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Abstract

High-density lipoproteins (HDLs) represent a family of particle characterized by the presence of apolipoprotein A-I
(apoA-I) and by their ability to transport cholesterol from peripheral tissues back to the liver conferring them a
cardioprotective function. HDLs also display pleiotropic properties including antioxidant, anti-apoptotic, anti-
thrombotic, anti-inflammatory, or anti-infectious functions. Clinical data demonstrate that HDL cholesterol levels
decrease rapidly during sepsis and that these low levels are correlated with morbi-mortality. Experimental studies
emphasized notable structural and functional modifications of HDL particles in inflammatory states, including sepsis.
Finally, HDL infusion in animal models of sepsis improved survival and provided a global endothelial protective
effect. These clinical and experimental studies reinforce the potential of HDL therapy in human sepsis. In this
review, we will detail the different effects of HDLs that may be relevant under inflammatory conditions and the
lipoprotein changes during sepsis and we will discuss the potentiality of HDL therapy in sepsis.
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Background
Despite a better comprehension of this entity, sepsis re-
mains a pathology with a high rate of morbi- and mor-
tality worldwide [1]. Pathophysiological pathways
involved in sepsis are complex, including pro- and anti-
inflammatory signaling along with major non-
immunological responses such as cardiovascular, neur-
onal, autonomic, hormonal, and metabolic responses, as
well as activation of coagulation [2]. Recent definitions
and consensus underline that sepsis is clearly defined as
a life-threatening organ dysfunction caused by deregu-
lated host response to infection [1]. The failure of ther-
apies using specific anti-inflammatory treatments may
be due to the complexity of sepsis signaling, modulation

and pattern, and finally to the poor understanding of the
pathophysiology.
High-density lipoproteins (HDLs) represent a family of

particles characterized by their ability to transport chol-
esterol from peripheral tissues back to the liver that con-
fers to them an anti-atherogenic protective effect. Many
experimental studies emphasize on other pleiotropic
properties of HDLs, including anti-inflammatory, anti-
apoptotic, or antioxidant functions [3, 4]. Furthermore,
HDLs have the property to bind and neutralize lipopoly-
saccharide (LPS) [5] that could be particularly relevant
in septic conditions. Other studies have also demon-
strated that infusion of reconstituted HDL (rHDL) or
HDL mimetic particles decreased morbi- and mortality
in animal models of sepsis [6].
Because of their pleiotropic protective effects, HDLs

may represent a potential future therapeutic target to be
explored in human sepsis. The objectives of this present
review are to describe HDL properties that can play a
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role in sepsis and to summarize clinical and experimen-
tal studies involving HDL during sepsis.

HDL structure and diversity
Lipoproteins are macromolecular particles composed by
proteins including apolipoproteins associated with a
phospholipid layer containing a lipid core consisting in
free cholesterol, cholesterol esters, and triglycerides [7].
They are classified according to their density, which is
proportional to their protein content: chylomicrons, very
low-density lipoproteins (VLDLs), intermediate-density
lipoproteins (IDLs), low-density lipoproteins (LDLs), and
high-density lipoprotein (HDLs), being the particles with
the highest protein content.
Specifically, HDLs are defined by a density ranging

from 1.063 to 1.21. To characterize this lipoprotein
population, different techniques are used and underline
the heterogeneity of HDL subclasses. Ultracentrifugation
allows isolation of HDL fractions into HDL2a, HDL2b,
and HDL3, whereas electrophoresis on gradient gels sep-
arates HDL particles by size (HDL2a, HDL2b, HDL3a,
HDL3b, HDL3c). Two-dimensional gel electrophoresis
has been used to separate HDL populations according
both to their charge and size into small pre-β and large
α1-α4 HDL particles. Rosenson et al. have suggested a
new classification defining 5 HDL subclasses on the
basis of physical and chemical properties and named
very large, large, medium, small, and very small HDL

particles [8]. Finally, HDL particles may be classified ac-
cording to their major lipoprotein contents [7].
As compared to other lipoproteins, HDLs are also

characterized by their abundant protein content and
protein diversity. Although HDL particles are mainly
composed by ApoA-I, proteomic analysis has empha-
sized the numerous proteins that are transported by
HDLs, including enzymes, acute phase response pro-
teins, complement system proteins, and proteinase in-
hibitors [9].

