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Abstract

Background: Persistent critical illness is common in critically ill patients and is associated with vast medical
resource use and poor clinical outcomes. This study aimed to define when patients with sepsis would be stabilized
and transitioned to persistent critical illness, and whether such transition time varies between latent classes of
patients.

Methods: This was a retrospective cohort study involving sepsis patients in the eICU Collaborative Research
Database. Persistent critical illness was defined at the time when acute physiological characteristics were no longer
more predictive of in-hospital mortality (i.e., vital status at hospital discharge) than antecedent characteristics. Latent
growth mixture modeling was used to identify distinct trajectory classes by using Sequential Organ Failure
Assessment score measured during intensive care unit stay as the outcome, and persistent critical illness transition
time was explored in each latent class.

Results: The mortality was 16.7% (3828/22,868) in the study cohort. Acute physiological model was no longer more
predictive of in-hospital mortality than antecedent characteristics at 15 days after intensive care unit admission in
the overall population. Only a minority of the study subjects (n = 643, 2.8%) developed persistent critical illness, but
they accounted for 19% (15,834/83,125) and 10% (19,975/198,833) of the total intensive care unit and hospital bed-
days, respectively. Five latent classes were identified. Classes 1 and 2 showed increasing Sequential Organ Failure
Assessment score over time and transition to persistent critical illness occurred at 16 and 27 days, respectively. The
remaining classes showed a steady decline in Sequential Organ Failure Assessment scores and the transition to
persistent critical illness occurred between 6 and 8 days. Elevated urea-to-creatinine ratio was a good biochemical
signature of persistent critical illness.

Conclusions: While persistent critical illness occurred in a minority of patients with sepsis, it consumed vast
medical resources. The transition time differs substantially across latent classes, indicating that the allocation of
medical resources should be tailored to different classes of patients.
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Introduction
Due to a variety of reasons such as hospital-acquired
complications, endocrine dysregulation, unresolved inflam-
mation, and protein catabolism, a substantial number of
critically ill patients require prolonged intensive care unit
(ICU) stay [1]. The term persistent critical illness (PCI) was
coined referring to the situation when a patient’s initial

critical condition was stabilized and resolved but the patient
remained in the ICU due to a protracted recovery process.
There is currently no standardized definition for PCI, but
recently it has been suggested that it can be defined as the
time at which acute physiological variables recorded at ICU
arrival were no longer more predictive of mortality than
antecedent characteristics [2, 3]. In the seminal paper by
Iwashyna TJ and colleagues, substantial heterogeneity in
the onset of PCI between different subgroups of a mixed
ICU population—ranged from 7 to 22 days—was noted [2].
Sepsis is one of the leading causes of ICU admission,

and through a number of mechanisms, it is also one of
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the most common causes of prolonged ICU stay. For
instance, there is a large body of evidence showing
that ICU-acquired infections occurred more fre-
quently in patients with sepsis [4–6]. Sepsis is also a
risk factor for ICU-acquired weakness and delirium
[7–9]. Many of these hospital-acquired complications
may contribute to a septic patient’s prolonged ICU
stay [10–12], increasing the chance of developing PCI.
Thus, the development of PCI in patients with sepsis
is of special interests.
Although some authorities have suggested that PCI

can be defined when a patient is still in ICU over a fixed
time point such as 15 days [1], this arbitrary time point
may vary between different septic patients due to sepsis
case-mix heterogeneity by site of infection and more im-
portantly by the number, type, and combinations of
organ dysfunction [13]. Since PCI is associated with poor
clinical outcome and the care of such patients are not
cost-effective, alternative models of care (long term
acute care hospitals), and payment reform have been
considered to improve the care of these patients. Know-
ing which subgroup of patients will develop PCI can
greatly improve the risk stratification and allocation of
medical resources. More recently, biochemical signature
of PCI was investigated and it showed that the changes
in the urea-to-creatinine ratio could be a good bio-
marker for the development of PCI [14]. We hypothe-
sized that the time point for transition from acute illness
to PCI would vary significantly between different classes
of septic patients, and this would depend heavily on the
trajectories of the critical illness. In this retrospective
multicenter cohort study, we aimed to define when pa-
tients admitted to an ICU with sepsis would be stabilized
and transitioned to a state of persistent critical illness
(PCI), and whether such transition time varied between
subclasses of septic patients. The biochemical signature
of PCI was also explored.

Materials and methods
Data source
The eICU Collaborative Research Database was used
for the study. The database was a multi-center inten-
sive care unit (ICU) database for over 200,000 admis-
sions to 335 ICUs from 208 hospitals across the USA
in 2014 and 2015 [15]. The database included data
with high granularity, including vital sign measure-
ments, care plan documentation, severity of illness
measures, diagnosis information, treatment informa-
tion, and laboratory variables. The database is re-
leased under the Health Insurance Portability and
Accountability Act (HIPAA) safe harbor provision.
The re-identification risk was certified as meeting safe
harbor standards by Privacert (Cambridge, MA) (HIPAA
Certification no. 1031219-2).

Participants
Patients with a diagnosis of sepsis, recorded on the
Acute Physiology and Chronic Health Evaluation (APA-
CHE) IV dataset [16], on ICU admission were potentially
eligible. In accordance with the Sepsis-3.0 criteria, sepsis
was defined as suspected or documented infection plus
an acute increase in SOFA score greater than 2 points
[17, 18]. The cause of sepsis (i.e., site of infection) can
be grouped into categories of gastrointestinal (GI), cuta-
neous/soft tissue, pulmonary, gynecologic, renal/UTI,
unknown, and others.

