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Artificial neural networks improve early
outcome prediction and risk classification
in out-of-hospital cardiac arrest patients
admitted to intensive care
Jesper Johnsson1,2* , Ola Björnsson3,4, Peder Andersson5, Andreas Jakobsson3, Tobias Cronberg6, Gisela Lilja6,
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Abstract

Background: Pre-hospital circumstances, cardiac arrest characteristics, comorbidities and clinical status on
admission are strongly associated with outcome after out-of-hospital cardiac arrest (OHCA). Early prediction of
outcome may inform prognosis, tailor therapy and help in interpreting the intervention effect in heterogenous
clinical trials. This study aimed to create a model for early prediction of outcome by artificial neural networks (ANN)
and use this model to investigate intervention effects on classes of illness severity in cardiac arrest patients treated
with targeted temperature management (TTM).

Methods: Using the cohort of the TTM trial, we performed a post hoc analysis of 932 unconscious patients from 36
centres with OHCA of a presumed cardiac cause. The patient outcome was the functional outcome, including
survival at 180 days follow-up using a dichotomised Cerebral Performance Category (CPC) scale with good
functional outcome defined as CPC 1–2 and poor functional outcome defined as CPC 3–5. Outcome prediction and
severity class assignment were performed using a supervised machine learning model based on ANN.

Results: The outcome was predicted with an area under the receiver operating characteristic curve (AUC) of 0.891
using 54 clinical variables available on admission to hospital, categorised as background, pre-hospital and admission
data. Corresponding models using background, pre-hospital or admission variables separately had inferior
prediction performance. When comparing the ANN model with a logistic regression-based model on the same
cohort, the ANN model performed significantly better (p = 0.029). A simplified ANN model showed promising
performance with an AUC above 0.852 when using three variables only: age, time to ROSC and first monitored
rhythm. The ANN-stratified analyses showed similar intervention effect of TTM to 33 °C or 36 °C in predefined
classes with different risk of a poor outcome.
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Conclusion: A supervised machine learning model using ANN predicted neurological recovery, including survival
excellently, and outperformed a conventional model based on logistic regression. Among the data available at the
time of hospitalisation, factors related to the pre-hospital setting carried most information. ANN may be used to
stratify a heterogenous trial population in risk classes and help determine intervention effects across subgroups.

Keywords: Machine learning, Artificial intelligence, Artificial neural networks, Out-of-hospital cardiac arrest, Cerebral
performance category, Critical care, Intensive care, Prediction, Prognostication

Introduction
During the last decade, increased computational power
and improved algorithms have led to a renaissance for
machine learning as an alternative to traditional regres-
sion models to analyse large data sets. Machine learning
has been found valuable in various clinical settings such
as interpretation of ECG (electrocardiography) patterns
and detection of cardiac arrest in emergency calls or in
the emergency department, to predict outcome in trau-
matic brain injury and to predict the need for critical
care as an alternative to conventional triage and early
warning scores [1–5]. It has also been suggested for
mortality prediction in patients admitted to intensive
care units (ICUs) [6].
Recently, machine learning models have been used to

predict the outcome in out-of-hospital cardiac arrest
(OHCA) cohorts with high accuracy early in the chain of
resuscitation, where overall mortality is above 80% [7, 8],
but these models are not applicable to patients admitted
to ICUs after OHCA. Several factors are known to influ-
ence the overall outcome in the OHCA population, in-
cluding patients’ age and comorbidities, cardiac arrest
characteristics and status on admission [9–16]. Albeit
carrying important individual information, none of these
variables is taken into account in the current recom-
mended multimodal neurological prognostication algo-
rithm [17, 18] as the independent prediction ability in
each of these variables is limited. A number of predic-
tion models have been developed using clinical variables
available on hospital admission. Risk scores using logistic
regression have been proposed and typically show mod-
erate to good accuracy including the “CAHP (Cardiac
Arrest Hospital Prognosis) risk score” [19], the “OHCA
risk score” [20] and a scoring system published by
Aschauer et al. in 2014 [21]. So far, none of these
models has been precise enough to be used for individ-
ual prediction after OHCA. The “TTM risk score” based
on data from the Target Temperature Management
(TTM) trial, using ten independent predictors associated
with a poor outcome including death at 6 months after
OHCA, managed to achieve excellent discrimination of
outcome with an area under the receiver operating char-
acteristic curve (AUC) of 0.818–0.842 [22]. With robust
and accurate algorithms for early classification of illness

severity and mortality risk, multimodal prognostication
could hopefully be further improved to tailor patients to
individual therapy and intervention effects. This may
possibly only be applicable to subgroups of patients
which could be differentiated in future heterogeneous
clinical trials.
Using the database from the TTM trial, we aimed to

investigate whether an artificial neural network (ANN)—
a supervised machine learning algorithm—could detect
more complex dependencies between clinical variables
available at hospital admission in OHCA survivors and
perform early and reliable predictions of long-term func-
tional outcome with even better accuracy than trad-
itional regression models. We also wanted to investigate
which part of the “chain of survival” contained the most
predictive information based on background, pre-
hospital and admission-centred data. Finally, an attempt
was made to demonstrate any difference in treatment ef-
fect across risk classes of illness severity in the TTM
trial.