HDL metabolism and main function: reverse
transport of cholesterol (Fig. 1)
One major function of HDL metabolism is the reverse
cholesterol transport (RCT) permitting the efflux of chol-
esterol from peripheral cells back to the liver that confers
to HDL a cardiovascular protective effect [10, 11].
The first step of the biosynthesis of HDL particles is

the release of lipid-free or lipid-poor apolipoprotein A-I
by the liver and intestine. Lipid-poor apoA-I will then
acquire phospholipids and free cholesterol via their
interaction with ATP-binding cassette transporter A1
(ABCA1), which is a membrane transporter protein
mainly expressed by macrophages and hepatocytes, but
also in the brain and other tissues. With the acquisition
of these lipids, HDL particles become discoidal, forming
disk-shaped pre-β [12]. Then, lecithin-cholesterol acyl-
transferase (LCAT), which is activated by apoA-1, will
esterify free cholesterol. Cholesterol esterification leads

Fig. 1 Reverse transport of cholesterol
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to a structural modification of HDL particles, which be-
come smaller, dense, and spherical (HDL3). HDL3 parti-
cles continue to accept free cholesterol and
apolipoproteins forming bigger and lipid-rich particles
named HDL2. HDL2 and HDL3 have the possibility to
exchange esterified cholesterol against triglycerides (TG)
from other lipoproteins (VLDL, IDL, LDL). TG molecule
is bigger than esterified cholesterol, which participates in
increasing the size of HDL particles. This important re-
modeling system is performed by cholesteryl ester trans-
fer protein (CETP).
HDL2 is then removed from the circulation by the

liver via the scavenger receptor class B type I (SRB1),
leading to the degradation of cholesterol esters by hepa-
tocytes and their excretion into the bile. This interaction
with SRB1 releases lipid-poor Apo A-I, which initiates a
new cycle of RCT. The second mechanism of the deg-
radation of cholesterol esters is through CETP which
can transfer cholesterol esters from HDL particles to
TG-rich lipoproteins (VLDL and LDL) and then choles-
terol finally reaches the liver when LDL particles are
taken up by the liver via the LDL receptor.

HDL cholesterol (HDL-C) levels vs HDL RCT
functionality
The current paradigm that HDLs are protective for car-
diovascular diseases relies mainly on the results of the
Framingham Study that reported a 2–3% decrease in
coronary artery disease risk with each increase by 1mg/
dL in HDL-C [13]. Most of the epidemiological studies
have evaluated the cholesterol concentration in the non-
precipitable lipoprotein fraction of plasma/serum, as-
sumed to be “HDL-C”; however, this concentration only
poorly reflects the capacity of HDL particles to reverse
transport the cholesterol from peripheral tissues back to
the liver. Cholesterol efflux capacity can be evaluated
in vitro, using macrophages, and has been shown to be
inversely correlated to carotid intima-media thickness
and CAD risk, independently of the HDL-C levels [14].
This functional RCT assay is also inversely related to the
incidence of cardiovascular events in a population-based
cohort [15]. A wealth of genetic and interventional stud-
ies suggests that increasing HDL-C levels is not suffi-
cient to limit CVD risk. On the one hand, Mendelian
randomization studies report that single nucleotide poly-
morphism modulating HDL-C levels such as variants of
endothelial lipase [16] or phospholipid transfer protein
[17] did not impact on CVD risk prediction (see meta-
analysis in [18]). On the other hand, clinical trials using
cetrapibs (CETP inhibitors) showed that, albeit raising
HDL-C levels, these molecules were unable to improve
cardiovascular outcomes [19], suggesting that evaluation
of HDL functionality should be an important readout for
testing new therapies.

