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Abstract

Metabolic alterations in the critically ill have been studied for more than a century, but the heterogeneity of the
critically ill patient population, the varying duration and severity of the acute phase of illness, and the many
confounding factors have hindered progress in the field. These factors may explain why management of metabolic
alterations and related conditions in critically ill patients has for many years been guided by recommendations
based essentially on expert opinion. Over the last decade, a number of randomized controlled trials have been
conducted, providing us with important population-level evidence that refutes several longstanding paradigms.
However, between-patient variation means there is still substantial uncertainty when translating population-level
evidence to individuals. A cornerstone of metabolic care is nutrition, for which there is a multifold of published
guidelines that agree on many issues but disagree on others. Using a series of nine questions, we provide a review
of the latest data in this field and a background to promote efforts to address the need for international
consistency in recommendations related to the metabolic care of the critically ill patient. Our purpose is not to
replace existing guidelines, but to comment on differences and add perspective.
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Introduction
During the last decade, understanding of critical illness-
related metabolic changes has evolved following ad-
vances based on novel discoveries and clinical evidence
from prospective randomized controlled trials (RCTs).
In this review, we discuss the influence of these recent
findings on the daily care of critically ill patients, focus-
ing on nutrition as a cornerstone of metabolic care. Inte-
grating clinical trial data into individual patient care is
complex, so we have tried to group issues together into
discrete, clinically relevant questions, but acknowledge
that some aspects will inevitably fall into more than one
category.

Question 1: Should outcomes in clinical trials on
metabolic care be more patient-centered?
Medical progress has enabled effective treatment of
older and frail patients with higher severity of disease
than in the past. Since the trajectory of many ICU survi-
vors is characterized by long-term decline, survival as a
clinical trial outcome is not sufficient; functional,
patient-centered outcomes, such as years with good
quality of life and physical/cognitive function, also need
to be assessed [1, 2]. In 170 published RCTs of nutri-
tional therapy in the critically ill, the most common pri-
mary endpoint was nutrition-related complications
followed by mortality and length of stay [3]; among sec-
ondary endpoints, functional and/or long-term end-
points were uncommon.
Performing comparative effectiveness research using

functional outcomes can be difficult for ICU nutrition
interventions for several reasons, including that these
endpoints are difficult to define objectively and baseline
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status is currently often not quantified. The complexity
of the task to integrate results from scientific studies
into patient care should not be underestimated; compar-
ing control and intervention groups in randomized nu-
trition trials, as well as in meta-analyses and other
cohort studies, can be especially challenging [4]. Better
validated and standardized physical function outcomes
specific for this patient population are needed. One key
feature of critical illness is the extensive loss of muscle
mass beyond that attributable to immobilization alone
[5]. Loss of muscle mass portended high mortality for
ICU long-stayers of the past and remains important
today [6], but is no longer directly associated with mor-
tality, rather with functional autonomy. The associated
sarcopenia is a major contributor to the slow rehabilita-
tion process [7]. The lack of functional data in most
studies is thus regrettable when metabolic interventions
aim to attenuate the loss of muscle mass or lean body
mass. New non-invasive technologies may be helpful in
monitoring muscle wasting [8]. Frailty is also insuffi-
ciently represented in the present risk scores (i.e., APA-
CHE, SAPS), and measures of frailty need additional
development and validation.
Another problematic issue in ICU nutrition studies is

the time span between the nutritional intervention dur-
ing the initial weeks of critical illness and outcomes re-
corded several months later [2]. Because ICU patients
are likely to stay in the hospital at least twice as long as
they stayed in the ICU, treatment during the recovery
period and evaluation of patient-oriented outcomes dur-
ing follow-up is crucial. It is not uncommon that the nu-
trition regimen given during the ICU stay is immediately
discontinued after hospital or even ICU discharge and
nutritional deficits may persist or even worsen [9]. A
better record of the continuation of nutrition from the
protocol period to the study endpoint would greatly
benefit the validity of these studies.