Materials and methods
Study setting
We included all 939 patients enrolled in the TTM trial
from 2010 to 2013 in 36 ICUs in Europe and Australia.
The trial included comatose (Glasgow Coma Scale
(GCS) ≤ 8) adults (≥ 18 years of age) with a sustained re-
turn of spontaneous circulation (ROSC) after successful
resuscitation from OHCA of presumed cardiac cause.
Patients were admitted to ICUs and randomised to
TTM at 33 °C or 36 °C [23]. The trial protocol was ap-
proved by ethical committees in each participating coun-
try, and informed consent was waived or obtained from
all participants or relatives according to national legisla-
tion, in line with the Helsinki Declaration [24]. Patient
data were entered in an online electronic case record
form and externally monitored. The results of the main
trial were subjected to sensitivity analyses for time, study
centre and other possible biases and have been elabo-
rated in post hoc analyses and substudies. All have
shown similar outcomes in both temperature groups
[25–28]. Therefore, the pooled TTM data set was used
for the present analysis.
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Variables
Baseline comorbidities, demographics, pre-hospital data,
arrest characteristics and physiological variables, as well
as admission data, were systematically collected accord-
ing to the Utstein criteria [29, 30] and categorised as
background-, pre-hospital and admission variables
(Table 1). Time from cardiac arrest (CA) to initiation of
basic life support (BLS; administered by bystanders or
first responders) and advanced life support (ALS) was
recorded. No-flow and low-flow times were defined as
the time from CA to the start of CPR (BLS or ALS) and
the time from the start of CPR to ROSC, respectively.
Time to ROSC was defined as the time from CA to the
first recorded time point of sustained (> 20 min) spon-
taneous circulation. “No flow” (indicating the time from
arrest until the start of cardiopulmonary resuscitation
(CPR)) and “low flow” (indicating the time from the start
of CPR until the return of spontaneous circulation
(ROSC)) are often used to describe the circumstances of
the CPR treatment. However, from a clinical point of
view, these terms are less intuitive compared to “by-
stander CPR”, “time to advanced CPR” and “time to
ROSC”; therefore, two data sets were created. Data set
A—all variables plus “bystander CPR”, “time to advanced
CPR” and “time to ROSC”, but not “no flow” and “low
flow”. Data set B—all variables plus “no flow” and “low
flow”, but not “bystander CPR”, “time to advanced CPR”
and “time to ROSC” (Table 1).

Outcome
The main outcome of this study was 180 days functional
outcome including survival using a dichotomised Cere-
bral Performance Category (CPC) scale where CPC 1–2
was categorised as a good functional outcome and CPC
3–5 as a poor functional outcome [31]. A good func-
tional outcome (CPC 1–2) includes patients independent
for daily activities but may have a minor disability. A
poor functional outcome (CPC 3–5) includes patients
dependent on others, in a coma or vegetative state and
dead [32]. The CPC was graded at follow-up by a
blinded assessor during a structured interview face-to-
face or by telephone [33].

Prediction models
We aimed to create two different predictions models:
the best possible prediction model, which included 54
available input variables on patient admission to inten-
sive care (Table 2), and a simplified prediction model by
ranking all the variables after their individual perform-
ance adding one variable at the time according to their
relative importance. The ranking of these variables was
calculated by their individual effect on the AUC when
subtracted from the overall model. We wanted to inves-
tigate how well our model performed compared to an

earlier risk-scoring system based on logistic regression
analysis of the same cohort [22].
We also wanted to analyse which variables and clinical

information that carry the most predictive information
among background, pre-hospital or admission variables
and compare this with the overall model. Finally, we per-
formed an analysis of the intervention effect of 33 °C vs
36 °C stratified to risk classes. The five risk classes were
defined as 0–20%, 20–40%, 40–60%, 60–80% and
80–100% risk of a poor outcome at 180 days based
on variables available at randomisation.