Pleiotropic effects of HDL (Fig. 2)
Lipopolysaccharide (LPS) and lipoteichoic acid (LTA)
binding and neutralization properties of HDL (Fig. 3)
LPS is the major component of the outer membrane of
Gram-negative bacteria. In noncapsulated strains, LPS is
exposed on the cell surface. Numerous studies have
demonstrated that all lipoproteins (chylomicrons, VLDL,
LDL, and HDL) are capable to bind Gram-negative LPS.
However, it is clearly established that LPS preferentially
binds HDL particles relative to other lipoproteins [20].
Levels et al. have incubated different labeled LPS chemo-
types with delipidated or normal plasma and determined
LPS fluorescence profiles by high-performance gel per-
meation chromatography [21]. These authors demon-
strated that LPS binding to lipoproteins is highly specific
and that HDLs have the highest binding capacity for
LPS as compared to that of other lipoproteins. Further-
more, Levine et al. have shown that transgenic mice ex-
pressing human Apo A-I displayed lower cytokine levels
after LPS injection compared to control mice [22]. This
interaction is facilitated by the action of specific lipid
transfer proteins such as CETP, PLTP, and LPS-binding
protein (LBP) [23]. These specific proteins permit the
transfer of LPS to lipoproteins. For example, as de-
scribed by Vesy et al., mainly LBP but also PLTP can ex-
tract LPS from bacterial membranes and transfer it to
HDL particles in human serum [24].
However, the mechanisms underlying the association

between LPS and HDLs remain unclear: LPS lipid A
diglucosamine-phosphate region seems to be the key
part of LPS molecules allowing the interaction between
LPS and HDL particles [25]. Furthermore, HDL particles
are probably not sufficient to neutralize the biologic ac-
tivity of LPS [5]. Theoretically, LBP is required to form a
complex between LPS and CD14 able to bind HDL par-
ticles, permitting its neutralization.
Gram-positive do not have LPS, but lipoteichoic acid

(LTA), an amphiphilic molecule formed by a hydrophilic
polyphosphate polymer linked to a neutral glycolipid
which is a major immunostimulatory component for
these bacteria. The association of LTA with lipoproteins
shows a striking similarity with that of LPS. HDL seems
to have the highest affinity for LTA [26]. Grunfeld et al.
have demonstrated that HDL can inhibit macrophage
activation by LTA [27].

Inhibition of adhesion molecule expression
During sepsis and inflammatory states, the adhesion of
leukocytes to the endothelium is a key step allowing
their migration within the tissues [2]. Cockerill et al.
have shown that physiological concentrations of human
isolated HDLs inhibited in vitro the expression of
leukocyte adhesion molecule expression (V-CAM-1,
ICAM-1, E-selectin) on endothelial cells induced by pro-
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inflammatory cytokines [28]. Reconstituted HDLs also
inhibited the TNFα-induced expression of V-CAM-1.
The same authors have confirmed this action in vivo in
a porcine model of inflammation [29]. Another study
emphasized the fact that rHDLs attenuated adhesion
molecule expression in a rodent model of endotoxin
shock whereas pretreatment of LPS-injected rats with
rHDL limited the expression of P-selectin and ICAM-1
caused by endotoxin in the kidney [30]. Another possible
mechanism of HDL protective effects is the modulation
of transcription factors, which may decrease adhesion
molecule expression via the inhibition of nuclear factor
NF-kB activity [31].

Regulation of inflammatory response in macrophages
HDLs may also be a key modulator of inflammatory re-
sponse in macrophages [32, 33]. One important finding
is that HDLs stimulate the transcriptional regulator
ATF3, which downregulates inflammatory pathways that
may in turn decrease the inflammatory response in case
of sepsis [34]. Moreover, Zhu et al. have shown in mur-
ine macrophages that human serum amyloid A (SAA)
dramatically upregulates the expression and secretion of
a group of phospholipases (sPLA2-IIE and sPLA2-V),
which are late pro-inflammatory mediators family [35].
In this in vitro study using purified HDL, HDL dose-
dependently attenuated SAA-induced secretion of both

Fig. 2 Pleiotropic properties of HDL

Fig. 3 Binding and neutralization of LPS by HDL: 3 potential pathways
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sPLA2-IIE and sPLA2-V. Lastly, Suzuki et al. demon-
strated that HDLs inhibit a subset of LPS-stimulated
macrophage genes that regulate the type I interferon
response, independently of sterol metabolism, raising
the possibility that regulation of macrophage tran-
scriptome by HDLs might link innate immunity to
cardioprotection [36].