Variables
Variables recorded on the day of ICU entry were cate-
gorized into acute physiological variables and ante-
cedent variables. The former included Glasgow coma
score (GCS), bilirubin, creatinine, platelet, PaO2, FiO2,
mean blood pressure, PaCO2, use of mechanical venti-
lation, urine output in 24 h, white blood cell count,
temperature, respiratory rate, sodium, pH, heart rate,
hematocrit, and plasma albumin, blood urea nitrogen
(BUN), and glucose concentrations. The antecedent
variables analyzed included age and sex. Comorbidities
including acute immunodeficiency syndrome (AIDS),
hepatic failure, lymphoma, metastatic cancer, leukemia,
immunosuppression, and cirrhosis were extracted from
the APACHE IV score. For some variables recorded
more than once within the first 24 h after ICU admis-
sion, the one associated with the highest APACHE IV
score (or acuity of illness) was employed. The Sequen-
tial Organ Failure Assessment (SOFA) score was com-
puted using laboratory data recorded from day 1 to 10
after ICU admission. The SOFA score was used as the
outcome variable in the latent growth mixture modeling
in defining subgroups of septic patients with different
trajectories after ICU admission.

Management of missing data
Variables for calculating the SOFA score were recorded
longitudinally and thus missing values were imputed by
the incorporation of polynomials of time to fit a model
to predict missing values. Intuitively, observed values
close to the time of the missing value can greatly aid im-
putation of that value, whereas the data obtained not
close to the timing of the missing data were given less
weight in the imputation model [19]. For variables that
were recorded on day 1 (cross-sectional variables), mul-
tiple imputations with the classification and regression
trees (CART) method was employed [20, 21]. Variables
with greater than 10% missing values were excluded
from analysis (Additional file 1: Figure S1). Because
many laboratory variables with missing values more than
10% (such as albumin, BUN and hematocrit) were pre-
sumed to be biochemical signature of PCI [14], they
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Table 1 baseline characteristics of hospital survivors and non-survivors

Variables Survivors (n = 19,040) Non-survivors (n = 3828) p SMD

Sex, male (%) 9653 (50.7%) 1947 (50.9%) 0.890 0.011

Age (years) 64 ± 18 70 ± 16 < 0.001 0.354

Ethnicity (%) 0.910 0.026

African American 1887 (9.9%) 395 (10.3%)

Asian 365 (1.9%) 73 (1.9%)

Caucasian 14,760 (77.5%) 2954 (77.2%)

Hispanic 757 (4.0%) 163 (4.3%)

Native American 170 (0.9%) 31 (0.8%)

Other/unknown 1101 (5.8%) 212 (5.4%)

Admission height (cm) 168.3 ± 14.3 167.8 ± 15.7 0.066 0.032

Admission weight (kg) 83.0 ± 28.5 79.0 ± 27.5 < 0.001 0.143

Source of infection (%) < 0.001 0.276

GI 2264 (11.9%) 579 (15.1%)

Cutaneous/soft tissue 1684 (8.8%) 219 (5.7%)

Gynecologic 65 (0.3%) 10 (0.3%)

Other 1192 (6.3%) 308 (8.0%)

Pulmonary 7110 (37.3%) 1641 (42.9%)

renal/UTI (including bladder) 4621 (24.3%) 591 (15.4%)

unknown 2104 (11.1%) 480 (12.5%)

Admitting source (%) < 0.001 0.226

Operating room 55 (0.3%) 4 (0.1%)

Recovery room 35 (0.2%) 4 (0.1%)

Chest pain center 3 (0.0%) 0 (0.0%)

Floor 3854 (20.2%) 1097 (28.7%)

Other ICU 131 (0.7%) 40 (1.0%)

Other hospital 377 (2.0%) 110 (2.9%)

Direct admit 1115 (5.9%) 236 (6.2%)

Emergency department 13,470 (70.7%) 2337 (61.1%)

Unit type (%) < 0.001 0.100

CCU-CTICU 1119 (5.9%) 220 (5.7%)

CSICU 312 (1.6%) 67 (1.8%)

CTICU 126 (0.7%) 36 (0.9%)

Cardiac ICU 1094 (5.7%) 253 (6.6%)

MICU 2475 (13.0%) 593 (15.5%)

Med-Surg ICU 12,836 (67.4%) 2434 (63.6%)

Neuro ICU 346 (1.8%) 87 (2.3%)

SICU 732 (3.8%) 138 (3.6%)

Use of mechanical ventilation (%) 3807 (20.0) 1641 (42.9) < 0.001 0.508

GCS (median [IQR]) 14 [10, 15] 10 [7, 14] < 0.001 0.673

Bilirubin (mg/dl) 2.21 ± 2.46 2.85 ± 3.57 < 0.001 0.210

Creatinine (mg/dl) 1.89 ± 1.81 2.39 ± 1.72 < 0.001 0.285

Platelet (×109/L) 197.15 ± 107.79 171.60 ± 113.49 < 0.001 0.231

PaO2 (mmHg) 93 ± 47 91 ± 53 0.132 0.025

Mean blood pressure (mmHg) 60 ± 16 50 ± 18 < 0.001 0.575
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were included for sensitivity analysis. Variables includ-
ing pH, PaCO2, and urine output were excluded from
regression models.