Designing and evaluating the ANN
A test set, corresponding to 10% of the data, was ran-
domly chosen and set aside to test the performance of
the final ANN model. The remaining data (90%) was
used for training. The training set was randomly divided
into five equal-sized groups, to allow for cross-validation
during model development. Missing values were im-
puted using a simple mean or mode substitution based
on the training set.
Our ANN consisted of one input layer, a number of

hidden layers and one output layer (Fig. 1). A Bayesian
optimisation approach, based on the Tree-structured
Parzen Estimator (TPE), was used to find the best pos-
sible network architecture [34]. The search for optimal
hyperparameters was performed with the following
limits: 1–4 hidden layers, 5–400 nodes in each layer,
batch size between 1 and 128, and learning rate 10−7–1,
and the activation function was chosen to be either to be
the rectified linear unit (ReLU) or the hyperbolic tangent
function. To improve generalisation, Bayesian optimisa-
tion was used to determine the most suitable regularisa-
tion parameters. The algorithm chose between the
weight decay techniques L1−, L2−norm penalties distrib-
uted between 10−5 and 1 or max-norm regularisation
distributed between one and five. To further improve
generalisation, dropout [35] and batch normalisation
was applied [36]. The probability of a node being
dropped was uniformly distributed between 0 and 0.5 in
the hidden layers, and 0 and 0.3 in the input layer. The
sigmoid activation function was used for the single node
in the output layer [37]. All networks were trained using
early stopping, with patience of 50 epochs. The max-
imum number of epochs was set to 1000. Two different
methods for optimising the loss function were tested:
the Adam implementation of stochastic gradient descent
(SGD) and a slightly different version called Adam
AMSGrad [38]. The hyperparameters resulting in the
best performing networks were as follows: a one-layer
network with 149 nodes using the ReLU activation func-
tion and L2-norm weight decay with λ = 0.1374. The in-
put dropout rate was 0.240, and the hidden dropout rate
was 0.405. Furthermore, the optimisation algorithm was
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Table 1 Baseline characteristics stratified into good outcome (CPC 1–2) and poor outcome (CPC3–5) after 6 months

CPC score 1–2 CPC score 3–5 p value Missing (%)

Background

No. of patients 440 492

Age, years (IQR) 61 (52–69) 68 (61–76) < 0.001 0.0

Female sex (%) 66 (15.9) 111 (22.6) 0.004 0.0

Length, cm (IQR) 179 (171–183) 175 (167–180) < 0.001 2.4

Weight, kg (IQR) 80 (73–90) 80 (70–90) 0.207 1.4

Chronic heart failure (%) 16 (3.6) 44 (9.0) 0.001 0.2

Previous myocardial infarction (%) 79 (18.0) 112 (22.8) 0.080 0.1

Ischaemic heart disease (%) 101 (23.0) 157 (32.0) 0.003 0.2

Previous cardiac arrhythmia (%) 60 (13.6) 103 (21.0) 0.004 0.1

Previous cardiac arrest (%) 9 (2.0) 12 (2.4) 0.851 0.1

Arterial hypertension (%) 150 (34.2) 222 (45.3) 0.001 0.3

TIA or stroke (%) 23 (5.2) 50 (10.2) 0.007 0.3

Epilepsy (%) 11 (2.5) 5 (1.0) 0.135 0.1

Diabetes (%) 51 (11.6) 89 (18.2) 0.007 0.5

Asthma or COPD (%) 31 (7.0) 65 (13.2) 0.003 0.0

Dialysis (%) 2 (0.5) 4 (0.8) 0.785 0.0

Haematological malignancy (%) 2 (0.5) 7 (1.4) 0.241 0.6

Other malignancies (%) 7 (1.6) 16 (3.3) 0.156 0.4

Alcoholism (%) 10 (2.3) 26 (5.3) 0.027 0.1

Previous PCI (%) 45 (10.2) 62 (12.7) 0.286 0.3

Previous CABG (%) 26 (5.9) 62 (12.7) 0.001 0.3

Previous valvular surgery (%) 10 (2.3) 15 (3.1) 0.590 0.4

Implantable cardioverter-defibrillator (%) 1 (0.2) 4 (0.8) 0.444 0.3

Pacemaker (%) 11 (2.5) 21 (4.3) 0.196 0.3

Pre-hospital

Cardiac arrest location (%) < 0.001 0.0

Place of residence 192 (43.6) 306 (62.2)

Public place 216 (49.1) 166 (33.7)

Others 32 (7.3) 20 (4.1)