Question 2: Have we characterized the underlying
biochemistry sufficiently?
Almost 100 years ago, David Cuthbertson and Francis
Moore described a three-phase model of the metabolic
response to acute illness: an early acute phase, character-
ized by instability, resistance to anabolic stimuli, and de-
creased metabolism, is followed by a catabolic phase in
the ICU and post-ICU, and finally, by a recovery, ana-
bolic phase. Many of the principles underlying this
model remain true [10]. It is plausible to consider that
nutrition treatment should be different in these different
phases [11] or, because the duration of each of the three
phases varies among individuals, as a result of different
presenting illnesses or injuries (e.g., trauma patients have
a higher resting metabolic rate than surgical or medical
patients) as well as different patient ages and body

weights [12], that it should be adjusted according to the
individual metabolic profile of a patient at a certain time
point. The challenge is how to detect and define these
profiles in individual patients, and how to adjust the pro-
tocols of nutrition studies accordingly.
Metabolomics, the identification and quantification of

metabolites within a biological system, is a promising
means of characterizing patients by their metabolic pro-
file, identifying clinical risk predictors, stratifying disease
severity, increasing understanding of the mechanism of
disease and examining the response to treatment or
intervention [13]. Metabolomics primarily focuses on
the final products of metabolism measurable at the
organ level or more commonly in the blood. Metabolo-
mic studies in sepsis have begun to characterize the bio-
chemistry of critical illness severity and outcome [14–
16]. However, issues with small sample sizes, single time
points, sample handling, analytical precision, metabolite
variability, large ranges of metabolite concentration, and
potential false discovery with multiple hypothesis testing
currently limit the applicability of this approach. Fur-
thermore, critical illness is a collection of syndromes of
differing causes with a lack of clearly defined diagnostics;
this complicates metabolic characterization. More funda-
mentally, even the most sophisticated observational re-
search will not be able to distinguish adaptive metabolic
responses to critical illness from responses that contrib-
ute to ongoing harm. Data quality can be enhanced by
collaborating with specialists in mass spectrometry and
bioinformatics and including clinical parameters in the
data analysis while adjusting for multiple testing for me-
tabolites in each sample. Discovery can be enhanced by
integrating biomarker data and measuring metabolite
changes at multiple time points and post-intervention.
Generalizability can be improved with larger sample sizes
and using naïve replication cohorts. Future application of
multi-omics technology (metabolomics, transcriptomics,
epigenomics, genomics) to existing biorepositories and in
interventional trials has the potential to boost focused
studies in critical illness, which may reveal potential new
mechanisms, diagnostic and therapeutic opportunities.
While omics techniques in combination with bioinformat-
ics may be able to identify possible new mechanisms or
pathways that are affected and directed, mechanistic stud-
ies are needed to verify them.

Question 3: How relevant is autophagy?
Cell metabolism during stress is altered to favor delivery
of energy and essential metabolic substances to vital or-
gans, rather than to fat and muscle, to enhance the
chance of survival. The neuroendocrine response to crit-
ical illness is marked by increased gluconeogenesis, gly-
cogenolysis, and concomitant insulin resistance, which
can contribute to hyperglycemia in severe illness. Critical

Wernerman et al. Critical Care          (2019) 23:318 Page 2 of 10



illness dramatically increases oxidative stress, leading to
DNA damage in addition to the oxidization of lipids and
proteins. A subsequent DNA damage response is chor-
eographed to protect the cell, which is regulated by dif-
ferential phosphorylation and ubiquitination. Severe
critical illness-related mitochondrial dysfunction results
in ATP depletion that is hypothesized to contribute to
organ dysfunction [17].
Autophagy is important for the maintenance of cellu-

lar and mitochondrial function [18] and is another as-
pect of cell metabolism that is altered during stress. The
highly conserved autophagy pathway degrades cytoplas-
mic components and damaged organelles and recycles
long-lived and damaged proteins. Autophagy is present
at low levels in almost all cells and is crucial to cellular
integrity and function. Critical illness is to some extent
an autophagy-deficient phenotype. Autophagy is stimu-
lated by starvation, oxidative stress, and infection and
suppressed by nutrients, insulin therapy, and, most
likely, other pharmacological treatments [19] (Fig. 1).
The induction of autophagy by nutrient starvation leads
to the provocative question of whether the feeding strat-
egy should take into account autophagy activation and
inhibition. Indeed, further suppression of autophagy with
exogenous nutrients may explain why some strategies of
enhanced medical nutrition—particularly amino acids—

resulted in delayed recovery or harm as observed in
some interventional nutrition trials in critically ill adults
(EPaNIC) [20] and children (PEPaNIC) [21]. Currently,
however, there is discordance between the evaluation of
autophagy and the clinical relevancy of what can be
measured. Moreover, suppression of autophagy is un-
likely to be the only mechanism explaining the increased
incidence of infections (EPaNIC & PEPaNIC) or even
mortality (INTACT) [22] observed with early enhanced
feeding.