Statistical analysis
Outliers that could be regarded as an erroneous entry
would be excluded from analysis (e.g., negative value of
vital signs, age greater than 200, and urine output less
than 0). Normally distributed continuous variables were
expressed as mean and standard deviation (SD) and
compared between groups using t test or analysis of
variance. Skewed data were expressed as median and
interquartile range (IQR) and were compared using
non-parametric tests. Categorical data were expressed
as the number and percentage and were compared be-
tween groups using the chi-square or Fisher exact test
as appropriate.

Baseline variables recorded on ICU day 1 were catego-
rized into two parts as described previously: acute and
antecedent variables. Logistic regression models were
developed separately for acute and antecedent variables,
using mortality outcome as the response variable. The
predictive performances of acute and antecedent models
were evaluated from day 1 to day 28. A model evaluating
the predictive performance of acute or antecedent
variables after a certain day were fit on patients who had
stayed in the hospital after that day. Thus, a total of 28 ×
2 = 56 models were created. Each model was trained in
70% of the whole dataset, and then validated in the
remaining 30% patients by reporting the area under the
receiver operating characteristic curve (AUC). The split-
ting of the dataset into training and validation subsample
was a random process and was performed for a number
of iterations (by bootstrapping). Each iteration was

Table 1 baseline characteristics of hospital survivors and non-survivors (Continued)

Variables Survivors (n = 19,040) Non-survivors (n = 3828) p SMD

SOFA (median [IQR]) 7 [6, 9] 10 [8, 12] < 0.001 0.823

SOFA-respiratory (median [IQR]) 2 [1, 3] 2 [2, 3] < 0.001 0.420

SOFA-GSC (median [IQR]) 1 [0, 2] 2 [1, 3] < 0.001 0.668

SOFA-circulation (median [IQR]) 2 [2, 2] 2 [2, 2] < 0.001 0.159

SOFA-liver (median [IQR]) 1 [0, 2] 1 [0, 2] < 0.001 0.203

SOFA-coagulation (median [IQR]) 0 [0, 1] 0 [0, 2] < 0.001 0.351

SOFA-renal (median [IQR]) 1 [0, 2] 2 [0, 2] < 0.001 0.417

Dialysis (%) 947 (5.0%) 251 (6.6%) < 0.001 0.068

Urine output (ml/24 h) (median [IQR]) 1344 [642, 2380] 622 [176, 1232] < 0.001 0.526

WBC (×109/L) (median [IQR]) 13.10 [8.3, 18.9] 14.80 [7.8, 22.2] < 0.001 0.191

Temperature (°C) (median [IQR]) 36.6 [36.2, 36.9] 36.4 [35.8, 36.8] < 0.001 0.275

Respiratory rate (/min) (median [IQR]) 31 [14, 38] 34 [27, 41] < 0.001 0.233

Sodium (mmol/l) 137.99 ± 6.37 138.30 ± 7.58 0.007 0.045

Heart rate (/min) (median [IQR]) 112 [98, 127] 120 [103, 137] < 0.001 0.221

pH (mean ± SD) 7.36 ± 0.10 7.30 ± 0.14 < 0.001 0.537

Hematocrit (%) 31.0 ± 6.2 30.1 ± 7.0 < 0.001 0.149

Albumin (mg/dl) 2.53 ± 0.60 2.26 ± 0.62 < 0.001 0.448

PaCO2 (mmHg) 39.51 ± 12.69 39.71 ± 15.27 0.387 0.014

BUN (mg/dl) 33.24 ± 24.97 45.65 ± 28.71 < 0.001 0.461

Glucose (mg/dl) 162.80 ± 102.59 164.53 ± 111.84 0.349 0.016

AIDS (%) 53 (0.3%) 16 (0.4%) 0.202 0.024

Hepatic failure (%) 344 (1.8%) 150 (3.9%) < 0.001 0.127

Lymphoma (%) 172 (0.9%) 53 (1.4%) 0.008 0.045

Metastatic cancer (%) 567 (3.0%) 233 (6.1%) < 0.001 0.150

Leukemia (%) 255 (1.3%) 100 (2.6%) < 0.001 0.092

Immunosuppression (%) 1004 (5.3%) 297 (7.8%) < 0.001 0.101

Cirrhosis (%) 443 (2.3%) 207 (5.4%) < 0.001 0.160

Abbreviations: GI gastrointestinal, UTI urinary tract infection, ICU intensive care unit, CCU coronary care unit, CTICU cardiothoracic intensive care unit, CSICU cardiac
surgical intensive care, MICU medical ICU, SICU surgical ICU, GCS Glasgow coma scale, SOFA Sequential Organ Failure Assessment, WBC white blood cell count,
BUN blood urea nitrogen, AIDS acquired immunodeficiency syndrome, SD standard deviation, IQR interquartile range, SMD standardized mean difference
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different by having different subjects in the training and
validating subsamples. The training-validation iteration
was repeated for 100 times for each model, resulting in
100 AUC values for each model. The day on which PCI
started was defined when the AUC values of the acute
physiological variable models were not significantly
greater than the antecedent variable models. Subjects
who were still treated in ICU after the initiation of PCI
were considered to have developed PCI, similar to what
has been described in other studies [2, 3].
Latent growth mixture modeling assumes that the

population is heterogeneous and composed of several
latent classes of subjects characterized by a number
of mean profiles of trajectories [22–25]. The best
number of classes was determined by statistics such
as Akaike information criterion (AIC), Bayesian

information criteria (BIC), sample-adjusted BIC, and
entropy. A smaller AIC, BIC SABIC, and entropy
value indicated a better model fit [26]. Because a sub-
stantial number of patients are required for each class
to be robust and clinically meaningful, 500 subjects
was predefined as the minimum sample size required
for each class (Additional file 1). The R package
lcmm (version 1.7.9) was used for the latent growth
mixture modeling.
Cox hazard model with time-dependent coefficient was

employed to further test the hypothesis that the predictive
performance of acute variables would attenuate with time.
The conventional Cox proportional hazard model was
extended by allowing the coefficient to vary over time [27,
28]. For the ease of interpretation, we specified a step func-
tion for β(t), i.e., different coefficients over different time

