RESEARCH LETTER

Open Access

Aminoglycosides for the treatment of septic shock: a propensity-based study

Jean-François Llitjos^{1,2,3*}, Simon Meslin¹, Swann Bredin¹, Matthieu Jamme^{4,5} and Frédéric Pène^{1,2,3}

Keywords: Septic shock, Aminoglycosides, Antibiotics, Intensive care unit, Bacterial resistance, Bacteria

The adequacy of initial antimicrobial treatment is a strong determinant of prognosis in septic shock. The prototypic synergistic combination of beta-lactams with aminoglycosides appears as an attractive therapeutic option, but its actual benefit remains elusive [1, 2]. We took advantage of a large comprehensive cohort of septic shock to address the impact of aminoglycosides on mortality, with respect to their pharmacodynamic and pharmacokinetic properties.

We performed a retrospective single-center study over a 9-year period (2008-2016) of patients admitted to the intensive care unit (ICU) for septic shock, defined as microbiologically proven or clinically suspected infection associated with acute circulatory failure requiring vasopressors. The primary endpoint was in-ICU mortality. Patients treated or non-treated with aminoglycosides were matched in a 1:1 ratio using a logistic regressionbased propensity score including the following variables: age, gender, comorbid conditions, SAPS2, source of infection, biological findings, and organ supports at admission. Accuracy of aminoglycoside administration was characterized by the loading dose (recommended as 30 mg/kg amikacin or 6 mg/kg gentamycin/tobramycin) and the peak serum concentration (C_{peak}) (targets recommended as $\geq 60 \text{ mg/L}$ amikacin or $\geq 30 \text{ mg/L}$

Universitaires Paris-Centre, Assistance Publique - Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France

²Université de Paris, Paris, France

Full list of author information is available at the end of the article

gentamicin/tobramycin). Determinants of mortality were investigated in cause-specific proportional hazard model.

Among the 1040 patients, 616 (59%) were administered a primary antibiotic combination regimen of beta-lactam with amikacin (379 patients, 62%), gentamycin (229 patients, 37%), or tobramycin (8 patients, 1%). The overall mortality rate was 35%. The propensity score-based matching process resulted in two cohorts of 348 patients with and without aminoglycosides (Table 1). Using the SAPS-2 score, the severity was comparable between the two groups after matching (68 points (52-85) in the aminoglycoside group versus 65 points (51-80) in the nonaminoglycoside group (p = 0.17)). Among patients with microbiologically documented infections, the adequacy of the initial antibiotic regimen increased from 82% with single beta-lactam to 92% with combination regimen (p =0.01). In combination-treated patients, 74% of documented pathogens were susceptible to both antibiotics whereas 12% were only susceptible to aminoglycosides. Loading doses of the first aminoglycoside infusion were appropriate in 21% of amikacin-treated and 27% of gentamycin/tobramycin-treated patients. Hence, only 18% of patients with available Cpeak measurements achieved recommended concentration targets (30% for amikacin while none for gentamycin/tobramycin) (Fig. 1). Furthermore, it is important to take into account that pneumonia is the main source of septic shock treated with aminoglycosides whereas their diffusion is poor in lung tissue.

Aminoglycoside treatment was associated with worse outcomes, including increased requirements for renal replacement therapy during the ICU stay and higher creatinine levels at the time of ICU discharge, and trend towards increased in-ICU mortality (Table 1). Mortality rates

© The Author(s). 2020 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, wish http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

^{*} Correspondence: jllitjos@gmail.com

This work was performed in: Service de médecine intensive-réanimation, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, Assistance Publique -Hôpitaux de Paris, Paris, France