Question 4: How important is gut dysfunction?
Gut dysfunction occurs as a result of acute gastrointes-
tinal injury in response to critical illness [23] and is often
associated with impaired effective delivery of enteral nu-
trients. Gut dysfunction in the critically ill includes gut
dysmotility, feeding intolerance, reduced small intestinal
macronutrient absorption, and altered defecation result-
ing in constipation or diarrhea. Gut dysmotility (im-
paired gastric emptying, altered intestinal contractility) is
common in critically ill patients and is exacerbated by
intra-abdominal hypertension/compartment syndrome,
positive pressure ventilation, high-dose catecholamines,
intravenous narcotics, and fluid overload. Small intestine
macronutrient absorption is impaired in critical illness
due to abnormal luminal digestion, as a result of gut

Fig. 1 Autophagy, metabolome, microbiome—the interplay of endogenous and exogenous substrates. Critical illness triggers autophagy, which
is concomitantly depressed by exogenous substrates. Intermediary metabolites can be captured in a more sophisticated approach summarized in
the metabolome. Further, microbiome-modulated metabolites may influence the metabolomic pool and vice versa be influenced by the degree
of underlying critical illness per se and associated treatment, particularly the use of antimicrobial agents
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dysmotility, gut microbiome changes (see next section),
and pancreatic insufficiency. Such impaired absorption
may lead to malnutrition and clinical symptoms includ-
ing abdominal distension, pain, and diarrhea. Moreover,
mucosal factors involved in brush border enzymatic di-
gestion, nutrient transport, and mesenteric blood flow
are altered by small intestinal nutrient absorption.
Carbohydrate malabsorption in the ICU is characterized
by a reduction in the number of small intestinal glucose
transporters [24]. Amino acid and fat absorption are also
attenuated [25].
The impact of duodenal or jejunal feeding on the

interaction between nutrients and gastric secretion
and the absorption of macronutrients and vitamins
has not been widely studied, and the use of post-
pyloric feeding to decrease the rate of pneumonia is
controversial [26]. Use of prokinetic agents (erythro-
mycin, metoclopramide) significantly reduces feeding
intolerance and risk of high gastric residual volumes
[27]. However, intolerance to enteral feeding, particu-
larly early in critical illness, may be considered an
adaptive response, which may challenge the classical
dogma of full early enteral nutrition in the acute
phase. One key problem with conducting clinical tri-
als in this field is that gut dysfunction is difficult to
evaluate objectively. This was noted by the developers
of the sequential organ failure assessment (SOFA)
who despite considering gut dysfunction as “very im-
portant” chose not to include it in the score [28].
Intestinal-type fatty acid-binding protein (I-FABP)
may be a potential marker of enterocyte damage [29].

Question 5: How important is the gut microbiome in
acutely ill patients?
The gut microbiome has an increasingly recognized role
in maintaining homeostasis [30]. Cross-talk signaling be-
tween commensal organisms and pattern recognition re-
ceptors on the gut epithelium and at the epigenetic level
sustains all aspects of mucosal defense, symbiosis, and
appropriate immune responses. This intimate cross-talk
may be further driven by microbiota-mediated metabol-
ite secretion and signaling, profoundly influencing
(patho)physiology, including endocrine, metabolic, and
nervous system function as a cause as well as a conse-
quence of critical illness (Fig. 1). Alterations in
microbiome-associated metabolite levels and activity are
implicated in the pathogenesis of a growing number of
illnesses. In critical illness, the microbiome undergoes a
loss of diversity, termed dysbiosis, loss of site specificity,
loss of key potentially beneficial commensal organisms,
and a shift toward dominant pathogens (“pathobiomer”)
[31]. Such alterations are associated with adverse out-
comes, and distinct patterns of microbial diversity may
serve as personalized biomarkers of prognostic value.