Bystander witnessed arrest (%) 406 (92.3) 427 (86.8) 0.009 0.0

Bystander defibrillation (%) 55 (12.5) 34 (6.9) 0.005 0.1

First monitored rhythm (%) < 0.001 0.0

Non-perfusing ventricular tachycardia (VT) 11 (2.5) 12 (2.4)

Ventricular fibrillation (VF) 391 (88.9) 311 (63.2)

Asystole 12 (2.7) 100 (20.3)

Pulseless electrical activity (PEA) 12 (2.7) 53 (10.8)

Unknown 4 (0.9) 14 (2.8)

ROSC after bystander defibrillation 10 (2.3) 2 (0.4)

First rhythm shockable (%) 414 (94.1) 333 (67.7) < 0.001 0.0

Automatic compression-decompression (%) 0.145 0.2

No 348 (79.1) 363 (74.1)

Yes, manual 30 (6.8) 35 (7.1)

Yes, mechanical 62 (14.1) 92 (18.8)

Johnsson et al. Critical Care          (2020) 24:474 Page 4 of 12



Adam AMSGrad, with a learning rate of 0.00197 and
a batch size of 29. Batch normalisation was used. All
networks were created using TensorFlow, an open-
source machine learning framework developed by
Google [39].

Statistical analysis
All continuous variables were presented as median
with upper and lower quartiles, the interquartile
range (IQR). Categorical variables were presented as
numbers and percentages. The fraction of missing

Table 1 Baseline characteristics stratified into good outcome (CPC 1–2) and poor outcome (CPC3–5) after 6 months (Continued)

CPC score 1–2 CPC score 3–5 p value Missing (%)

Number of defibrillations (IQR) 3 (1–4) 2 (1–3) 0.001 0.5

Pre-hospital intubation (%) 273 (62.9) 352 (72.6) 0.002 1.0

Seizures before admission (%) 0.005 0.2

No 406 (92.5) 468 (95.3)

Yes, before CA 21 (4.8) 6 (1.2)

Yes, after resuscitation 12 (2.7) 17 (3.5)