Table 2 Statistics for choosing the best number of classes

Number of classes Log likelihood AIC BIC SABIC Entropy %class1 %class2 %class3 %class4 %class5 %class6

1 − 205,674.3 411,356.6 411,388.8 411,376.0 1.0000000 100.000000

2 − 194,289.6 388,595.2 388,659.5 388,634.1 0.7755563 21.147455 78.852545

3 −190,705.8 381,435.5 381,532.0 381,493.8 0.7120173 34.336190 58.649641 7.014168

4 −189,735.3 379,502.6 379,631.2 379,580.4 0.6440044 3.961868 44.057198 12.663985 39.31695

5 −189,328.7 378,697.3 378,858.1 378,794.5 0.5804752 22.787301 3.550813 51.670457 11.19468 10.796747

6 − 188,823.6 377,695.3 377,888.2 377,811.9 0.5931242 34.445513 7.154102 41.770159 10.10145 4.871436 1.657338

Abbreviations: AIC Akaike information criterion, BIC Bayesian information criteria, SABIC sample-adjusted information criteria

Fig. 1 Five classes of sepsis identified by trajectories of SOFA score. The shaded area indicates the 95% confidence interval for each mean
trajectory. The percentages in the parentheses indicate the percentages of patients each class accounts for. The number of classes was chosen
based on model fit statistics. While classes 1 and 2 showed increasing SOFA score across ICU course, the remaining classes showed decreasing
SOFA score. The initial SOFA scores (intercepts) were different among the five classes. Abbreviation: SOFA: Sequential Organ Failure Assessment
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intervals (0–48 h, 48–72 h, 72 h–7 days, 7–14 days, 14–21
days, and > 21 days). Two logistic regression models were
built by regressing mortality on acute and antecedent vari-
ables, respectively. Acute variables were aggregated into an
acute score reflecting the propensity to have the event con-
ditional on these acute variables. Similarly, an antecedent
score was calculated for each subject. Then both acute and
antecedent scores were entered into the Cox hazard model
with time-dependent coefficient (Additional file 1).
Clinical outcomes such as ICU and hospital length of

stay (LOS) were compared across the latent classes. Other

variables such as the day of developing PCI, percent of pa-
tients with PCI and discharge location were also compared
between latent classes. All statistical analyses were per-
formed using R (version 3.5.1). A two-tailed p value of less
than 0.05 was considered to be statistically significant.
The R code can be found at Additional file 2.

Results
Subjects and baseline characteristics
A total of 22,868 patients with sepsis were analyzed and
a total of 3828 patients (16.7%) died before hospital

Fig. 2 Comparisons of AUCs of acute and antecedent variable models in predicting hospital mortality. AUCs were calculated by splitting the
whole sample into training (70%) and validating (30%) subsamples. Regression models were trained on the training sample and validated on the
validating sample. The process iterated for 100 times for each model at each day, resulting in 2 × 100 = 200 circles at each day in the figure. The
blue circles and lines represent the acute variable models, and the red ones represent the antecedent variable models
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discharge. The baseline characteristics between survivors
and non-survivors are described in Table 1. While there
was no significant difference on sex, ethnicity, height,
and admission glucose, survivors were significantly
younger (6 4± 18 vs. 70 ± 16 years; p < 0.001), were
more likely to have renal/UTI infection (24.3% [4621/19,
040] vs. 15.4% [591/3828]; p < 0.001), had a lower SOFA
score (7 [6 to 9] vs. 10 [8 to 12]; p < 0.001), and were
with less comorbidities than the non-survivors.

Latent growth mixture modeling
Model fit statistics are shown in Table 2. The AIC, BIC,
and SABIC values declined continuously from a 1-class to
a 6-class model, with the 5-class model having the lowest
entropy. The 6-class model comprised a class with only
380 (1.66%) subjects and thus the 5-class model was con-
sidered the best fitted model. The trajectories of the 5
classes are shown in Fig. 1: class 1 (22.8%) was character-
ized by persistent low severity of illness, with a slightly in-
creasing trend; class 2 (3.55%) was characterized by
increasing severity of illness (or a lack of improvement to
treatment with a very high mortality—70%); class 3
(51.7%) was characterized by moderate initial SOFA
followed by decreasing severity of illness during the course
of ICU stay; class 4 (11.2%) was characterized by high ini-
tial SOFA and slightly decreasing course; and class 5
(10.8%) was characterized by a persistent high severity of
illness with a high mortality rate of 41.2%. Coefficients
for the five quadratic functions are shown in

Additional file 1: Table S1. The goodness-of-fit statis-
tics for the 5-class model were maximum log-
likelihood = − 189,328.67, AIC = 378,697.33, and BIC =
378,858.08.