Microvascular vasodilation and endothelium repair
HDLs have the property to stimulate the endothelial NO
synthase (eNOS), which is involved in inhibiting the ad-
hesion of monocytes to the endothelium and promotes
microvascular vasodilation [3]. This upregulation of
eNOS expression is dependent on SR-B1 receptor. Spe-
cific subclasses of HDL particles bind with different af-
finity to SR-B1. For example, lipid-poor and lipid-free
apoA-I have a lower affinity for this receptor, leading a
reduced vasodilation property [37]. HDL particles can
also stimulate the production of prostacyclin, which is a
powerful vasodilator. Kontush et al. have shown that
HDL3 sub-fraction had a better capacity to improve NO
production than HDL2 because of its enrichment of
sphingosine-1-phosphate (S1P), which stimulates the
production of prostacyclin [38]. Moreover, in a popula-
tion of coronary artery disease patients, Sattler et al. de-
scribed that reduced S1P content in HDL particles
abrogated their vasodilatory capacity, contributing to
HDL dysfunction [39]. S1P-loading in vitro and in vivo
increased eNOS activation and improved the vasodila-
tory property of HDLs [39, 40].

Anti-thrombotic effects
HDLs stimulate the endothelial production of NO
and prostacyclin which are inhibitors of platelet acti-
vation. Furthermore, HDLs prevent platelet hyper-
reactivity by limiting intraplatelet cholesterol overload
and the interaction of apoA-I on platelet ABCA1 and
SRB1 receptors. This leads to the inhibition of the
pro-coagulation cascade and subsequent clot forma-
tion [41]. HDLs may also prevent the endothelial
thrombotic activation, by promoting prostacyclin and
Cox2 production and by reducing the expression of
tissue factor and of adhesion molecules [42]. A direct
anti-thrombotic property of HDLs has been reported,
via the reduction of thrombus formation in a study
involving a mutant form of human ApoA-I [43]. Fur-
thermore, HDLs can enhance particular anticoagulant
activity (inactivation of active factor V) exerted by ac-
tivated protein C and protein S [44]. A direct anti-
platelet effect was also described in vivo and in vitro
by reducing platelet aggregation induced by collagen,
ADP, or thrombin [45].

Antioxidant properties
Paraoxonase (PON1) is an HDL-associated esterase, pro-
tecting lipoproteins against oxidation. PON1 is able to
hydrolyze lipid peroxides and especially oxidized choles-
teryl esters and phospholipids [46]. Moreover, PON1
also hydrolyzes phosphatidylcholines into lysophosphati-
dylcholines, which improve the bactericidal activity of
neutrophils potentially resulting in a protective effect in
experimental sepsis [47]. Shih et al. have demonstrated
that PON1-deficient mice are susceptible to oxidative
stress and that HDLs isolated from these mice were un-
able to prevent LDL oxidation [48]. The global antioxi-
dant effect of HDLs is evaluated via their capacity to
inhibit LDL oxidation. This property consists in the
transfer of oxidized lipids from oxidized LDL (oxLDL)
(hydroperoxides and lysophosphatidylcholine) to HDL
particles and by the inactivation of oxidized lipids.
Lastly, HDLs are able to limit oxidation by decreasing
ROS production via the inactivation of neutrophil
NADPH oxidase [49]. Oxidation is an important
phenomenon observed in sepsis [50], and reduced HDL
antioxidant function may participate in sepsis progres-
sion/severity.