Total dose of adrenaline, mg (IQR) 1 (0–3) 3 (1–5) < 0.001 0.4

Data set A

CA to ALS, min (IQR) 8.00 (5.00–11.00) 10.00 (7.00–15.00) < 0.001 1.5

CA to ROSC, min (IQR) 20.00 (14.75–30.00) 31.00 (21.00–47.00) < 0.001 0.0

Bystander CPR (%) 347 (78.9) 331 (67.4) < 0.001 0.1

Data set B

No flow, min (IQR)a 1.00 (0.00–3.00) 2.00 (0.00–8.00) < 0.001 0.5

Low flow, min (IQR)b 19.00 (12.00–27.00) 27.00 (17.00–40.25) < 0.001 0.0

Admission

Initial temperature, °C (IQR) 35.5 (34.9–36.0) 35.3 (34.4–36.0) 0.002 3.6

Glasgow Coma Scale (GCS) motor score = 1 (%) 173 (39.4) 316 (64.9) < 0.001 0.6

Acute ST-infarction or LBBB 217 (49.5) 220 (45.4) 0.228 1.0

Blood glucose, mmol/L (IQR) 12.35 (9.47–16.00) 14.00 (10.60–18.00) < 0.001 5.5

pO2, kPa (IQR) 18.3 (11.7–30.1) 18.9 (12.1–37.1) 0.344 7.4

pCO2, kPa (IQR) 6.0 (5.2–6.8) 6.3 (5.2–7.8) 0.003 5.8

Base excess, BE (IQR) − 6.0 (− 10.0–4.0) − 10.0 (− 14.5–5.0) < 0.001 7.0

Potassium, mmol/L (IQR) 3.7 (3.4–4.2) 4.0 (3.5–4.5) < 0.001 2.9

FiO2, % (IQR) 80 (50–100) 90 (53–100) 0.215 3.2

Creatinine, μmol/L (IQR) 95 (80–115) 115 (90–140) < 0.001 3.1

Platelets, cells × 109/L (IQR) 220 (185–265) 215 (170–274) 0.128 3.1

WBC, cells × 109/L (IQR) 14.0 (10.6–18.0) 14.0 (10.4–18.5) 0.872 4.1

Cough reflex (%) 277 (70.1) 211 (48.6) < 0.001 11.1

Spontaneous breathing (%) 310 (72.9) 284 (60.3) < 0.001 3.9

pH (IQR) 7.27 (7.17–7.32) 7.19 (7.05–7.28) < 0.001 4.6

Lactate, mmol/L (IQR) 4.6 (2.4–8.1) 6.9 (3.9–10.6) < 0.001 6.3

Shock on admission (%)c 36 (8.2) 100 (20.3) < 0.001 0.0

Pupil or corneal response (%) 392 (90.1) 327 (68.7) < 0.001 2.3

Data are presented as n (%) or median (IQR). n denotes the number of cases with valid data. A p value of < 0.05 was considered significant. The 54 variables are
grouped into background, pre-hospital and admission variables
IQR interquartile range, CPC cerebral performance category, TIA transient ischaemic attack, COPD chronic obstructive pulmonary disease, PCI percutaneous
coronary intervention, CABG coronary artery bypass grafting, VT ventricular tachycardia, VF ventricular fibrillation, PEA pulseless electric activity, ROSC return of
spontaneous circulation, CA cardiac arrest, ALS advanced life support, CPR cardiopulmonary resuscitation, GCS Glasgow Coma Scale, LBBB left bundle branch block,
WBC white blood cell
aNo flow is defined as the time from the arrest to the start of CPR
bLow flow is defined as the time from the start of CPR to ROSC
cShock on admission is defined as systolic blood pressure of less than 90mmHg for more than 30 min or end-organ hypoperfusion unless vasoactive drugs
are administered
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data is reported in Table 1. For comparison between
the groups, the Mann-Whitney U test was used for
continuous data and Fisher’s exact test for categor-
ical data. To evaluate the performance of the ANN
model, we examined the receiver operating charac-
teristics curves (ROC), which plots sensitivity against
1-specificity, for all threshold settings. We used the
area under the curve (AUC) as a performance

measure [40], and the method of DeLong et al. [41]
was used for the calculation of AUC differences.
A forest plot was created to assess the association be-

tween five predefined ANN-stratified risk classes of a poor
outcome and treatment with targeted temperature man-
agement at 33 °C and 36 °C. All p values were two-tailed,
and a p < 0.05 was considered significant. We used the
STROBE Statement style for the study manuscript [42].

Table 2 Predictor ranking and prediction performance in data set A

Table 2a Table 2b

Rank Predictor AUC No. of variables AUCCV AUCtest

1 Age 0.8188 (± 0.0207) 1 0.708 (± 0.0286) 0.657

2 Time to ROSC 0.8285 (± 0.0256) 2 0.780 (± 0.0113) 0.799

3 First monitored rhythm 0.8319 (± 0.0217) 3 0.820 (± 0.0106) 0.852

4 Previous cardiac arrest 0.8324 (± 0.0238) 4 0.822 (± 0.0169) 0.861

5 GCS motor score 0.8335 (± 0.0225) 5 0.832 (± 0.0229) 0.863

6 Dose of adrenaline 0.8337 (± 0.0244) 6 0.839 (± 0.0170) 0.826

7 Creatinine 0.8342 (± 0.0221) 7 0.846 (± 0.0117) 0.837

8 Cardiac arrest location 0.8356 (± 0.0234) 8 0.854 (± 0.0119) 0.857

9 Previous AMI 0.8358 (± 0.0227) 9 0.843 (± 0.0129) 0.835

10 Diabetes 0.8358 (± 0.0221) 10 0.840 (± 0.0182) 0.844

11 Length 0.8358 (± 0.0176) 11 0.848 (± 0.0173) 0.869

12 Time to Advanced CPR 0.8360 (± 0.0189) 12 0.853 (± 0.0142) 0.870

13 pH 0.8363 (± 0.0260) 13 0.851 (± 0.0266) 0.880

14 Platelets 0.8363 (± 0.0234) 14 0.849 (± 0.0079) 0.875

15 Bystander witnessed arrest 0.8366 (± 0.0190) 15 0.852 (± 0.0188) 0.886

All 54 0.852 (± 0.0172) 0.891

The ranking of the variables in the data set was calculated by their individual effect on the AUC when subtracted from the overall model. The AUC values in Table
2a represent how much the performance decreases when the corresponding variable is excluded from the model
The AUC values in Table 2b show how much the prediction performance of the model increase by adding one variable at the time (based on their relative
importance in Table 2a) to the model. AUCCV values represent the training set, and AUCtest the test set. When using all available variables at patient admission to
intensive care, the AUC was 0.891, indicating an excellent performance of predicting long-term functional outcome
AUC area under the curve, ROSC return of spontaneous circulation, GCS Glasgow Coma Scale, AMI acute myocardial infarction, CPR cardiopulmonary resuscitation

