKI and myocardial 
dysfunction, with a crude ICU mortality of 45.4%. The 
clinical characterization of each observed phenotype can 
be seen in Fig. 2. By including these important variables 
in a regression model for each cluster, we observed that 
the discrimination of each model was higher than general 
model except for C phenotype (Table  3). The Variables 
independently associated with mortality were different 
between automatic and cluster models (Table 4 and Fig. 3 
A-B).

Construction of the ICU Mortality classic multivariate 
model
Of the 42 variables measured at ICU admission, 25 vari-
ables that were statistically significant in the univariate 
analysis (Table 1) were included in the model. The initial 

dataset of patients was randomly split in two subgroups 
“Training group” with 1,618 patients (80%) and “Test 
group” with 404 patients (20%). The characteristics of 
patients included into each subgroup are shown in Addi-
tional file 1: e-Table 3, p. 8. No significant differences were 
observed between the subgroups. Inclusion of these 25 
variables in a GLM model for the training group, resulted 
in 10 variables that were independently associated 
with ICU mortality (Fig.  4). No presence of collinearity 
between explanatory variables was observed (Additional 
file 1: p. 11) and the Hosmer–Lemeshow Goodness-of-fit 
test (X-squared = 5.53, df = 8, p-value = 0.69) established 
no discrepancy between the observed values and those 
that would have been expected in the model. The valida-
tion of the classic model in the test group demonstrated 
adequate performance with an accuracy of 0.78, a pre-
cision test of 0.73, sensitivity of 0.88, specificity of 0.45 
and an AUC ROC of 0.82 (95%CI 0.78–0.86) (Additional 
file  1: p. 10). Performance of classic model was similar 
than automatic model (Table  3), however, the variables 
included in each model were different (Fig. 4 and Addi-
tional file 1: e-Fig. 9, p. 16).

Discussion
The main finding of our study is that among patients 
with COVID-19, 3 clinical phenotypes were derived 
using habitual clinical and laboratory variables at ICU 
admission. The ability of identifying phenotypes using 
a small set of variables is a crucial step towards clinical 
application and has important implications for possible 

IQR interquartile range, APACHE II Acute Physiology and Chronic Health Evaluation II, SOFA Sequential Organ Failure Assessment, BMI body mass index, COPD Chronic 
obstructive pulmonary disease, HIV human immunodeficiency viruses, PaO2/FiO2 Partial pressure arterial oxygen/fraction of inspired oxygen
a  Corresponds to minimum or maximum value, as appropriate, within 12 h of ICU admission. The variables in this Table were no transformed for your comparison
b  APACHE II score to the severity of illness, the score is obtained by adding the following components (1) 12 clinical and laboratory variables each with a score range 
of 0 to 4 points (APS). The APS is determined from the worst physiologic values during the initial 24 h after ICU admission, (2) age with a range 0 to 6 points and (3) 
Chronic health points if the patients has history of severe organ system insufficiency or is immunocompromised assign 5 points if the patients is no operative or 
emergency postoperative and 2 points for elective postoperative patients with a total score range of 0 to 71
c  SOFA score corresponds to the severity of organ dysfunction, reflecting six organ systems each with a score range of 0 to 4 points (cardiovascular, hepatic, 
hematologic, respiratory, neurological, renal), with a total score range of 0 to 24
d  Defined as a body mass index (calculated as weight in kilograms divided by height in meters squared) of 30 or greater
e  Baseline eGFR < 60 on at least two consecutive values at least 12 weeks apart prior or hemodialysis
f  Included acute leukemia, myelodysplastic syndrome andLymphomas
g  According to the New York Heart Association (NYHA) Functional Classification III and IV
h  Included Chronic corticosteroid treatment (> 20 mg prednisolone/day or equivalent dose), chemotherapy or therapy with biological agents
I  Defined as patients in whom adequate fluid resuscitation therapy are unable to restore hemodynamic stability and need any dose of vasopressor drugs
j  Define as an abrupt and sustained (more than 24 h) decrease in kidney function and categorized according to RIFLE criteria
k  Was considered in patients with confirmation of SARS-CoV-2 infection showing recurrence of fever, increase in cough and production of purulent sputum plus 
positive bacterial/fungal respiratory or blood cultures at ICU admission
l  Kruskal-Wallis, ANOVA, or chi-square p value as appropriate comparing survivors vs. non-survivors