Anti-apoptotic properties
HDLs exert a protective effect on endothelial cell apop-
tosis by interfering with both receptor-mediated death
signaling and mitochondrial apoptotic pathways. Suc
et al. have demonstrated that HDLs have the capacity to
inhibit apoptosis of endothelial cells induced by oxLDL
[51]. In oxLDL-induced apoptosis, HDLs were shown to
interact with the endoplasmic reticulum. As underlined
by Nofer et al., Akt signaling, a major anti-apoptotic
pathway, is stimulated by HDLs in a model of endothe-
lial cell apoptosis (HUVECs) [52]. In this study, HDLs
were also capable of inhibiting caspase-3 and caspase-9
activation. Theilmeier et al. have shown in vitro and an
in vivo mouse model of myocardial ischemia/reperfusion
that HDLs and its sphingolipid component S1P reduced
cardiomyocyte apoptosis [53]. Moreover, a direct infu-
sion of native HDLs or a S1P receptor agonist reduced
cardiomyocyte apoptosis, myocardial injury, and the size
of myocardial infarction [54, 55]. Taken together, these
anti-apoptotic effects and more globally endothelium
protective effects of HDLs may limit the progression and
the severity of sepsis, in which endothelium aggression
play a pivotal role [3].

Anti-diabetic properties
Diabetic patients usually have a dyslipoproteinemia char-
acterized by increased triglycerides and low HDL-C
levels, with TG-enriched HDL resulting from a CETP-
mediated interchange of TG from TG-rich lipoproteins
to HDLs [56]. HDL particles have been reported to
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display anti-diabetic properties by improving β cell insu-
lin secretion through ABCA1 and ABCG1: Brunham
et al. have shown that mice with specific inactivation of
ABCA1 in β cells had markedly impaired glucose toler-
ance and defective insulin secretion but normal insulin
sensitivity [57]. This was also demonstrated in carriers
of disruptive mutations in ABCA1 Tangier disease pa-
tients [58]. Numerous experimental studies have also
shown that HDLs improve insulin sensitivity [59–61];
Han et al. have demonstrated that ApoA-I possesses
protective effects against diabetes via activation of AMP-
activated protein kinase and that ApoA-I deletion in
mice led to increased fat mass and impaired glucose tol-
erance [60]. In humans, HDLs from diabetic patients are
dysfunctional [62]. An acute infusion of reconstituted
HDs in thirteen patients with type 2 diabetes mellitus re-
duced plasma glucose by increasing plasma insulin levels
and activating AMP-activated protein kinase in skeletal
muscle [63].

Lipoprotein changes during human sepsis
In critically ill patients and especially in septic patients, a
reduction in lipid and lipoprotein levels is well docu-
mented [64]. Clinical observations have shown that cir-
culating levels of HDLs decrease during the acute phase
of inflammatory state and especially during a sepsis [65–
68]. van Leeuwen et al. have demonstrated that lipopro-
tein levels rapidly drop up to 50% of initial concentra-
tions in patients with severe sepsis and that this rapid
reduction was particularly marked in LDL and HDL
cholesterol levels [65]. We have compared HDL profiles
between septic and trauma patients [69]. Although in-
flammation is exacerbated in these two entities, HDL-C
levels were lower in septic patients, whereas their con-
centration was not altered in case of trauma. Interest-
ingly, in a study involving healthy subjects, low HDL
levels were correlated with increased inflammatory re-
sponse to endotoxin challenge compared with subjects
with normal or high HDL levels [70].
During sepsis, several hypotheses may provide explan-

ation for this dramatic reduction, including an acute
over-consumption of HDL particles, a decrease in liver
HDL synthesis, especially in case of hepatic failure, and/
or an increased clearance following an upregulation of
SRB1 [71]. In the context of sepsis characterized by a se-
vere inflammation-induced capillary leakage, HDL parti-
cles may easily be redistributed from the intravascular to
the extravascular compartment [65]. Another hypothesis
would be a decrease of ApoA-I due to its replacement
by serum amyloid A (SAA) in HDL particles at the early
phase of sepsis [72]. SAA is able to displace ApoA-I
from the surface of HDL particles, generating free
ApoA-I, which is cleared faster by the kidney, thus

contributing to reducing HDL-C levels and functionality
[73].
The majority of these observational studies empha-

sized the negative correlation between HDL concentra-
tion and mortality [66, 67]. A low HDL concentration at
day 1 was significantly associated with an increased mor-
tality and adverse clinical outcomes with a cut-off ran-
ging from 20 to 25 mg/dL [67]. In a prospective study
including 151 consecutive septic patients, a low apoA-I
concentration was independently related to 30-day mor-
tality [66]. Interestingly, a recent study has shown that
variations in genes involved in HDL metabolism could
contribute to changes in HDL-C levels but also to clin-
ical outcomes following a sepsis [74]. These authors
have identified a rare missense variant in CETP
(rs1800777-A) that was associated with significant re-
ductions in HDL-C levels during sepsis. In this study,
carriers of the A allele had an increased mortality, more
organ failure, and greater need for organ support com-
pared to non-carriers.
However, other studies failed to find any link between