Persistent critical illness
In the overall population, the discrimination of the acute
physiological variable model was significantly better than
the antecedent variable model between day 1 and day 15
(p < 0.001), but this was no longer true beyond day 15
(Fig. 2). Model discrimination was assessed in the testing
dataset. The AUC was 0.764 (95% CI: 0.749 to 0.776) for
the acute model versus 0.619 (95% CI 0.604 to 0.634) for
the antecedent model on day 1. However, the AUCs were
comparable for both models on day 21 (0.596 [95% CI
0.537 to 0.654] vs. 0.585 [95% CI 0.525 to 0.639], Add-
itional file 1: Table S2). A total of 643 subjects (2.8%) de-
veloped PCI, accounting for 19% (15,834/83,125) and 10%
(19,975/198,833) of the total ICU and hospital bed-days,
respectively. Despite apparent stabilization with the devel-
opment of PCI, the eventual hospital mortality rate of the
those who developed PCI (163/643, 25%) was higher than
those without PCI (3665/22,225, 16%) (p < 0.001).
For patients grouped in classes 1 and 2, transition to PCI

occurred on days 16 and 27 after ICU admission (Table 3).
Both classes 1 and 2 were characterized by increasing sever-
ity of illness in the ICU course, suggesting that the acute
condition prompting ICU admission did not resolve pre-
cipitately with treatment. Classes 3, 4, and 5 were

Table 3 Differences of outcomes across the five latent classes

Clinical outcomes Class 1
(n = 5211)

Class 2
(n = 812)

Class 3
(n = 11,816)

Class 4
(n = 2560)

Class 5
(n = 2469)

p

The day on which acute variables no longer
more predictive than antecedent variables

16 27 6 7 8

PCI, n (%) 97 (1.9%) 29 (3.6%) 831 (7.0%) 508 (19.8%) 584 (23.7%) < 0.001

Hospital discharge location (%) < 0.001

Unknown 6 (0.1%) 1 (0.1%) 17 (0.1%) 4 (0.2%) 3 (0.1%)

Death 949 (18.2%) 568 (70.0%) 796 (6.7%) 497 (19.4%) 1018 (41.2%)

Home 1986 (38.1%) 68 (8.4%) 6360 (53.8%) 897 (35.0%) 533 (21.6%)

Nursing home 83 (1.6%) 8 (1.0%) 245 (2.1%) 52 (2.0%) 40 (1.6%)

Other external 440 (8.4%) 46 (5.7%) 692 (5.9%) 211 (8.2%) 243 (9.8%)

Other hospital 335 (6.4%) 41 (5.0%) 527 (4.5%) 159 (6.2%) 151 (6.1%)

Rehabilitation 192 (3.7%) 27 (3.3%) 405 (3.4%) 112 (4.4%) 72 (2.9%)

Skilled nursing facility 1220 (23.4%) 53 (6.5%) 2774 (23.5%) 628 (24.5%) 409 (16.6%)

Unit discharge status, expired (%) 603 (11.6%) 485 (59.7%) 332 (2.8%) 277 (10.8%) 719 (29.1%)

Length of stay in ICU (days) (median [IQR]) 2 [1, 5] 4 [1, 10] 2 [1, 3] 3 [2, 6] 4 [1, 8] < 0.001

Hospital discharge status, expired (%) 949 (18.2%) 568 (70.0%) 796 (6.7%) 497 (19.4%) 1018 (41.2%) < 0.001

Length of stay in hospital (days) (median [IQR]) 7 [3, 12] 5 [2, 14] 6 [4, 9] 7 [4, 12] 7 [3, 14] < 0.001

Abbreviations: PCI persistent critical illness, ICU intensive care unit, IQR interquartile range
Note that the transition time for each trajectory class was different from that when the transition time was defined in the overall population (15 days). Such
difference in transition time lead to the observation that the patients who were defined to have PCI in the overall population may not be defined to have PCI in
the trajectory classes, and vice versa
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characterized by decreasing SOFA score and, thus, the tran-
sition to PCI started on days 6, 7, and 8, respectively which
was earlier than those in classes 1 and 2 (e.g., septic re-
sponse resolved with treatment quickly, and thus, the initial
acute physiological characteristics were no longer predictive
than antecedent characteristics within 10 days of ICU treat-
ment). The percentage of patients developing PCI varied
substantially across latent classes. While PCI was observed

only in 1.9% and 3.6% of the patients in classes 1 and 2, re-
spectively, over 20% of those in the classes 4 and 5 had PCI
(Table 3). Baseline comparisons among the 5 latent classes
showed that the antecedent variables were significantly dif-
ferent among the five classes (Additional file 1: Table S3).
Class 2 showed great burden of comorbidities such as hep-
atic failure (9.4%), leukemia (4.7%) and cirrhosis (14.3%).
Sensitivity analyses showed that the transition time for pul-
monary infection and non-surgical patients were 13 and 20
days, respectively (Additional file 1: Figure S2 and S3).
The Cox hazard regression model with time-dependent

coefficient showed that while the hazard ratio of acute
score (i.e., the model for estimating acute score is shown
in Additional file 1: Table S5) in predicting survival out-
come was greater than the antecedent score (i.e., the
model for estimating acute score is shown in Additional
file 1: Table S6) over the initial 7 days (HR [95% CI] 1.60
[1.55, 1.65] vs. 1.29 [1.16, 1.44] for the initial 2 days; 2.10
[1.95, 2.26] vs. 1.73 [1.41, 2.12] for day 3; and 2.21 [2.10,
2.33] vs. 1.93 [1.67, 2.24] for days 3 to 7), the impact of
acute score attenuated over time and was not better than
the antecedent score after 14 days (1.37 [1.23, 1.53] vs.
2.38 [1.82, 3.13] for days 14 to 21, and 1.26 [1.12, 1.42] vs.
2.32 [1.77, 3.04] for over 21 days; Table 4).