Table 1  (continued)

Variablea,l Survival No survival p value

Cardiac dysfunction, No. (%) 73 (5.3) 96 (15.8) .001



Page 8 of 15Rodríguez et al. Crit Care           (2021) 25:63 

Table 2  Characteristics of 2017 critically ill patients included in machine learning analysis according to overall or cluster 
(phenotype) population

Variablea Overall
n = 2017

Cluster C (severe)
n = 857

Cluster B (moderate)
n = 623

Cluster A (mild)
n = 537

General characteristics and severity of illness

Age, mean (IQR), years 64 (55–71) 66 (58–72) 63 (53.5–71.5) 63  (53–70)***

Male, n (%) 1419 (70.3) 626 (73.0) 416 (66.8) 377 (70.2)*

APACHE II, mean (IQR)b 13 (10–17) 17 (14–22) 13 (10–16) 12 (9–16)***

SOFA, mean (IQR)c 5 (3.7) 7 (6–8) 5 (3–7) 4 (3–5)***

Laboratory findings

D-Lactate dehydrogenase, mean (IQR), U/L 537 (417–707) 670 (554–929) 477 (378–570) 474 (372–564)***

White blood cell, mean (IQR), × 109 8.8 (6.2–12.2) 10 (6.9–13.6) 8.5 (6–11.7) 7.7 (5.8–10.2)***

Serum Creatinine, mean (IQR), mg/dL 0.88 (0.7–1.1) 0.99 (0.76–1.36) 0.80 (0.66–1.00) 0.80 (0.66–1.01)***

C-Reactive Protein, mean (IQR), mg/mL 15.5 (9.1–24.3) 18 (10–26) 14 (9–22) 14 (8–2)***

Procalcitonin, mean (IQR), ng/mL 0.3 (0.1–2.0) 0.5 (0.2–1.3) 0.2 (0.1–0.5) 0.2 (0.1–0.6)***

Serum lactate, mean (IQR), mmol/L 1.5 (1.1–2.0) 1.6 (1.2–2.2) 1.4 (1.0–1.9) 1.5 (1.1–1.9)***

D dimer, mean (IQR), ng/mL 1593 (720–3790) 2260 (1009–4894) 1319 (634–3548) 1090 (580–2100)***

Ferritin, mean (IQR), ng/mL 1600 (1290–2240) 1800 (1416–2377) 1554 (1271–1936) 1538 (1280–1899)***

Treatments

Corticosteroids, n (%) 1171 (58.0) 535 (62.4) 338 (54.3) 298 (55.5)**

Antibiotics,  n (%) 1814 (89.9) 780 (91.0) 573 (92.0) 461 (85.8)***

Lopinavir/ritonavir,  n (%) 1696 (84.0) 698 (81.4) 508 (81.5) 452 (84.2)

Hydroxychloroquine,  n (%) 1861 (92.3) 805 (93.9) 566 (90.0) 490 (91.2)

Tocilizumab,  n (%) 573 (28.4) 234 (27.3) 211 (33.9) 128 (23.8)***

Interferon β,  n (%) 713 (35.3) 301 (35.1) 224 (36.0) 188 (35.0)

Coexisting condition and Comorbidities

Arterial hypertension,  n (%) 932 (46.2) 548 (63.9) 173 (27.8) 211 (39.3)***

Obesity (BMI > 30),  n (%) d 653 (32.3) 294 (34.3) 200 (32.1) 159 (29.6)