Enteral nutrition holds promise to preserve microbiome
diversity during critical illness by shifting away from stress
conditions of luminal nutrient scarcity and may positively
influence microbiome-mediated metabolite production.
Probiotics may also improve microbiome restoration and
outcomes, as shown in recent meta-analysis data [32]. Limi-
tations of these data include lack of a consistent probiotic
strain or dose across most conducted trials, and further, ad-
equately powered trials are needed. Fecal microbiota trans-
plantation may be a novel therapeutic strategy in these
patients via alteration of microbial ecology and restoration
of the microbiome diversity. Although fecal transplantation
activates immune clearance of pathogens, restores crypt
commensal microbiota, establishes stem cell regenerative
capacity, and suppresses inflammation, the literature in crit-
ically ill patients is scant. There is also potential for harm
when the gut barrier fails, such that fecal transplantation
should not currently be performed outside of a well-
conducted study or trial [33].

Question 6: What do we mean by individualized
management?
Provision of adequate nutrition has an important role to
play in the move toward individualized treatment and
development of precision intensive care medicine (Fig. 2).
However, to be able to implement this, we need tools to
monitor individual patient needs, their potential to
utilize the given nutrition, and their tolerance to feeding.
Yet, only a handful of biochemical markers of metabolic
function and nutrition, most notably glucose, triglycer-
ides, urea, lactate, electrolytes (PO4, Mg, K), and oxygen
utilization (PaCo2, VO2, and VCO2), in addition to ex-
ogenous insulin demand and measurement of energy ex-
penditure, are available at the bedside. No tools for
assessment of more specific aspects of metabolism and
nutrition, such as protein needs, are available. Energy ex-
penditure may be measured in the individual patient
using indirect calorimetry [34]. Modern devices are
highly accurate and user friendly, whereas the large
numbers of suggested equations to estimate energy ex-
penditure are less reliable [35]. However, although indir-
ect calorimetry is easy to perform in mechanically
ventilated patients at moderate FiO2, it is more challen-
ging in spontaneously breathing patients requiring the
use of masks, mouthpieces or hoods, where the use of
oxygen supplementation represents a problem. Never-
theless, indirect calorimetry is the only tool available to
measure the actual energy expenditure of a patient in
everyday clinical practice in order to tailor nutrition
therapy. Some studies using indirect calorimetry have
suggested reductions in infectious complications and
cost savings with individualized nutrition [36–38]; how-
ever, this type of individualized feeding has so far not
been tested in adequately powered RCTs [39, 40].
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Caution is necessary when transforming the measured
level of energy expenditure into a caloric target for nu-
trition therapy. During critical illness, exogenous nutri-
ents do not suppress endogenous substrate mobilization,
which is closely related to insulin resistance in critical
illness [41]. This phenomenon may lead to “overfeeding”
if the delivered nutritional energy is equivalent to the
measured energy expenditure; therefore, it is rational to
monitor the patient’s metabolic tolerance in order to
avoid overfeeding or refeeding particularly in the early
acute phase. Unfortunately, there is no good marker at
present of the amount of endogenous substrate mobi-
lized or for how long this particular alteration in metab-
olism persists. Refeeding hypophosphatemia has been
shown to be associated with unfavorable outcomes when
the caloric intake exceeds 50% of the caloric target in
the acute phase even when hypophosphatemia is cor-
rected [42–44]. Another concern is the U-shaped curve
describing the relationship between caloric intake and
outcomes in observational studies [45, 46]. It is
relevant to note that observational data suggest that
administration of > 80% of energy expenditure is asso-
ciated with higher mortality, although a recent large
RCT did not reveal any mortality difference between
22 and 30 kcal/kg/24 h [47].