Fig. 3 Biochemical signature of PCI versus non-PCI. The result showed that CRP was not significantly different between PCI versus non-PCI
patients. Biochemical values of albumin and hemoglobin were consistently lower in the PCI group, whereas SOFA and urea-to-creatinine ratio
were greater in the PCI group. More importantly, the magnitude of difference in urea-to-creatinine ratio appeared to increase from day 1 to 10*<
0.05; **< 0.01; ***< 0.001; ****< 0.0001

Table 4 Baseline acute and antecedent variables in predicting
survival outcome in a Cox regression model with time-
dependent coefficient

Step function
of time

Acute score Antecedent score

HR (95% CI) p HR (95% CI) p

0–48 h 1.60 [1.55, 1.65] < 0.001 1.29 [1.16, 1.44] < 0.001

48–72 h 2.10 [1.95, 2.26] < 0.001 1.73 [1.41, 2.12] < 0.001

72 h–7 days 2.21 [2.10, 2.33] < 0.001 1.93 [1.67, 2.24] < 0.001

7 days–14 days 1.54 [1.45, 1.64] < 0.001 1.72 [1.45, 2.03] < 0.001

14–21 days 1.37 [1.23, 1.53] < 0.001 2.38 [1.82, 3.13] < 0.001

> 21 days 1.26 [1.12, 1.42] < 0.001 2.32 [1.77, 3.04] < 0.001

The survival model was built with time dependent coefficients. The acute and
antecedent variables were used to construct a predicting score by using
logistic regression model
Abbreviations: HR hazard ratio, CI confidence interval
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Biochemical signature of PCI
Patients with and without PCI were compared for the
difference in biochemistry. It appeared that patients
with PCI had significantly greater SOFA score than
those without PCI over the first 10 days. Albumin and
hemoglobin were significantly lower in the PCI group
versus non-PCI group. The neutrophil-to-lymphocyte
ratio was significantly greater in PCI group on days 1,
3, 4, 5, and 9. C-reactive protein (CRP) was not signifi-
cantly different across all 10 days (Fig. 3). The changes
in the urea-to-creatinine ratio were significantly
greater in the PCI group than in the non-PCI group
(Fig. 4). For example, patients with PCI showed sig-
nificantly greater increase in the urea-to-creatinine ra-
tio for day 4 (1.28 [− 4.03, 8.55] vs. 0.58 [− 5.08, 7.21];
p = 0.018) to day 10 (7.07 [− 1.34, 18.16] vs. 5 [− 3.52,
16.06]; p = 0.003) as compared to day 1 (Table 5). The
same trend of changes in urea-to-creatinine ratio was
observed in other time combinations. Patients with
PCI were more likely to be discharged to other

hospital (14% vs. 5%; p < 0.001) or rehabilitation cen-
ters (10% vs. 3%; p < 0.001) than the non-PCI group
(Additional file 1: Table S6).

Discussion
The study empirically investigated the onset time of PCI
in patients with sepsis. In the overall population, PCI
started on average at 15 days after ICU admission. While
there were only 2.8% subjects developed PCI, they
accounted for 19% and 10% of the total ICU and hospital
bed-days, respectively. The results of our study provide
evidence to support our hypothesis that the onset of PCI
varied substantially across different subgroups of septic
patients reflecting substantial variations in the trajectory
of sepsis. These results have some clinical implications
and require further discussion. First, those with a declin-
ing trend in their severity of illness after ICU admission
developed PCI at an earlier stage than those with in-
creasing severity of illness despite ICU treatment. This
finding is not surprising and confirms that a septic

Fig. 4 Heatmap showing the median changes in urea-to-creatinine ratio between different combinations of days. The row days represent the
reference days, to which the column days were compared. Lighter red indicates greater magnitude of increases in urea-to-creatinine ratio. Cells
below the diagonal is set to zero (green) because comparisons were only performed by values measured at later days minus early days
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Table 5 Comparisons of changes in urea-to-creatinine ratio in PCI versus non-PCI patients

Changes in urea-to-creatinine ratio, median (IQR) Total (n = 17,945) Non-PCI (n = 17,302) PCI (n = 643) p