Diabetes,  n (%) 418 (20.7) 198 (23.1) 108 (17.3) 112 (20.9)*

Coronary arterial disease,  n (%) 124 (6.1) 48 (5.6) 41 (6.6) 35 (6.5)

COPD,  n (%) 148 (7.3) 73 (8.5) 38 (6.1) 37 (6.9)

Chronic renal disease,  n (%) e 85 (4.2) 44 (5.1) 10 (1.6) 31 (5.8)***

Hematologic disease,  n (%) 72 (3.5) 30 (3.5) 22 (3.5) 20 (3.7)

Asthma,  n (%) 120 (5.9) 34 (4.0) 45 (7.2) 41 (7.6)**

HIV,  n (%) 5 (0.2) 2 (0.2) 1 (0.2) 2 (0.4)

Pregnancy,  n (%) 4 (0.19) 0 (0.0) 3 (0.5) 1 (0.2)

Autoimmune disease,  n (%) f 74 (3.6) 36 (4.2) 18 (2.9) 20 (3.7)

Chronic heart disease,  n (%) g 57 (2.8) 26 (3.0) 10 (1.6) 21 (3.9)

Neuromuscular disease,  n (%) 16 (0.8) 8 (0.9) 5 (0.8) 3 (0.6)

Oxygenation and ventilator support

Oxygen mask,  n (%) 325 (16.1) 96 (11.2) 105 (16.9) 124 (23.1)***

High Flow nasal cannula,  n (%) 375 (18.6) 27 (3.2) 3 (0.5) 345 (64.2)***

Non-invasive ventilation,  n (%) 140 (6.9) 50 (5.8) 26 (4.2) 64 (11.9)***

Invasive mechanical ventilation,  n (%) 1172 (58.1) 694 (81.0) 475 (76.2) 3 (0.6)***

PaO2/FiO2, mean (IQR) 132 (96–163) 126 (88–155) 165 (144–212) 111 (82–133)***

Complications

Shock,  n (%) h 904 (44.8) 652 (76.1) 196 (31.5) 56 (10.4)

Acute kidney dysfunction,  n (%) i 579 (28.7) 350 (40.8) 118 (18.9) 111 (20.7)***

Myocardial dysfunction,  n (%) j 169 (8.3) 96 (11.2) 43 (6.9) 30 (5.6)***

 > 2 Quadrant infiltrates in chest x-ray,  n (%) 1327 (65.7) 573 (66.8) 413 (66.3) 341 (63.5)

ICU crude mortality,  n (%) 657 (32.6) 389 (45.4) 159 (25.5) 109 (20.3)***
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differential treatment guided by phenotypes and vali-
dated prognostic scoring systems [18, 19].

Our C phenotype was associated with more than 
double the ICU mortality than each of the remaining 
two phenotypes. This C phenotype was characterized 
by the interplay of older age (> 65  year), a high severity 
(APACHE II > 15 and SOFA > 5), greater burden of risk 
factors (hematologic disease and coronary disease) and 
a higher likelihood of developing further complications 
(shock and AKI).

Previous studies have implemented clustering tech-
niques to analyze various data sources relating to demo-
graphic, geographic, environment, and socioeconomic 
determinants of health and disease. There are studies 
that have evaluated treatment decisions and character-
ized clinical phenotypes associated with complications, 
ICU admission and mortality risk in critically ill COVID-
19 patients. According to the Situation Report & Public 
Health Guidance published by Johns Hopkins Univer-
sity on March 19th, 2020, people over 60 and those with 
chronic health conditions are at the highest risk for 
COVID-19 complications [20]. To our knowledge, this is 

the first study with a high number of critically ill patients 
to analyze the presence of phenotypes in patients with 
SARS-CoV-2 infection. This multicenter cohort study of 
2,022 critically ill patients found that 660 patients (32.6%) 
died at ICU discharge. Our ICU mortality rates was sig-
nificantly lower as reported in Yang et al. [4] in Wuhan, 
China (61.5%), by Myers et  al. [7] in California, USA 
(50.0%), by Arentz et  al. [6] in Washington, USA (67%) 
and by Richardson et al. [5] in New York, USA (78%), but 
slightly higher to reported by Grasselli et al. [8] in Lom-
bardy region, Italy (26%). These observed differences in 
ICU mortality could respond to different healthcare 
models and important practice variations in the manage-
ment of severe COVID-19 patients [11], but it can also 
depend on the frequency of presentation of the different 
phenotypes.