¹Service de médecine intensive-réanimation, Hôpital Cochin, Hôpitaux

Variables	Before matching		р	After matching		р
	Aminoglycosides (n = 616)	No aminoglycosides (n = 424)	_	Aminoglycosides (n = 348)	No aminoglycosides (n = 348)	
Age, years	70.2 (58.2–79.7)	67.5 (56.5–77.5)	0.02	70.2 (56.6–79)	66.9 (55.9–76.9)	0.06
Male gender	386 (62)	278 (65)	0.36	227 (65)	228 (65)	1
Immunosuppression	249 (40)	135 (31)	0.005	127 (37)	105 (30)	0.09
Neutropenia	91 (15)	38 (9)	0.006	41 (12)	30 (9)	0.21
Characteristics on ICU admissic	n					
SAPS2, points	70 (53–87)	65 (51–80)	0.002	68 (52–85)	65 (51–80)	0.17
Source of infection						0.29
Lung	241 (39)	248 (58)	< 0.001	169 (48)	202 (58)	
Digestive	82 (13)	46 (11)		44 (13)	37 (11)	
Urinary	101 (17)	24 (5)		24 (7)	17 (5)	
Skin and soft tissue	57 (9)	24 (5)		30 (9)	23 (7)	
Catheter	33 (5)	12 (3)		13 (4)	9 (3)	
Others	29 (5)	23 (5)		20 (6)	21 (6)	
Unknown	73 (12)	47 (11)		48 (14)	39 (12)	
Microbiological documentation	419 (68)	263 (62)	0.05	226 (65)	228 (66)	0.93
Bacteremia	241 (39)	106 (25)	< 0.001	114 (33)	90 (26)	0.055
Microorganisms						
Gram-negative bacteria	290 (47)	131 (31)	< 0.001	137 (60)	102 (45)	0.003
Gram-positive bacteria	120 (19)	120 (28)		85 (38)	114 (50)	
Fungi	9 (1)	10 (2)		4 (2)	11 (4.5)	
Mycobacteria	0 (0)	2 (0.5)		0 (0)	1 (0.5)	
Biological findings						
Serum protein level, g/L	56 (49–64)	60 (53–68)	< 0.001	58 (51–66)	60.5 (53–68)	0.009
Serum creatinine level, µmol/L	144 (95–228)	131 (80–201)	0.007	139 (84–225)	132 (82–206)	0.23
ICU management at day 1						
First 24-h fluid balance, mL	2485 (1000–4378)	2088 (717–3552)	< 0.001	2358 (900–4200)	2136 (900–3700)	0.18
Renal replacement therapy at day 1	110 (18)	59 (14)	0.13	58 (17)	52 (15)	0.60
Norepinephrine amount at day 1, mg	28.2 (8.5–73)	18.2 (5.3–48.2)	< 0.001	25 (5.8–55.2)	20 (6.9–50.3)	0.20
Aminoglycosides treatment						
Administration prior to ICU admission	116 (19)			50 (14)		
Amikacin	379 (62)			218 (63)		
Loading dose, mg/kg	19.7 (17.2–23.6)			20 (17–24)		
Recommended loading dose	78 (21)			51 (23)		
Median C _{peak} , mg/L *	52.4 (34.8–61)			47.2 (35.7–60.6)		
Recommended target	36 (33)			18 (30)		
Gentamicin/Tobramycin	237 (38)			130 (37)		
Loading dose, mg/kg	4.7 (4.2–6.1)			5.4 (4.2–6)		
Recommended loading	63 (27)			40 (30)		

Table 1 Characteristics of septic shock patients treated or not with aminoglycosides before and after matching on the propensity score

Variables	Before matching		р	After matching		р
	Aminoglycosides (n = 616)	No aminoglycosides (n = 424)	-	Aminoglycosides (n = 348)	No aminoglycosides (n = 348)	-
dose						
Median C _{peak} , mg/L*	15.2 (10.6–19.9)			14.7 (10.4–19.6)		
Recommended target	4 (6)			0 (0)		
Overall ICU management						
Invasive mechanical ventilation	500 (81)	366 (86)	0.03	292 (84)	305 (88)	0.19
Renal replacement therapy	319 (52)	162 (38)	< 0.001	179 (51)	131 (38)	< 0.001
Outcomes						
Creatininemia at day 3, µmol/L	85 (50–153)	85 (51–152.2)	0.71	91 (54–158.5)	89.5 (54.75–158.2)	0.86
Creatininemia at discharge, µmol/L	90 (58–173)	83 (54.75–144.2)	0.019	92.5 (58–177)	79.5 (54–137.5)	0.024
End-of-life decision	136 (22)	117 (28)	0.047	52 (15)	69 (20)	0.11
7-day mortality	142 (23)	75 (18)	0.03	65 (19)	51 (15)	0.12
In-ICU mortality	229 (37)	140 (33)	0.19	126 (36)	103 (29)	0.076