Day 1 as reference

Day 2 0.1 (− 3.2, 3.49) 0.09 (− 3.22, 3.5) 0.37 (− 2.69, 3.27) 0.287

Day 3 0.3 (− 4.43, 5.48) 0.27 (− 4.45, 5.48) 0.75 (− 3.73, 5.33) 0.325

Day 4 0.64 (− 5, 7.28) 0.58 (− 5.08, 7.21) 1.28 (− 4.03, 8.55) 0.018

Day 5 1.49 (− 4.78, 9.41) 1.35 (− 4.92, 9.21) 2.8 (− 3.93, 11.27) 0.006

Day 6 2.54 (− 4.29, 11.37) 2.35 (− 4.55, 11.16) 3.99 (− 2.76, 12.64) 0.008

Day 7 3.33 (− 3.74, 12.67) 3.1 (− 4.07, 12.44) 4.58 (− 2.52, 14.04) 0.022

Day 8 4.31 (− 3.19, 14.55) 3.91 (− 3.58, 14.08) 5.9 (− 1.63, 15.77) 0.005

Day 9 5.33 (− 2.95, 16.24) 4.85 (− 3.59, 16.16) 6.87 (− 1.93, 16.53) 0.063

Day 10 5.85 (− 2.89, 16.75) 5 (− 3.52, 16.06) 7.07 (− 1.34, 18.16) 0.003

Day 2 as reference

Day 3 0.11 (− 2.96, 3.17) 0.07 (− 3.03, 3.15) 0.69 (− 2.06, 3.39) 0.007

Day 4 0.44 (− 3.99, 5.41) 0.31 (− 4.14, 5.32) 1.4 (− 2.38, 6.47) < 0.001

Day 5 1.27 (− 4.19, 7.97) 1.13 (− 4.38, 7.71) 2.56 (−2.31, 10) < 0.001

Day 6 2.14 (− 4.01, 9.96) 1.85 (− 4.36, 9.59) 3.86 (− 2.54, 11.58) < 0.001

Day 7 2.98 (− 3.61, 11.39) 2.73 (− 3.84, 11.07) 3.9 (−2.2, 13.16) 0.001

Day 8 3.98 (− 3.14, 13.21) 3.44 (− 3.79, 12.5) 5.64 (− 1.03, 14.39) < 0.001

Day 9 4.99 (− 3.21, 15.09) 4.4 (−4.02, 14.93) 6.41 (−1.14, 15.82) 0.007

Day 10 5.45 (− 2.7, 16) 4.77 (−3.62, 15.4) 6.95 (−0.55, 17.46) < 0.001

Day 3 as reference

Day 4 0.27 (− 2.64, 3.2) 0.21 (− 2.71, 3.1) 0.85 (−1.74, 4.07) < 0.001

Day 5 0.84 (− 3.26, 5.83) 0.67 (− 3.45, 5.58) 2 (− 1.83, 7.64) < 0.001

Day 6 1.62 (− 3.57, 8.23) 1.39 (− 3.85, 7.81) 2.81 (−1.81, 9.98) < 0.001

Day 7 2.41 (− 3.58, 10.23) 2.14 (− 4, 9.86) 3.52 (−1.76, 11.91) < 0.001

Day 8 3.14 (− 3.19, 11.67) 2.58 (− 3.61, 11.06) 5.17 (−1.13, 13.55) < 0.001

Day 9 4.23 (− 3.18, 13.65) 3.56 (− 4, 13.23) 5.53 (−1.1, 14.96) 0.001

Day 10 4.76 (− 2.92, 14.61) 3.91 (− 3.72, 13.65) 6.51 (−1.19, 16.23) < 0.001

Day 4 as reference

Day 5 0.55 (− 2.23, 3.64) 0.46 (− 2.36, 3.57) 1.12 (−1.37, 3.88) < 0.001

Day 6 1.25 (− 2.96, 6.24) 1.05 (− 3.21, 6.04) 2.27 (−1.52, 7.27) < 0.001

Day 7 1.95 (− 3.11, 8.29) 1.67 (− 3.42, 8.04) 2.86 (−1.97, 9.15) 0.004

Day 8 2.83 (− 2.96, 10.18) 2.44 (− 3.39, 9.8) 4.26 (−1.55, 11.39) < 0.001

Day 9 3.36 (− 3, 11.9) 2.87 (−3.54, 11.57) 4.44 (−1.54, 13.06) 0.007

Day 10 4.19 (− 3.16, 13.54) 3.38 (−3.82, 12.77) 5.71 (−1.72, 14.76) < 0.001

Day 5 as reference

Day 6 0.59 (− 2.11, 3.71) 0.47 (− 2.24, 3.63) 1.22 (− 1.36, 3.98) < 0.001

Day 7 1.06 (− 2.87, 5.96) 0.87 (− 3.13, 5.74) 2 (− 1.82, 6.69) 0.005

Day 8 1.88 (− 3.25, 8.04) 1.43 (− 3.58, 7.75) 3.11 (− 1.32, 8.47) < 0.001

Day 9 2.6 (− 3.66, 9.87) 1.93 (− 4.02, 9.57) 3.88 (− 2.27, 10.42) 0.008

Day 10 3.15 (− 3.78, 11.18) 2.4 (− 4.32, 10.27) 4.71 (− 2.95, 12.71) < 0.001

Day 6 as reference

Day 7 0.46 (− 2.26, 3.56) 0.38 (−2.38, 3.46) 0.92 (− 1.54, 4.02) 0.011

Day 8 1.04 (− 2.83, 5.68) 0.7 (− 3.14, 5.41) 1.88 (− 1.65, 6.61) < 0.001

Day 9 1.75 (− 3.7, 8.13) 1.21 (− 4.2, 7.71) 2.52 (− 2.03, 8.77) 0.002
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patient’s response to their initial ICU treatment has a
bearing on when they can be stabilized to develop PCI.
Second, in a population-based study involving a mixed

ICU population, Iwashyna TJ and colleagues found that
the acute physiological characteristics obtained on day 1
progressively lost their mortality predictive power and
were no longer better than the antecedent characteristics
beyond day 10. Subgroup analysis in this study found that
the transition to PCI for septic patients occurred earlier (7
vs 10 days) than the overall mixed ICU population. Our re-
sults showed that there was also significant heterogeneity
between septic patients in their transition to PCI. Al-
though those grouped in the latent classes 4 and 5 had de-
veloped transition to PCI at approximately 7 days similar
to what was reported by Iwashyna et al., some septic pa-
tients—similar to those in latent classes 1 and 2—certainly
would need much longer time before they can be stabilized
and transitioned to PCI. Since Iwashyna’s study did not re-
port the trajectory pattern of their sepsis patients, the dif-
ference cannot be fully explained. In another study [3], the
results of subgroup analysis showed that surgical patients,
especially those with cardiac surgery had significantly later
transition time (20 days) to PCI—similar to our septic pa-
tients in the latent classes 1 and 2 in this study.
Conventionally, the definition of PCI was based on a