In our study, a great variability in model performance 
and risk factors were observed during cross-validation 
to choose the best model to use. In addition, we use 2 
different techniques for the selection of important vari-
ables, one of them is the “classic” approach dependent 
on the p-value, while the other, a “modern” statistical 

Table 2  (continued)
IQR interquartile range, APACHE II Acute Physiology and Chronic Health Evaluation II, SOFA Sequential Organ Failure Assessment, BMI body mass index, COPD Chronic 
obstructive pulmonary disease, HIV human immunodeficiency viruses, PaO2/FiO2 Partial pressure arterial oxygen/ fraction of inspired oxygen
a  Corresponds to minimum or maximum value, as appropriate, within 12 h of ICU admission. The variables in this Table were no transformed for your comparison
b  APACHE II score to the severity of illness, the score is obtained by adding the following components (1) 12 clinical and laboratory variables each with a score range 
of 0 to 4 points (APS). The APS is determined from the worst physiologic values during the initial 24 h after ICU admission, (2) age with a range 0 to 6 points and (3) 
Chronic health points if the patients has history of severe organ system insufficiency or is immunocompromised assign 5 points if the patients is no operative or 
emergency postoperative and 2 points for elective postoperative patients with a total score range of 0 to 71
c  SOFA score corresponds to the severity of organ dysfunction, reflecting six organ systems each with a score range of 0 to 4 points (cardiovascular, hepatic, 
hematologic, respiratory, neurological, renal), with a total score range of 0 to 24
d  Defined as a body mass index (calculated as weight in kilograms divided by height in meters squared) of 30 or greater
e  Baseline eGFR < 60 on at least two consecutive values at least 12 weeks apart prior or hemodialysis
f  Included acute leukemia, myelodysplastic syndrome and Lymphomas
g  According to the New York Heart Association (NYHA) Functional Classification III and IV
h  Defined as patients in whom adequate fluid resuscitation therapy are unable to restore hemodynamic stability and need any dose of vasopressor drugs
i  Define as an abrupt and sustained (more than 24 h) decrease in kidney function and categorized according to RIFLE criteria
j  Define as an acute decrease in ejection fraction (EF) with dilatation of ventricles observed in echocardiography upon ICU admission

All comparison between clusters. *p < .05; **p < .01; ***p < .001, others comparison p > .01

Table 3  Performance of  global and  clustering models (GLM model: generalized linear models with  variables according 
ICU mortality table; Global model: GLM model with important variables according to information value analysis for ICU 
mortality; A, B and C Phenotypes: GLM models with important variables according to information value analysis for each 
cluster)

Variable Classic model Automatic model A Phenotype B phenotype C phenotype

No. patients 2022 2017 537 623 857

Variables included 25 25 26 19 18

Accuracy 0.78 0.77 0.86 0.80 0.72

Sensitivity 0.88 0.88 0.94 0.92 0.71

Specificity 0.45 0.54 0.55 0.47 0.73

AUC ROC 0.83 0.83 0.90 0.85 0.79
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approaches, is more in line with the new recommenda-
tions [21]. Although the performance of the models was 
similar, the variables included in each of them are differ-
ent. This could be related to the presence of a very het-
erogeneous patient population, which is revealed during 
random partitioning (80%/20%) validation of each model 
or by implementing 2 variable selection techniques. In 
this context, three clinical phenotypes of COVID-19 
patients were derived using routinely available clinical 
data at ICU admission by an unsupervised cluster analy-
sis. The phenotypes were multidimensional, differed in 
their demographics, laboratory abnormalities, patterns of 
organ dysfunction, and associated with ICU mortality. In 