Table 1 Characteristics of septic shock patients treated or not with aminoglycosides before and after matching on the propensity score (*Continued*)

*Among patients with available C_{peak}; before matching: amikacin: 108 (28%) patients and gentamycin/tobramycin: 65 (27%) patients and after matching: amikacin: 60 (27%) patients and gentamycin/tobramycin: 38 (29%) patients

of aminoglycoside-treated and aminoglycoside-untreated patients with microbiologically documented infections were not different (34% and 31%, respectively). In aminoglycoside patients who achieved the target concentration peak, the mortality was 28% whereas it was 33% in patients who did not (p = 0.76). After multivariate adjustment, aminoglycoside treatment was no longer associated with mortality (CSH 1.1; 95%CI 0.90–1.55, p = 0.25). Furthermore, aminoglycoside treatment did not impact on mortality in the

relevant subgroups of neutropenic or bacteremic patients (CSH 1.11; 95%CI 0.75–1.62, p = 0.61 and CSH 1.03; 95%CI 0.64–1.66, p = 0.91, respectively).

Aminoglycosides harbor potent antimicrobial properties including bactericidal activity, synergy with betalactams, post-antibiotic effect, and broadening the antibacterial spectrum [3]. However, the evidence of benefit in septic shock is scarce, based on controversial meta-analysis and retrospective studies [1, 2, 4]. Despite

the combination antibiotherapy improved the adequacy of initial antibiotic treatment, it did not translate into improved survival. However, the high incidence of aminoglycosides underdosing argues for accurate antimicrobial drug monitoring in further interventional trials [5].

Acknowledgements

None

Authors' contributions

JFL and FP designed the study. MJ performed the statistics. JFL, SM, and SB collected the date. All the authors wrote the manuscript. The authors read and approved the final manuscript.

Funding

None

Availability of data and materials Yes

Ethics approval and consent to participate

The ethics committee of the French Intensive Care Society approved the study and waived the need for patients' consents due to its retrospective observational design (ref. CE SRLF, #16–30).

Consent for publication

Not applicable

Competing interests

None to declare

Author details

¹Service de médecine intensive-réanimation, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, Assistance Publique - Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France. ²Université de Paris, Paris, France. ³Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France. ⁴Réanimation médico-chirurgicale, hôpital Poissy Saint-Germain, Poissy, France. ⁵INSERM U-1018, CESP, Team 5 (EpReC, Renal and Cardiovascular Epidemiology), Université Versailles Saint-Quentin, Villejuif, France.

Received: 2 June 2020 Accepted: 14 September 2020 Published online: 21 September 2020

References

- Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 2014;(1):CD003344.
- Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/ meta-regression study. Crit Care Med. 2010;38(8):1651–64.
- Martinez JA, Cobos-Trigueros N, Soriano A, Almela M, Ortega M, Marco F, et al. Influence of empiric therapy with a -lactam alone or combined with an aminoglycoside on prognosis of bacteremia due to gram-negative microorganisms. Antimicrob Agents Chemother. 2010;54(9):3590–6.
- Legrand M, Max A, Peigne V, Mariotte E, Canet E, Debrumetz A, et al. Survival in neutropenic patients with severe sepsis or septic shock. Crit Care Med. 2012;40(1):43–9.
- de Montmollin E, Bouadma L, Gault N, Mourvillier B, Mariotte E, Chemam S, et al. Predictors of insufficient amikacin peak concentration in critically ill patients receiving a 25 mg/kg total body weight regimen. Intensive Care Med. 2014;40(7):998–1005.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