Question 7: Is permissive underfeeding relevant?
Hypocaloric or permissive underfeeding is defined as pro-
viding < 40–60% of the calories required for daily energy
expenditure. Existing RCTs show no effect of permissive
underfeeding on mortality, with inconsistent effects on
functional outcomes, but also no harm [48, 49]. Trickle or
trophic feeding is defined as providing 20 kcal/h up to
500 kcal/day via the enteral route. There may be benefits
of using trophic or minimal enteral feeding, including in-
testinal epithelium preservation, amplified brush border
enzyme secretion, augmented immune function, preserva-
tion of epithelial tight cell junctions, and limited bacterial
translocation. However, recent large RCTs in the field do
not favor enteral over parenteral nutrition (CALORIES,
NUTRIREA-2) or high over moderate caloric intake
(TARGET) in terms of mortality endpoints [47, 50, 51].
Notably, none of these studies measured energy expend-
iture to establish caloric targets.
As the prevalence of obesity increases around the

world, better understanding of appropriate nutrition
therapy in obese critically ill patients is crucial [52].
Obese patients appear to be different to lean patients,
with many studies repeatedly suggesting better survival,
although the reasons for this “obesity paradox” are not
well understood [53]. Adjustment for nutrition status

Fig. 2 Proposed future approach to the application of prognostic and predictive enrichment strategies for metabolic care and individualized
nutrition in critical illness. Individuals are represented by circles filled with different colors to reflect patients with similar metabolic prognostic and
predictive characteristics
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abrogates the improved survival association seen in
obese patients, and obese patients with malnutrition do
not have a survival advantage [53]. Existing literature re-
garding the proposed strategy of hypocaloric (permis-
sive), high-protein feeding in obese patients is not well
substantiated by methodologically sound and adequately
powered trials.

Question 8: How can we define protein requirements?
Observational studies suggest that the daily protein intake
recommended for healthy individuals is insufficient for crit-
ically ill patients [45, 46]. As a result, all existing guidelines
recommend a higher protein intake in critically ill patients,
varying from 1.2–2.0 g/kg/day as compared to 0.80 g/kg/
day for the healthy, although these recommendations are
based on weak evidence. When 24-h nitrogen balances are
used as an endpoint, recommendations of > 2.0 g/kg/day of
protein have been proposed [54]. Yet, in prospective ran-
domized trials, protein doses > 1.2 g/kg/day did not provide
better 7-day nitrogen balance and did not improve patient-
centered outcomes [40, 55, 56].
In studies using observational registries and in selected

cohorts, high-protein intake has been associated with
improved survival [57]. Retrospective classification of
malnutrition or nutritional risk has generated hypotheses
that a high-protein intake may be particularly advanta-
geous in these cohorts. However, several small RCTs did
not demonstrate benefit with high protein [40, 58]. In
contrast, there are observational studies and post hoc
analyses of other RCTs suggesting that a high-protein
intake, particularly in the acute phase of critical illness,
may be harmful [59, 60]. This is the area where the
existing guidelines and expert opinions diverge the most.
We urgently need more insight into the kinetics of

protein synthesis and breakdown in relation to the phase
of critical illness and dose of amino acids/protein admin-
istered. As indicated earlier, nitrogen balance may not
be the ideal proxy to titrate dosing in amount or in tem-
poral pattern. Measurements of whole-body net protein
balance employing isotope-labeled amino acids may pro-
vide clarity in this situation [61, 62]. Amino acid oxida-
tion can be measured and then repeated to form a
temporal pattern. To correctly estimate the contribution
of the intake to the central pool of amino acids, it is im-
portant to measure the actual enteral uptake of amino
acids from the gut when enteral nutrition is given [25,
63]. Ignoring the central pool of amino acids in calcula-
tions of protein kinetics may significantly confound the
results. Smaller studies using this technology will enable
us to define the potential of the critically ill patient to
utilize nutritional protein and amino acids. Such studies
may then contribute to the design of more “successful”
large interventional nutrition trials thanks to protocols
more adapted to human physiology in critical illness.

The effects of protein intake combined with physical ac-
tivity in the acute phase as well as during rehabilitation
also need to be further investigated [64, 65].