fixed time point such as 14 days, after ICU entry [29],
without considering the causes of prolonged ICU stay.
When PCI is defined by the relative discriminative ability
of the acute and antecedent characteristics, the reasons
for the prolonged ICU stay are considered. If the cause
of the prolonged ICU stay is mainly related to the pri-
mary reason for ICU admission, the discrimination of
initial acute physiological variables will remain more im-
portant than the antecedent variables. Such patients
would not be considered to have PCI even if they stay in
ICU for more than 15 days.
In a web-based survey [30], most respondents believed

that PCI should be defined as “those whose reason for
being in the ICU was now more related to their ongoing

critical illness than their original reason for admission to
the ICU,” rather than by a fixed time point. Thus, it is
reasonable to empirically define PCI as when the acute
physiological characteristics are no longer more predict-
ive than the antecedent characteristics. Our study has
provided some evidence to show that the transition time
to PCI varied substantially even within a homogenous
diagnostic group such as sepsis, and trajectories of clin-
ical course—as defined by the daily SOFA scores—ex-
plain their heterogeneity. It can be deduced that patients
with decreasing SOFA score were those whose septic
condition had stabilized or resolved, and the major rea-
sons for an ongoing ICU stay related to their PCI are
likely due to conditions such as delirium, ICU-acquired
weakness and respiratory insufficiency that are not fully
captured by daily SOFA score. For patients with a pro-
gressive increase in daily SOFA score, the primary septic
process has not resolved and thus the acute physiological
characteristics will remain predictive of mortality longer
than in those who have responded to ICU treatment.
Another evidence supporting the current approach to
define PCI comes from epidemiological data that mul-
tiple organ failure syndrome (MOFS) has evolved into
bimodal phenomenon with decreasing early and increas-
ing late mortality [31–34].
Finally, we would like to acknowledge the limitations

of the present study. Our database did not contain the
data on the reasons for prolonged stay in ICU in our pa-
tients, even though delirium, ICU-acquired weakness,
and respiratory insufficiency leading to slow weaning of
mechanical ventilation are the most likely explanations.
The relative importance of each of these complications
in contributing to a prolonged ICU stay and PCI re-
mains uncertain and deserves further investigation by an
adequately powered prospective study. In addition, this
study was not able to distinguish between secondary or
ICU-acquired infection and unresolved primary infec-
tion. Because only patients in the USA were included in
this study, it is uncertain whether our results are applicable

Table 5 Comparisons of changes in urea-to-creatinine ratio in PCI versus non-PCI patients (Continued)

Changes in urea-to-creatinine ratio, median (IQR) Total (n = 17,945) Non-PCI (n = 17,302) PCI (n = 643) p

Day 10 2.29 (− 4, 9.36) 1.46 (− 4.81, 8.64) 3.84 (− 2.28, 10.72) < 0.001

Day 7 as reference

Day 8 0.51 (− 2.2, 3.51) 0.32 (− 2.45, 3.33) 1.05 (− 1.46, 3.98) < 0.001

Day 9 1 (− 3.26, 5.82) 0.69 (− 3.61, 5.7) 1.72 (− 2.26, 6.07) 0.009

Day 10 1.35 (− 3.48, 7.14) 1.04 (− 4.14, 6.67) 2.37 (− 2.32, 8.14) < 0.001

Day 8 as reference

Day 9 0.44 (− 2.45, 3.57) 0.23 (−2.65, 3.56) 0.82 (− 1.99, 3.75) 0.051

Day 10 0.66 (− 3.47, 5) 0.31 (− 3.94, 4.73) 1.49 (− 2.79, 5.38) < 0.001

Day 9 vs 10 0.23 (− 2.53, 3.1) 0.02 (− 3.08, 2.98) 0.63 (− 1.73, 3.43) < 0.001

Abbreviations: IQR interquartile range, PCI persistent critical illness
Note: Patients stayed in ICU for less than 2 days were excluded (e.g., no comparison could be performed)
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to low- or middle-income countries where the practice of
critical care is different. Our growth mixture model only in-
cluded the first 10 days after ICU entry, and the temporal
trend after 10 days was not known. However, we believe that
it is reasonable to do so based on both theoretical and prac-
tical issues: (1) the latent trajectory classes need to be de-
fined before PCI, and according to previous literature [2],
the transition day generally occurs after 10 days; (2) we
attempted to characterize the trajectory of critical illness in
acute phase, and 10 days can capture this phase without ex-
tending to the chronic illness phase; (3) SOFA score is the
outcome variable in the growth curve modeling and it re-
flects the sequential organ failure due to infection in acute
phase; and (4) we need adequate sample size for the growth
curve analysis (e.g., SOFA scores were not available for most
patients after 10 days). Finally, the mortality was not consid-
ered in the growth mixture modeling since it could not be
measured longitudinally over time. Instead, we used SOFA
score as the outcome because it is a continuous variable and
its mean trajectory can be modeled. Furthermore, the out-
come variable SOFA can capture some aspects of the mor-
tality because they are closely related to each other [35].

Conclusions
In conclusion, the study found that a transition to PCI oc-
curred, on average, on day 15 after ICU admission in pa-
tients with sepsis. This transition time varied substantially
between latent classes primarily related to their course of
critical illness or response to ICU treatment. Subjects
showing a progressive decline in daily SOFA score had an
earlier transition to PCI than those with increasing SOFA
score; but the substantial variability between septic indi-
viduals we observed in this study suggested that accurate
prediction of the onset of PCI in patients with sepsis is dif-
ficult. More research is needed to identify the best way or
biomarkers to predict the onset of PCI.
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