HDL levels and mortality. We did not find any correl-
ation between mortality and HDL concentration but a
poor outcome defined as death or SOFA score > 6 at day
3 was associated with lower HDL levels in a population
of 50 septic patients [69]. van Leeuwen et al. did not find
any correlation between lipoprotein concentrations in
survivors and non-survivors [65]. Whereas triglycerides
were associated with mortality in septic patients, no cor-
relation was found with other lipoproteins and especially
with HDL concentration [75].
HDL levels were also associated with morbidity in sev-

eral studies [75, 76]: for example, in a 2-year follow-up
of patients with septic shock, low HDL levels were asso-
ciated with increased risk of sepsis-associated acute kid-
ney injury (AKI) and a decrease in estimated glomerular
filtration rate (eGRF) [76].
Moreover, because sepsis still remains an important

cause of mortality and morbidity, early biomarkers could
be useful to establish a diagnosis of sepsis and also to in-
dicate its severity. To date, there is no biomarker that
fulfills these objectives in terms of sensibility and specifi-
city. Some authors have suggested that HDL levels could
represent an early marker of sepsis severity. Chien et al.
underlined the power of HDL and Apo A-I levels at day
1 to predict the overall 30-day mortality rate [67]. At
ICU admission, according to Barlage et al. study [66],
low HDL-C (AUC of the ROC 0.6, p = 0.049) and low
apoA-1 (AUC of the ROC 0.604, p = 0.041) levels were
predictive of sepsis-related mortality. In a cohort of 200
patients enrolled at the emergency department with clin-
ically suspected sepsis, comparing to different variables
such as white blood cell count, lactate, or platelets, HDL
concentration was the best predictor of both
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development of multiorgan dysfunction syndrome and
28-day mortality [68].

HDL function in inflammatory state
Acute inflammation alters both lipoprotein composition
and metabolism resulting in reduced anti-inflammatory
properties, in particular for HDL particles [72]. Numer-
ous remodeling in HDL composition are currently de-
scribed during these inflammatory states, such as apoA-I
dissociation from the particles, reduction of esterified
cholesterol, and decrease in HDL-associated enzymes
(LCAT, CETP, or PON1 for example) [65]. It is well
established that the presence of blood endotoxins modu-
lates HDL particle composition. For example, during in-
fection and inflammation, SAA displaces apoA-I within
HDL particles, thus becoming the predominant apolipo-
protein of septic HDLs [72]. This observation was also
described in inflammatory states following cardiac sur-
gery with cardiopulmonary bypass [77].
HDL-associated PON-1 is also altered in septic condi-

tion. Novak et al. have described a dramatic decrease in
PON-1 activity in septic patients versus controls [78].
The oxidative environment induced by sepsis could re-
sult in an increased binding of free radicals to PON-1,
leading to an overall decreased plasma activity of this
enzyme. Platelet-activating factor-acetylhydrolase (PAF-
AH) activity, which is able to inhibit the formation of
non-esterified fatty acid hydroperoxides from oxLDL,
was also reported to be altered in septic condition [79].
With the reduction in plasma PAF-AH and PON1 activ-
ities during sepsis, HDLs display blunted protective ef-
fects against LDL oxidation [80].
Proteomic studies underlined the diversity of HDL-

associated proteins in normal conditions [9]. HDL prote-
ome is clearly modified during inflammatory conditions
[81] and in particular in sepsis state [82]. Sharma et al.
evaluated the host proteome response in septic patients
secondary to community-acquired pneumonia (CAP)
[82]. This analysis has shown alteration in the cytoskel-
eton, cellular assembly, movement, lipid metabolism,
and immune response in septic patients. Focusing on
apolipoproteins, the authors demonstrated a decrease of
some apolipoproteins (ApoA-I, ApoA-II, ApoA-IV,
ApoB, ApoC-I, ApoC-II, ApoC-III, and ApoE). A recent
study on the lipidome showed a decrease in phospho-
lipid concentration in hospital-acquired pneumonia [83].
Reverse cholesterol transport is also impaired in in-

