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Effect of PEEP decremental on respiratory
mechanics, gas exchange, pulmonary
regional ventilation and hemodynamics in
patients with SARS-Cov-2 associated Acute
Respiratory Distress Syndrome
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To the editor:
Previous reports of severe acute respiratory syndrome

coronavirus 2 (SARS-Cov-2)-related acute respiratory
distress syndrome (ARDS) have been highlighting a pro-
found hypoxemia and it is not yet well defined how to
set positive end-expiratory pressure (PEEP) in this con-
text [1]. In this report, we describe the effects of two
levels of PEEP on lung mechanics using a multimodal
approach.
Patients with confirmed laboratory SARS-Cov-2 infec-

tion and meeting criteria for ARDS according to the
Berlin definition [2] were eligible within the 48 h after
intubation. Written informed consent was waived due to
the observational nature of the study. The local ethic ap-
proved the study (N° CER-2020-16).
Patients were paralyzed and received lung protective

ventilation on volume-controlled ventilation. Effects of
PEEP decremental were evaluated at two levels of PEEP,
arbitrarily 16 cm H2O and 8 cm H2O. These levels were
decided based on previous reports [3, 4]. Measurements
were performed after 20 min after changing the level of
PEEP. Lung mechanics were assessed using an esopha-
geal catheter (NutriVentTM, Italy) [5]. Hemodynamics,
indexed extravascular lung water (EVLWi), pulmonary
vascular permeability index (PVPI), and cardiac function
index (CFI) were monitored by transpulmonary

thermodilution (TPTD) device (PiCCO2, Pulsion Med-
ical Systems, Germany). Pulmonary regional ventilation
was monitored by the use of an EIT belt placed around
the patient’s chest (PulmoVista500; Dräger Medical
GmbH Lübeck, Germany) [6].
Ten patients were enrolled and the effects of two levels

of PEEP decremental are displayed in Table 1. The PEEP
decremental significantly increased both cardiac index
and cardiac function index but did not significantly in-
fluence other TPTD-related variables. PEEP decremental
was not associated with significant changes in gas
exchange but was associated with a significant decrease
in plateau pressure and driving pressure and with a sig-
nificant decrease in end-inspiratory and in end-
expiratory transpulmonary pressures. Lung compliance
was significantly higher at low PEEP. Regarding pulmon-
ary regional ventilation, PEEP decremental resulted in a
loss of lung impedance associated with a decrease in
dorsal fraction. By contrast, decreasing PEEP did not
affect global inhomogeneity index. Best PEEP according
to the lowest relative alveolar collapse and overdisten-
sion was 12 [11–13] cm H2O.
These findings suggest that mechanically ventilated

SARS-Cov-2 patients have a relatively preserved lung
compliance and that the use of high PEEP was associ-
ated with a decrease in lung compliance while providing
no beneficial effect on gas exchange. Dorsal part of the
lung partially collapsed at low PEEP compared to high
PEEP. It may suggest that our patients needed a level of
PEEP greater than 8 cm H2O. This was actually
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Table 1 Changes in hemodynamics, gas exchange, respiratory mechanics, and pulmonary regional ventilation between high and
low PEEP in supine (n = 10)