addition, our phenotypes are not similar with groupings 
or phenotypes of patients performed so far considering 
only the presence of clinical complications [22, 23], or 
the type of ARDS  [24]. Our COVID-19 phenotypes can 
be identified at the time of the ICU admission, and thus 
could be useful in facilitating early tailored therapy and 
improve prognosis.

Only routinely available clinical and laboratory data 
were used in the clustering models, and the phenotypes 
were derived from a large observational multicenter 
cohort to ensure generalizability. Importantly, we have 
observed that the variables associated with the ICU mor-
tality varied between the global model and the models 

Table 4  Factors independently associated with  ICU mortality in  automatic and  clustering models (automatic model: 
generalized linear model [GLM] with important variables according to information value analysis for ICU mortality; A, B 
and C Phenotypes: GLM models with important variables according to information value analysis for each cluster)

OR Odds ratio, CI Confidence interval, APACHE II Acute Physiology and Chronic Health Evaluation II, SOFA Sequential Organ Failure Assessment, COPD Chronic 
obstructive pulmonary disease, LDH D-Lactate dehydrogenase, PCT Procalcitonin, GAP-UCI Time in days from symptoms onset and ICU admission, PaO2/FiO2 Partial 
pressure arterial oxygen/fraction of inspired oxygen, AKI acute kidney injury
a  Corresponds to categorized variables independently associated with ICU mortality

Automatic model A phenotype B phenotype C phenotype

Variablesa OR (95%CI) Variablesa OR (95%CI) Variablesa OR (95%CI) Variablesa OR (95%CI)

Age 56–66y 2.39 (1.68–3.41) Age > 61y 4.37 (2.16–9.31) Age 58–66 y 2.79 (1.40–5.76) Age 56–73y 2.22 (1.42–3.07)

Age > 66–73y 3.51 (2.44–5.08) Age > 66 y 5.75 (3.10–11.1) Age 74–78y 3.79 (2.14–6.79)

Age > 73 5.97 (4.05–8.82) Age > 78y 21.6 (6.58–99.8)

APACHE II 15–19 1.88 (1.36–2.63) APACHE II > 14 2.21 (1.20–4.10) APACHEII > 16 1.84 (1.21–2.80)

APACHE II > 19 1.67 (1.15–2.45)

SOFA 3–7 1.57 (1.09–2.27) SOFA > 4 2.20 (1.19–4.10)

SOFA 7–8 1.66 (1.03–2.67)

SOFA > 8 1.70 (1.05–2.77)

COPD 1.50 (1.01–2.24) COPD 2.30 (1.03–5.10)

 > 3 infiltrates 1.72 (1.02–1.90) No infiltrates 0.15 (0.02–0.74)

LDH > 500 U/L 1.30 (1.02–1.66) LDH > 800 U/L 2.66 (1.22–5.84) LDH > 500 U/L 1.56 (1.03–2.38)

PCT > 0.45 ng/mL 1.36 (1.01–1.86)

Lactate > 2.2 mmol/L 1.78 (1.34–2.37) Lactate 1–1.7 mmol/L 3.13 (1.14–10.2) Lactate > 2.0 mmol/L 1.90 (1.34–2.87)

Lactate > 1.7 mmol/L 4.04 (1.45–13.4)

D Dimer > 4000 ng/
mL

1.44 (1.10–1.89) D Dimer > 2000 ng/
mL

2.46 (1.23–4.94) D Dimer < 300 ng/mL 0.07 (0.01–0.33) D Dimer > 3000 ng/
mL

1.46 (1.04–2.05)