Fig. 1 ANN, artificial neural network. A schematic ANN with one input layer, two hidden layers and one single output layer. All nodes in the
network are connected in resemblance to the human central nervous system. The input layers in our ANN consisted of variables (background,
pre-hospital and/or admission data) whereas the output layer was the outcome variable Cerebral Performance Category (CPC) scale dichotomised
into good (CPC 1–2) or poor (CPC 3–5) functional outcome
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Results
Of the 939 patients enrolled in the TTM trial, 932 were
included in our study for the final analysis. Six patients
were excluded due to missing outcomes, and one patient
was excluded due to a high number of missing values (> 40).
The population characteristics were categorised and pre-
sented as background, pre-hospital and admission variables
in Table 1. Good functional outcome (CPC 1–2) was found
in 440 (47%) patients, and 492 (53%) patients had a poor
functional outcome (CPC 3–5) at 180 days follow-up. Pa-
tients with poor functional outcome were significantly older
(68 vs 61 years, p < 0.001), more often female (22.6% vs
15.0%, p < 0.01) and had a higher degree of cardiovascular
comorbidity compared to patients with good functional out-
come. Patients with a poor functional outcome also pre-
sented with worse clinical neurological findings, more
metabolic and respiratory acidosis and the presence of circu-
latory shock on admission (Table 1).
The data set was then randomly divided into a training

set for developing the ANN model (n = 839) and a test
set (n = 93) for independent performance measurement
of the model’s generalisability. The overall ANN model,
based on the 54 variables of data set A, showed a good
prognostic capability in predicting outcome after
6 months. The cross-validated AUC (from the training
set) was 0.852 ± 0.017 (Table 2b), and the AUC on the
independent internal validation data set (the test set, n =
93) was 0.891, as shown in Fig. 2. Similar results were
found when using the 53 variables in data set B (cross-
validated AUC 0.852 ± 0.018 and test set AUC 0.889). As
the variables in data set A are more intuitive to use in a
clinical setting, and the AUC was similar in both data
sets, we chose to focus on data set A.
When using information from the background, pre-

hospital or admission variables in separate analyses, the
model including only pre-hospital data performed best
with an AUC of 0.861 on the validation set (test set) com-
pared to admission data only (AUC test 0.784) or back-
ground data only (AUC test 0.670). When comparing the
performance difference between the “TTM risk score”
[22] and our ANN model on the test set, the ANN model
had a significantly better AUC (0.904 vs 0.839, p = 0.029),
as shown in Fig. 3.
To create a simplified prediction model, all 54 vari-

ables were ranked based on their individual importance
and their effect on the AUC when removed from the
model. The ranking for the 15 most important variables
and the corresponding AUC, when adding them one at a
time to the model, is shown in Table 2b. The predictive
performance initially increased rapidly, but then levelled
out, gradually approaching the value of the reference
AUC of the model using all 54 variables (Fig. 4). After
adding five variables, there was no further significant in-
crease in performance between the models. Of all

variables available at admission to hospital, “age”, “time
to ROSC” and “first monitored rhythm” were the three
variables carrying the most predictive information.
When only these three variables were combined in a
neural network model, they showed good discrimination
with a cross-validated AUC of 0.820 ± 0.011 (training
set) and an AUC of 0.852 on the validation test set
(Table 2b). Finally, we divided the trial cohort into five
classes of risk of a poor outcome. The ANN-stratified
analyses showed similar treatment effect of TTM to 33 °C
or 36 °C in these five predefined risk classes as measured
by the logarithm of the diagnostic odds ratio (log (DOR))
(Fig. 5). Risk prediction in risk class 0–20% had a log
(DOR) of 2.2 (n = 94, CI95% − 4.2–8.7, p = 0,25); in risk
class 20–40%, a log (DOR) of 0.24 (n = 206, CI95%
− 0.43–0.92, p = 0.24); in risk class 40–60%, a log
(DOR) of 0.01 (n = 170, CI95% − 0.59–0.61, p = 0.49);
in risk class 60–80%, a log (DOR) of 0 (n = 202,
CI95% − 0.72–0.70, p = 0.51); and in risk class 80–100%, a
log (DOR) of − 3.3 (n = 142, CI95% − 9.7–3, p = 0.85).

