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Hepcidin is described as the master

regulator of iron: could its removal by CRRT
lead to iron dysmetabolism in the critically
ill?
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David De Bels
Litton et al. noted that many of the risk factors for iron
deficiency are also risk factors for developing a critical
illness, and consequently, iron deficiency is likely to be
over-represented in critically ill patients [1]. Hepcidin is
described as the master regulator of iron that determines
the severity and duration of an iron-restricted state [1].
Insufficient hepcidin levels are central to iron overload
while hepcidin excess leads to iron restriction [1]. A per-
sistent state of iron dysmetabolism not only predisposes
a vulnerable population to decreased erythropoiesis, but
also has implications for the risk of nosocomial infection
and critical illness-associated cognitive, neuromuscular,
and cardiopulmonary dysfunction [1]. A recent cohort
study of 807 critically ill patients with acute kidney
injury (AKI) requiring renal replacement therapy (RRT)
found that both higher plasma concentrations of
catalytic iron and lower concentrations of hepcidin are
associated with increased mortality [2]. A key question
arising from this study is to what extent RRT contributes
to iron dysmetabolism in critically ill patients. Fifty
percent of critically ill patients develop AKI and 25%
require RRT [3]. Hepcidin and pro-hepcidin have mo-
lecular weights of 2700 Da and 10,000 Da, respectively,
and, therefore, may be removed by continuous RRT
(CRRT), which uses membranes with a cut-off of 35,000
Da [4]. The protein-bound fraction of hepcidin is about
40% [4] which does not impede its elimination by con-
vection or diffusion [5]. It has been demonstrated that
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maintenance dialysis with both super-flux polysulphone
(PS) and acrylonitrile 69 (AN69) membranes similarly
removed hepcidin [5]. Hemodialysis with PS membranes
may achieve a high removal ratio of hepcidin by en-
hanced diffusion performance and an increased clear-
ance of small molecule solutes, while AN69 membranes
may remove hepcidin by adsorption [5]. Indeed, hepci-
din can be removed by diffusion, while in the case of
pro-hepcidin, convection is the main mechanism [5].
There are other factors to consider beyond RRT, and we
should remain prudent regarding the therapeutic impli-
cations of RRT modalities at this early stage. The timing
of iron administration in patients admitted to intensive
care may also be a strong determinant of whether the
benefits outweigh the risks [1]. In addition, other factors
such as bleeding in anticoagulated patients or clotting of
dialysis membranes may limit iron accumulation in crit-
ically ill patients. A better understanding of the epidemi-
ology and outcomes of iron metabolism during critical
illness is needed before designing interventional studies
looking at iron metabolism during CRRT.
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