Ferritin 1700–
3350 ng/mL

1.65 (1.28–2.12) Ferritin > 1600 ng/mL 2.23 (1.154.36) Ferritin > 3000 ng/mL 2.09 (1.06–4.21)

Ferritin > 3350 3.24 (1.82–5.84)

PaO2/FiO2 > 140 0.65 (0.50–0.84) PaO2/FiO2 > 150 0.60 (0.40–0.88)

GAP-UCI > 8 days 1.61 (1.00–2.60) GAP-UCI > 8 days 3.97 (1.81–9.4)

AKI 2.53 (1.94–3.32) AKI 3.41 (1.72–6.84) AKI 2.11 (1.22–3.64) AKI 2.05 (1.45–2.91)

Hydroxychloroquine 0.33 (0.12–0.87)

Myocardial dysfunc‑
tion

3.16 (1.14–8.78)

Hematologic Dis 3.01 (1.22–7.97)

Coronary Dis 2.71 (1.25–6.27)
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developed for each phenotype. The discrimination power 
(AUC) of A and B phenotypes models improved in com-
parison to the global model. However, for the C pheno-
type (severe COVID-19 disease), the performance of the 
model was not superior respect of the global model. The 
C phenotype was most strongly correlated with abnormal 
values of biomarkers as well as clinical features of cardio-
vascular dysfunction, AKI and subsequently a higher ICU 
mortality. Although the AUC for C phenotype is lower, 
the relationship between sensitivity and specificity in C 
phenotype model might be more appropriate. Specific-
ity can sometimes be more important than sensitivity, 
because confirming that a person does not have the event 

under study (survival) is more important than detecting 
if a person has it.

Recently, several authors have proposed different clini-
cal phenotypes of COVID-19 patients [22–24]. Rello 
et al. [22] speculated that COVID-19 has five phenotypic 
presentations based on physiological and clinical features 
from published studies. Garcia-Vidal et al. [23] describe 
the main clinical complications of hospitalized patients 
with COVID-19 through classification into three pat-
tern groups (inflammatory, co-infection and thrombotic). 
However, as the authors acknowledge, the cut-off points 
of the different biomarkers for defining phenotypes 
have been arbitrary and not scientifically supported. 
Finally, Gattinoni et  al. [24] proposing two phenotypes 

A phenotype B phenotype C phenotype

a

b

Fig. 3  a Chord diagrams showing abnormal clinical variables by phenotype. A: mild COVID-19 disease; B: moderate COVID-19 disease and C: severe 
COVID-19 disease. b Chord diagrams showing abnormal clinical variables by Phenotype differentiating survivors (green) from non-survivors (red) 
(APACHE II Acute Physiology and Chronic Health Evaluation II, SOFA Sequential Organ Failure Assessment, PCT Procalcitonin, > 3 chest X-ray more 
than 3 quadrants infiltrates in the chest X-ray, Miocard Dys Myocardial dysfunction, Hydroxichloroq. Hydroxychloroquine, GAP antiviral Time in days 
from onset of symptoms to first dose of antiviral, DD D dimer, AKI Acute Kidney injury, LDH D-Lactate dehydrogenase, U/L, COPD Chronic Pulmonary 
Obstructive Disease, Pa/Fi Partial pressure arterial oxygen/fraction of inspired oxygen, Hemat. Dis Hematologic disease, GAP_UCI Time in days from 
Hospital to ICU admission, Coronary dis. Coronary disease)
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for COVID-19 patients, (1) “Type L” characterized by 
high compliance and low lung recruitablity and (2) “Type 
H” with low compliance and high lung recruitability as 
a two “extremes” of a spectrum of respiratory failure in 
COVID-19 pneumonia. Despite the importance related 
to clinical experience in each of these approaches, none 
of these studies have been developed through a machine 
learning process to determine phenotypes nor have they 
been tested for validation.