Discussion
In this study, we performed a post hoc analysis of
OHCA patients included in the TTM trial and used

Fig. 2 Prediction performance. The prediction performance of
long-term functional outcome is expressed as AUC in a ROC curve,
by an ANN model using all 54 variables available on admission to
intensive care. Of the 932 patients included in the study, 93 patients
(10%) was randomly chosen and removed from the training set on
which the ANN algorithm trained its prediction model. The trained
ANN was then used to make a prediction of the outcome on the 93
patients earlier removed to represent the test set. The mean AUC for
our ANN was 0.891, indicating an excellent performance to predict
long-term outcome. AUC, area under the curve; ROC, receiver
operating characteristics; ANN, artificial neural network
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artificial neural network (ANN), a supervised machine
learning model, to predict the functional outcome in-
cluding survival at 180 days, with information readily
available at the time of hospitalisation. Our model per-
formed predicted outcome better compared to a corre-
sponding logistic regression model in a prior study of
the same cohort [22]. The overall ANN model, based on
all 54 variables available on admission, showed an excel-
lent capability of outcome prediction during the internal
validation training and performed even better on the test
set with an AUC of 0.891. Using only the three most im-
portant independent factors (age, time to ROSC and first
monitored rhythm, which are variables readily known on
arrival in the emergency room) in an ANN led to a
model with an excellent predictive ability on the test set
with an AUC of 0.852 which is better compared to most
proposed models in the field [19–22]. To identify which
type of information that carries the most valuable pre-
diction of outcome, we also designed a model that used
the three available data categories (background, pre-
hospital and admission data) separately. This approach
decreased the prediction capability compared to the

overall model, but variables from the pre-hospital setting
carried the most information.
Large pragmatic clinical trials have been criticised for

being heterogeneous and possibly dilute any intervention
effect that theoretically may be relevant for subgroups of
patients [43]. In this study, we performed a stratified
analysis using ANN to define risk classes in relation to
the outcome where any intervention effect could be
studied. Our models did not show any significant
difference in the intervention effect of 33 °C or 36 °C
regarding the outcome when dividing the TTM trial
population into five different risk classes for a poor out-
come. The intervention effect was thus uniform across
the risk classes, which strengthens the main conclusion
of the trial, but also suggest a possible model for detec-
tion of subgroup effect in other clinical trials.
A number of attempts have been made to create ro-

bust and straight-forward outcome prediction scores in
the OHCA population at admission to intensive care, in
order to early identify patients with a significant risk of a
poor outcome and stratify the severity of illness better
than traditional classifications as the Acute Physiology,
Age and Chronic Health Evaluation (APACHE) and
Simplified Acute Physiology Score (SAPS) known to
underperform in OHCA populations [19–21, 44]. An in-
teresting future use of ANN algorithms would be the
possibility to reliably assess individual risk of a poor out-
come in OHCA patients which could have clinical impli-
cations for early allocation to specific interventions
(tailored therapy) and later in the clinical course to in-
form prognosis and continued life support. In recent
years, machine learning has been used increasingly in
various studies and proved to be a promising method for
data analyses. Machine learning has advantages com-
pared to traditional regression models, i.e. the ability to
detect correlations between independent variables in
large complex data sets and to find trends or patterns in
subsets of data. Recently published studies have shown
the potential of machine learning regarding OHCA pre-
diction with very good performance [7, 8]. In a study
from Kwon et al., over 36,000 OHCA patients were in-
cluded, and a deep learning-based OHCA prognostic
system showed an impressive performance to predict
neurologic recovery and survival to discharge of OHCA
patients, with an AUC of 0.953 ± 0.001. However, no in-
formation regarding the long-term outcome in these pa-
tients was presented, and the overall mortality was very
high, inherently increasing the possibility to reach high
AUCs. The cohort used in the study was heterogeneous
including more than 8000 patients (22%) with cardiac
arrest of a traumatic cause, known to have a poor out-
come and therefore probably contributing significantly
to the predictive performance of the models [8]. In a
population with about 50% survival, as for OHCA

Fig. 3 Prediction performance in comparison. Comparison of the
prediction performance of long-term outcome expressed as AUC in
ROC curves, between our ANN model (blue) and the TTM risk score
(green) from Martinell et al. The ANN model (AUC = 0.904)
outperformed the TTM risk score (AUC = 0.839) significantly (p = 0.029)
in a comparative analysis based on 80 patients (test set) from the TTM
data set. Since the “TTM risk score” does not have a strategy for
handling missing values, 13 patients were removed from the original
test set with 93 patients when comparing the two models. The ANN
AUCs in Figs. 2 and 3 differ for the same reason. AUC, area under the
curve; ROC, receiver operating characteristics; ANN, artificial neural
network; TTM, targeted temperature management
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Fig. 4 Increased prediction performance when adding variables. The change in AUC during training (AUCCV) when adding one predictor at the
time and running the optimization process each time. The predictive performance of the model (represented by the blue line and its
corresponding CI in green area) initially increased rapidly, but then levelled out, gradually approaching the reference AUC (represented by the
dotted line and its corresponding CI in the pink area) of the model using all 54 variables. After adding five variables, there was no significant
difference between the two models regarding prediction performance, marked by a red X in the figure. AUC, area under the curve;
CI, confidence interval