Question 9: What about specific nutrients?
The individualized approach to nutrition also applies
to micronutrients, in particular those that cannot be
economized and reutilized. Supplementation of micro-
nutrients to ensure adequate daily dietary intake (as
recommended for healthy subjects [classical strategy])
must be differentiated from the effects of providing
micronutrients in higher doses (pharmacological ap-
proach). The latter approach has been extensively in-
vestigated, with large RCTs not showing beneficial
outcomes of pharmacotherapy [66, 67]. Use of immu-
nomodulating micronutrients, such as glutamine and
fish oils, to alter morbidity and mortality is controver-
sial [68, 69]. However, variations in doses, timing,
duration, single or cocktail use of micronutrients, and
target populations of critically ill patients were noted
in the studies conducted and the topic is still of great
interest.
For several nutrients, low concentrations are known to

be associated with unfavorable outcomes, but it is often
not clear whether this is related to the deficiency or the
nutrient level is a biomarker of severity [70, 71]. For ex-
ample, vitamin C cannot be synthesized in the human
body and consumption is increased in critical illness. En-
teral uptake is limited, recycling is impaired, and vitamin
C plasma concentration determinations are rarely avail-
able [72]. Single-center studies have reported dramatic
benefits with pharmacological doses of vitamin C, which
demand confirmation [73]. Well-designed ongoing
micronutrient trials of vitamin C, vitamin D, and selen-
ium [NCT02106975, NTC03333278, NCT03096314,
NCT03188796, NCT02002247] will further our under-
standing of specific-nutrient delivery and potentially
alter our approach to critical illness patient nutrition.
There are also endogenous substrates that may have

therapeutic implications and need to be considered in
special situations. In starvation, ketones may provide
50% of energy and up to 70% for the brain [74]. There
are reports of beneficial effects of oral ketone supple-
mentation in neurological conditions [75] or of intraven-
ous ketone solutions in animal models [76]. Presently,
there are no commercially available intravenous ketone
preparations.
Blood lactate levels are considered a robust biomarker of

altered oxygen utilization, mainly reflecting an impaired
microcirculation with a local oxygen deficit. However, there
are several other explanations for hyperlactatemia,
such as increased aerobic glycolysis, effects of cate-
cholamines and decreased clearance usually as a re-
sult of impaired liver function. Measuring pyruvate
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concentrations to determine the lactate/pyruvate ratio
could help to differentiate the source of lactate, but
reliable pyruvate analyses are not available. Both en-
dogenous and exogenous lactate can be a preferential
source of energy in critical metabolic situations for
several organs (brain, heart, muscle). Following so-
dium lactate infusion, improvements in cardiac output
and oxygenation occur during cardiac surgery and in
patients with acute heart failure [77, 78]. Interestingly,
the contribution of lactate to brain metabolism can
reach up to 60% [79]. Hypertonic lactate therapy en-
ables preferential utilization of lactate as suggested by
the reduction in both brain glutamate and intracranial
pressure (ICP), coupled with increased extracellular

pyruvate and glucose in patients with traumatic brain
injury [80]. Exogenous lactate can also be used to
control ICP in acute brain injury, but the clinical im-
plications remain to be established [81].

Conclusion: How we see the future
Recent basic and clinical science studies have
highlighted the importance of nutrition and metabol-
ism in critical illness and the progress that is being
made in our understanding of the physiology of me-
tabolism and nutrition handling. There are more high
impact clinical trials and well-designed observational
studies in this field than ever before. However, des-
pite our advances in knowledge, study results have

Fig. 3 Proposed schema for the determination of optimal nutrient administration in critical illness. Approach combines metabolic or nutritional
intervention with longer-term outcomes, data mining, omics, and evaluation of physiology and metabolism
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yet to substantially alter metabolic and nutritional
practice in critical illness and controversies remain.
Individualizing nutrition to the patient’s specific meta-
bolic profile and type of disease, comorbidity, and
body composition seems an important future step, al-
though will require a complete change in the way in
which patients are currently managed (Fig. 3).
Multiple guidelines for nutrition in the critically ill

exist, many produced and endorsed by societies in
nutrition and/or critical care [11, 82–84]. However,
because of the weakness of the supporting evidence
and the sometimes limited clinical plausibility be-
tween nutritional interventions and the reported out-
comes, experts disagree regarding optimal nutritional
approaches and conflicting recommendations have
sometimes been published, limiting global acceptance
and application. Much as the original Surviving Sepsis
Campaign guidelines provided general guidance for
sepsis management [85] and have changed clinical
practice, we, as a nutrition and metabolism commu-
nity within critical care, propose to build on the areas
of consensus presented here to find topics of broad
agreement within the global field of metabolic sup-
port, which can serve as fundamental principles to
guide practicing intensivists, enabling clinicians and
researchers to clearly distinguish areas of growing cer-
tainty from those requiring further investigation.
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