flammatory conditions. Specifically, de la Llera et al.
have shown that in twenty healthy adults, an endotoxe-
mia induced by LPS (3 ng/kg) administrated as an intra-
venous bolus infusion led to a reduced capacity of HDLs
to efflux cholesterol in vitro [72]. Interestingly, when
comparing the 10 oldest septic patients to the ten oldest
healthy subjects, the cholesterol efflux was significantly

reduced in septic patients (24 ± 1.2%) compared to con-
trol subjects (31.5 ± 1.0%) [84].
In this context, dysfunctional HDLs has emerged as a

new concept in sepsis as it was well documented in
other diseases such as atherosclerosis, stroke, or auto-
immune pathology [77–79, 81, 85]. It is now clearly
established that HDLs become dysfunctional during sep-
sis and are associated with a poor outcome.
HDL size is also affected during inflammation and in-

fection [72]. de la Llera et al. have shown that LPS infu-
sion in healthy volunteers led to a decrease of small- and
medium-size particles without any change in the total
number of HDL particles [72]. We have shown that
HDL levels are dramatically decreased in the acute phase
of septic shock and that there is a shift toward large
HDL particles [86]. Another study underlined that both
HDL size and HDL-C concentration were independently
associated with coronary artery disease risk [87]. In a re-
cent study involving 402 patients who underwent carotid
MRI assessment for lipid-rich necrotic core plaques,
HDL particle size was significantly associated with HDL
efflux capacity suggesting that differences in HDL efflux
capacity may be due to structural differences in HDL
particles [88]. However, because different techniques are
used to assess HDL size, correlation of size with function
should be exploited with caution.
In the light of these observations, HDL-C concentra-

tion is probably not sufficient to characterize HDL func-
tion. Size modification and HDL remodeling leading to
changes in composition appear to be more relevant to
make HDL dysfunction more helpful in clinical practice.
In this context, since both quantitative and qualitative
modifications of HDL particles are observed in septic
conditions, supplementation with functional HDL in ex-
perimental pre-clinical models should be tested.

HDL-based therapies in experimental sepsis
studies
Because of HDL pleotropic properties, the drastic reduc-
tion of HDL concentration and the dysfunction observed
during inflammatory states, reconstituted HDLs or
apoA-I mimetic peptide infusion may represent a poten-
tial therapy in sepsis [6, 22, 30, 71, 89–93]. Moreover,
ApoA-I knockout mice exhibited reduced LPS
neutralization in serum relative to controls, supporting
the concept of rising functional HDL levels as a thera-
peutic approach for sepsis [94].
Several apoA-I mimetic peptides such as peptide 4F

(Ac-DWFKAFYDKVAEKFKEAF-NH2) have been
synthetized and are able to bind phospholipids and asso-
ciate with native HDL particle [95]. Zhang et al. have
shown in a rat model of sepsis that infusion of apoA-I
decreased plasma IL-6 concentration, improved the car-
diac function, and reduced the mortality [96]. Other
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studies have demonstrated that this peptide attenuated
kidney, heart, vascular, and lung injury and improved
survival in experimental models of sepsis [90, 97].
Reconstituted HDLs (rHDLs) were also tested in septic

models [30, 91]. Different types of rHDLs have been
experimented, but rHDLs are usually prepared with a 1/
150 ratio of apoA-1 to soybean phosphatidylcholine (PC)
[98]. For example, McDonald et al. have shown that
rHDL infusion limited renal injury and dysfunction and
reduced the degree of histological tissue injury in the
lung, liver, and intestine [30]. Recently, in 3 different ex-
perimental mouse models of sepsis, we demonstrated
that infusion of rHDL improved survival, reduced in-
flammation in both plasma and organs, and decreased
bacterial count [99]. Interestingly, immunohistological
analysis of septic lungs emphasized that apoA-I reached
and accumulated in pulmonary tissue in rHDL-injected
mice, suggesting that HDL particles can locally exert
their protective effects. Moreover, 111Indium bacterial la-
beling provided a potential hepatic bacterial clearance
possibly promoted by HDL uptake.
An additional table underlines these different experi-

mental sepsis studies in more detail (see Additional file 1).