High PEEP Low PEEP P

Clinical variables

Heart rate, beats.min−1 72 [64–95] 76 [59–97] 0.977

Systolic arterial blood pressure, mmHg 125 [108–138] 129 [118–140] 0.555

Diastolic arterial blood pressure, mmHg 63 [49–69] 58 [48–65] 0.158

Mean arterial blood pressure, mmHg 77 [72–89] 77 [73–86] > 0.999

Transpulmonary thermodilution indices

Cardiac index, L.min−1.m−2 2.5 [2.0–3.0] 2.6 [2.2–3.3] 0.027

Global end-diastolic volume indexed, mL.m−2 661 [551–870] 668 [559–813] 0.432

Extravascular lung water, mL.kg−1 15 [13–18] 14 [13–17] 0.551

Pulmonary vascular permeability index 3.3 [2.7–3.9] 3.3 [2.7–3.6] 0.607

Cardiac function index, min−1 4.4 [2.4–5.3] 4.5 [2.8–5.8] 0.008

Gas exchanges

pH 7.35 [7.29–7.37] 7.35 [7.30–7.41] 0.305

PaCO2, mmHg 45 [39–51] 44 [40–47] 0.191

PaO2/FiO2 ratio, mmHg 116 [99–196] 106 [86–129] 0.127

SaO2, % 97 [95–98] 96 [92–97] 0.172

VD/VT 0.34 [0.29–0.39] 0.35 [0.30–0.39] 0.348

A-a gradient, mmHg 374 [304–533] 384 [275–543] 0.139

Respiratory mechanics

Respiratory rate, breaths.min−1 27 [23–30] 27 [23–30] –

Tidal volume, mL.kg−1 IBW 6.0 [6.0–6.3] 6.0 [6.0–6.3] –

Positive end-expiratory pressure, cmH2O 16 [16–16] 8 [8–8] 0.016

Peak pressure, cmH2O 44 [42–47] 35 [33–36] 0.002

Plateau pressure, cmH2O 28 [27–31] 20 [18–21] 0.002

Driving pressure, cmH2O 14 [11–16] 12 [10–13] 0.004

End-expiratory transpulmonary pressure, cmH2O 6 [4–8] 2 [− 1–4] 0.002

End-inspiratory transpulmonary pressure, cmH2O 14 [13–17] 9 [6–10] 0.002

Respiratory system compliance, ml.cmH2O
−1 29 [27–36] 34 [30–42] 0.012

Respiratory system resistance, cmH2O.L
−1.sec−1 0.24 [0.20–0.25] 0.23 [0.22–0.26] > 0.999

Lung compliance, ml.cmH2O
−1 47 [40–56] 64 [46–82] 0.008

R/I ratio 0.33 [0.21–0.54] –

End-expiratory lung volume, mL 2546 [2151–3019] 1725 [1450–2023] 0.002

Electrical impedance tomography derived indices

Dorsal fraction, % 46 [43–54] 35 [32–39] 0.002

Global inhomogeneity index, % 58 [52–60] 60 [55–66] 0.059

End-expiratory lung impedance 251 [179–404] 139 [83–243] 0.008

Changes in end-expiratory lung impedance, % −118 [− 150 to − 32] 0.004

Data are presented as median [interquartile range] or number (percentage). Wilcoxon matched pairs signed-rank test was used to evaluate
differences between the median values of paired data. PaCO2 partial pressure of arterial carbon dioxide, PaO2 partial pressure of oxygen, FiO2
fraction of inspired oxygen, SaO2 oxygen saturation, VD/VT estimated dead space fraction, A-a gradient alveolar-arterial gradient, R/I recruitment to
inflation ratio. P values refer to the comparison between high and low PEEP for each patient
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confirmed by the EIT PEEP titration maneuver. Other-
wise, it is interesting to point out that the “best PEEP”
according to EIT (12 cm H2O) was close to PEEP set by
the clinicians (14 [11–16] cm H2O). Whether larger tidal
volumes would have mitigated the dorsal lungs collapse
remains speculative and will have to be tested in further
studies. This suggests that the increase in lung volume
at high PEEP was more likely the result of overdistension
of non-dependent part of the lungs than a recruitment
of dependent ones (Fig. 1). This interpretation is rein-
forced by the GI which remained unchanged, indicating
stability in the inhomogeneous distribution of ventilation
throughout the lungs.
This study is the first to describe a multimodal ap-

proach of SARS-Cov-2-related ARDS but the findings
are limited by the small sample size and the early timing
of the evaluation.
In conclusion, this series of SARS-Cov-2-related ARDS

describe an individualized multimodal approach of lung
mechanics, gas exchange, pulmonary regional ventila-
tion, and hemodynamics at the early phase of the disease
and suggest that low PEEP should be used as part of the
ventilation strategy, rather than high PEEP.
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