Hypoxemia has been proposed as a marker of sever-
ity for the differentiation of phenotypes [22, 24]. In our 
study, the PaO2/FiO2 relationship at ICU admission was 
an independent risk factor for ICU mortality in overall 
multivariate analysis (as a continuous or dichotomized 
variable), but was only closely associated with ICU mor-
tality in phenotype C. Other variables such as advanced 
age, serum D-dimer values and the development of AKI 
were variables more strongly related to ICU mortality in 
all subgroups or phenotypes analyzed than PaO2/FiO2 at 
ICU admission.

Our results should be interpreted in the context of 
the study limitations. First, although phenotypes were 
found to be generalizable in our population, risk factors 
and characteristics of clinical phenotypes were derived 
initially from data at ICU admission of multicenter 

observational study in Spain. However, these risk fac-
tors are similar to those that have been reported by other 
investigators [4–8]. The cross-validation carried out and 
the high discrimination observed for each of the models 
built for phenotypes, suggests their applicability to other 
populations, but it should be examined considering the 
high variability observed in patients with COVID-19 and 
in the support measures applied. Second, because miss-
ing data were common for some variables included in 
the clustering models, multiple imputation was used in 
the primary analysis. However, variables with high miss-
ing values were excluded and the missing threshold used 
was reported elsewhere [18]. Third, only routinely avail-
able clinical data at ICU admission were used to identify 
risk factors and clinical phenotypes, and the inclusion 
of other data related to clinical evolution of patients in 
the ICU could change risk factors or phenotype assign-
ments. However, our objective was to study early risk fac-
tors and phenotypes at ICU admission that may allow for 
early treatment implementation and as a result improve 
patient outcome. Fourth, although IL-6 is an excellent 
severity biomarker, we have not been able to include 
this biomarker in the models because more than 50% of 
patients had no IL-6 determination upon ICU admis-
sion. Although the inclusion of IL-6 in models could 

OR=1.07(1.01-1.13)

OR=1.02(1.01-1.05)

OR=0.99(0.98-0.998)

OR=1.72(1.14-2.59)

OR=1.00(1.00-1.01)

OR=1.67(1.25-2.25)

OR=2.05(1.13-3.71)

OR=2.36(1.80-3.09)

OR=1.05(1.03-1.06)

OR=1.31(1.01-1.70)

Fig. 4  Variables independently associated with ICU mortality in multivariable analysis (GLM: generalized linear model). Data are show as OR (odds 
ratio) and 95% Confidence interval (SOFA Sequential organ failure assessment, PCT Procalcitonin, PaO2/FiO2 Partial pressure arterial oxygen/fraction 
of inspired oxygen, Dysf Dysfunction, LDH D-Lactate dehydrogenase, MV Mechanical ventilation, AKI Acute Kidney injury, > 2 infiltrates  > 2 infiltrates 
in chest-X ray)
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modify or improve their performance, we do not con-
sider it appropriate to impute a large number of missing 
data. In addition, if IL-6 is a biomarker not usually avail-
able its inclusion in the models would not have practical 
application. Finally, we did not collect data on ethnicity 
or socioeconomic factors. These factors may play a role 
in the prevalence of pre-existing comorbidities and mor-
tality due to COVID-19. Our findings should be inter-
preted within the context of the study population and 
its generalizability to other populations warrant further 
investigation.

Conclusion
To our knowledge this is the largest study that describe 
different phenotypes of patients with confirmed COVID-
19 that were admitted to ICU to date. We not only char-
acterized three novel clinical phenotypes, but extended 
findings outside of a single site ICU by characterizing 
the association of comorbidities with clinical phenotype 
and the association of clinical phenotypes with clinical 
outcomes. Different risk factors for the global population 
and clinical phenotypes were observed, possibly due to 
the heterogeneity of patients, which may limit the appli-
cation of a single predictive model for all patients with 
COVID-19. Further research is needed to determine the 
application of these phenotypes in clinical practice, in 
other patient’s population and for clinical trial design.
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