Fig. 5 Diagnostic odds ratio for the artificial neural network (ANN)-stratified risk groups The forest plot shows the logarithmic diagnostic odds
ratio for five ANN-stratified risk groups of CPC score > 2 and its association to treatment with targeted temperature management at 33 °C and
36 °C. A diagnostic odds ratio > 1 implies a better functional outcome when treated with 36 °C compared to 33 °C. CPC, cerebral
performance category
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patients admitted to intensive care, our model reaching
an AUC close to around 0.9 using early data alone
should encourage validation in separate and prospective
cohorts. There have been some studies indicating the
lack of machine learning performance benefits over lo-
gistic regression-based models. In a systematic review of
Christodoulou et al. from 2019, no evidence of perform-
ance superiority of machine learning over logistic regres-
sion was found [45]. The study did, however, conclude
that improvements in both methodology and reporting
are needed for trials that compare modelling algorithms,
and our study indeed indicated a significantly better per-
formance with ANN compared to the state-of-the-art lo-
gistic regression.
There are a number of limitations to this study. The

majority of the variables had missing values, which leads
to a number of challenges when developing a prediction
model. To ensure that not too many patients or too
many important variables were removed from the data
set, we chose a simple strategy to replace them by mean
values for continuous variables and mode values for cat-
egorical variables. Data collected in the pre-hospital
setting might be imprecise due to the challenge of regis-
tering exact and valid information in that situation.
Moreover, the TTM trial cohort is a selected population,
including only patients with a presumed cardiac cause of
cardiac arrest, making it difficult to generalise our results
to unselected cardiac arrest patients. There are discrep-
ancies between the cross-validating (training) AUC and
the resulting AUC from the test set. This is normal [46],
but the fact that the models performed better on the test
sets is, however, noteworthy. Due to the nature of ANNs,
there are two likely factors that play a major role: the
number of patients in the test set and the fact that we
were using the ensemble of networks created during
cross-validation to make predictions on the test set. The
ensemble technique is a widely used regularisation
method. Employing it should result, as in this case based
on 5-fold cross-validation, in an increased generalisability
of the model. Finally, data analysis using ANN models is
still somewhat of a “black box” when it comes to applying
the results to a real-life clinical setting due to the com-
plexity of biology and the variable medical contexts.
Study strengths include the use of a well-defined co-

hort of OHCA patients. The TTM trial was an inter-
national multicentre randomised controlled trial with
predefined protocol-based criteria for inclusion and
treatment. There were strict rules for multimodal neuro-
logical prognostication and withdrawal of life-sustaining
therapy. The long-term follow-up on outcome was per-
formed with minimal data loss and assessed by a blinded
assessor at a meeting with the patient and the patient’s
next-of-kin according to a structured protocol, including
neurological examinations and face-to-face interviews.

Robust and straight-forward prediction scores used as
a practical decision tool to support clinical assessments
would probably improve the overall cardiac arrest care
by directing very advanced and potentially high-risk in-
vasive treatment to those patients who may benefit from
it. Such scores would hopefully also increase the ability
to provide reliable prognostic information to next-of-
kin, earlier than the observation time of at least 72 h,
which is the current recommendation for neurological
prognostication after cardiac arrest [17, 18, 47, 48].
We believe that this study is an important step to-

wards improved outcome prediction in comatose pa-
tients surviving cardiac arrest with a good functional
outcome. In the near future, we will have the results
from the TTM2 trial with 1900 patients [49], offering
the use of an even larger unique registry with OHCA pa-
tients for ANN analyses and hopefully improving the
outcome prediction in these patients. There are some
obvious medical and ethical implications as well as re-
source aspects that may benefit from the progression of
future reliable cardiac arrest-specific severity scores for
early outcome prediction. Future studies should investi-
gate if outcome prediction performance increases signifi-
cantly by adding additional data and clinical variables
such as early electroencephalography, neuroimaging and
biomarkers. Finally, to be able to detect subgroups in an
OHCA population with an increased risk of a poor out-
come or subgroups that may benefit from a specific
intervention or need extensive rehabilitation, further
studies on larger data sets are necessary to demonstrate
significant associations.

Conclusion
Our supervised machine learning model of ANN pre-
dicted neurological recovery, including survival excel-
lently and outperformed a conventional model based on
logistic regression. By data available at time of hospital-
isation, factors related to the pre-hospital setting carried
the most predictive information. ANN may stratify a
heterogenous trial population in risk classes and help de-
termine intervention effect across subgroups.
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