rHDLs or mimetic peptide infusion in human
sepsis?
In the cardiovascular field, rHDLs have been tested in
atherosclerotic and diabetic patients. Thirteen patients
with type 2 diabetes mellitus received rHDLs and saline
in a randomized crossover design study [100]. Four and
72 h after rHDL infusion, the anti-inflammatory proper-
ties of isolated HDL increased. Interestingly, there was
also an enhancement of cholesterol efflux.
In case of coronary atherosclerotic disease, Tardif et al.

have investigated the effects of rHDLs (CSL111®) on the
plaque burden as assessed by intravascular ultrasound
(IVUS) [101]. In this randomized controlled trial, 183 pa-
tients were randomized to receive CSL111® (40mg/kg or
80mg/kg) or placebo. Concerning the primary outcome
of the study, there was no significant reduction in percent-
age change in atheroma volume or nominal change in
plaque volume in CSL111® group compared with placebo.
In pre-clinical studies, the ability of HDLs to bind

endotoxin has been well correlated with their phospho-
lipid content [22]. These results motivated the develop-
ment of a protein-free phospholipid emulsion containing
phosphatidylcholine, soybean oil, and sodium cholate in
order to bind and eliminate LPS. A double-blind
placebo-controlled study has enrolled 20 volunteers re-
ceiving Escherichia coli endotoxin infusion of either an
emulsion of 92.5% of phosphatidylcholine and 7.5% of
triglyceride or placebo [102]. A lower neutrophil count
and TNFα and IL-6 levels were measured in patients
who received the emulsion.

This encouraging result involving volunteers led to per-
form a randomized placebo-controlled phase II multicen-
ter trial evaluating a phospholipid emulsion infusion in
Gram-negative severe sepsis. However, the Lipid Infusion
and Patient Outcomes in Sepsis (LIPOS) study failed to
reduce 28-day all-cause mortality or the onset of new
organ failure [103]. Timing of administration, no stan-
dardized protocol of care in this international study
recruiting in 31 countries, and the heterogeneity of the re-
cruited patients may explain these disappointing results.
To date, no randomized study using rHDLs or mi-

metic peptides in septic patients has been carried out.
However, Pajkrt et al. have tested the effects of rHDLs
in human endotoxemia [104]: 8 healthy male volunteers
were enrolled in a double-blind crossover randomized
placebo-controlled study. rHDLs given as a 4-h infusion
at the dose of 40 mg/kg dramatically reduced the
endotoxin-induced inflammatory response: rHDL infu-
sion reduced the endotoxin-induced clinical symptoms
(less chills, myalgia, backache, or vomiting) and import-
antly reduced the release of TNFα, IL-6, and IL-8 cyto-
kines. Moreover, rHDL infusion was associated with a
downregulation of CD14, the main LPS receptor on
monocytes. The same team also reported that rHDL in-
fusion can affect the fibrinolytic activity and can directly
influence platelet function by reducing platelet aggrega-
tion leading a modification of the procoagulant state as-
sociated with endotoxemia [105].

Conclusion
To summarize, in addition to its well-documented role in
reverse transport of cholesterol, HDLs display numerous
pleiotropic effects such as LPS neutralization, endothelial
protection, and antioxidant and anti-apoptotic properties.
Inflammation states and especially sepsis decrease dramat-
ically HDL levels and alter their composition, metabolism,
and function. These findings strongly support the thera-
peutic potential of rHDL or HDL mimetic peptide infu-
sion in sepsis. With an improvement of survival,
experimental studies involving rHDLs or HDL mimetic
peptides are encouraging. However, further experimental
studies are needed to better characterize this new concept
of HDL dysfunction that is markedly associated with a
poor outcome. A better comprehension of the function of
these particles should encourage the medical and scientific
community to initiate clinical trials aiming at testing the
effect of a HDL therapy in human sepsis.
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