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Identification of subclasses of sepsis that
showed different clinical outcomes and
responses to amount of fluid resuscitation:
a latent profile analysis
Zhongheng Zhang1* , Gensheng Zhang2, Hemant Goyal3, Lei Mo4 and Yucai Hong1

Abstract

Background and objective: Sepsis is a heterogeneous disease and identification of its subclasses may facilitate
and optimize clinical management. This study aimed to identify subclasses of sepsis and its responses to different
amounts of fluid resuscitation.

Methods: This was a retrospective study conducted in an intensive care unit at a large tertiary care hospital. The
patients fulfilling the diagnostic criteria of sepsis from June 1, 2001 to October 31, 2012 were included. Clinical and
laboratory variables were used to perform the latent profile analysis (LPA). A multivariable logistic regression model
was used to explore the independent association of fluid input and mortality outcome.

Results: In total, 14,993 patients were included in the study. The LPA identified four subclasses of sepsis: profile 1 was
characterized by the lowest mortality rate and having the largest proportion and was considered the baseline type;
profile 2 was characterized by respiratory dysfunction; profile 3 was characterized by multiple organ dysfunction
(kidney, coagulation, liver, and shock), and profile 4 was characterized by neurological dysfunction. Profile 3 showed
the highest mortality rate (45.4%), followed by profile 4 (27.4%), 2 (18.2%), and 1 (16.9%). Overall, the amount of fluid
needed for resuscitation was the largest on day 1 (median 5115mL, interquartile range (IQR) 2662 to 8800mL) and
decreased rapidly on day 2 (median 2140mL, IQR 900 to 3872mL). Higher cumulative fluid input in the first 48 h was
associated with reduced risk of hospital mortality for profile 3 (odds ratio (OR) 0.89, 95% CI 0.83 to 0.95 for each 1000
mL increase in fluid input) and with increased risk of death for profile 4 (OR 1.20, 95% CI 1.11 to 1.30).

Conclusion: The study identified four subphenotypes of sepsis, which showed different mortality outcomes and
responses to fluid resuscitation. Prospective trials are needed to validate our findings.
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Introduction
Sepsis is one of the leading causes of mortality and mor-
bidity in the patients admitted to intensive care units
(ICU). Despite evolving concepts and advances in man-
agement, the mortality associated with sepsis remains
unexpectedly high. Many large clinical trials have been
conducted aiming to test whether any drugs (for

example, corticosteroids and ulinastatin) or other inter-
ventions (such as early goal-directed therapy, fluid strat-
egy) could reduce the mortality but have yielded
conflicting results [1–6]. One of the possible reasons
that these sepsis trials failed to identify positive results
was the problem of the case mix. Sepsis encompasses a
heterogeneous population with respect to the site of in-
fection, type of organism, genetic background, and coex-
isting conditions of the host. Thus, it is recommended
that the individualized patient care be mandatory to im-
prove survival outcome [7]. The concept of individual-
ized medicine is to identify subphenotypes of patients
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who present with distinct clinical characteristics and re-
spond to personalized interventions. For example, Calfee
et al. identified subphenotypes of acute respiratory dis-
tress syndrome which showed distinct clinical character-
istics [8]. In sepsis, many efforts have been made to
identify endotypes by using genomics and transcripto-
mics [9]. However, genotyping is not routinely per-
formed in daily clinical practice and thus such practice
remains in the research stage. It is also suggested that
individualized fluid strategy be implemented for sepsis
[10]. However, there is a lack of empirical evidence on
how to individualize patients with sepsis on the basis of
clinical variables. The study aimed to analyze data to see
whether subgroups could be detected. Electronic
health-care records (EHRs) were employed for the study;
the indicator variables for building a latent profile model
were readily available in daily clinical practice. Further-
more, the identified profiles were compared for their dif-
ferent responses to fluid input.

Methods
Critical care database
The critical care big data Medical Information Mart for
Intensive Care (MIMIC-III) was employed for this study.
MIMIC-III is a large, single-center database comprising
information relating to patients admitted to ICUs at a
large tertiary care hospital [11, 12]. MIMIC-III integrates
de-identified, comprehensive clinical data of patients ad-
mitted to the Beth Israel Deaconess Medical Center in
Boston, MA, USA, from June 1, 2001 to October 31,
2012. There were 53,423 distinct hospital admissions for
adult patients (16 years or above) admitted to ICUs dur-
ing the study period [11]. This study was an analysis of
the third-party anonymized databases with pre-existing
institutional review board (IRB) approval; thus, IRB ap-
proval from our institution was exempted.

Study population
In the third sepsis definition, sepsis was defined as
life-threatening organ dysfunction caused by a dysregu-
lated host response to infection [13]. In this study, we
screened patients with documented or suspected infec-
tion, plus the presence of organ dysfunction [14, 15].
The International Classification of Diseases, Ninth
Revision, Clinical Modification (ICD-9-CM) codes for a
bacterial or fungal infection were used to define infec-
tion (Additional file 1). A patient was defined to have
organ dysfunction if he or she had ICD-9 code as fol-
lows: unspecified thrombocytopenia (287.5), hypotension
(458.9), acute and subacute necrosis of liver (570), acute
kidney failure (584.9), anoxic brain damage (348.1), shock
without mention of trauma (785.59), encephalopathy
(348.30), transient mental disorders due to conditions
classified elsewhere (293.9), secondary thrombocytopenia

(287.49), other and unspecified coagulation defects
(286.9), defibrination syndrome (286.6), and hepatic in-
farction (573.4). If mechanical ventilation (procedures
ICD code: 96.70, 96.71, 96.72) was required, it was also
defined as organ dysfunction. The method was adapted
from Angus DC [16], and the Structured Query Language
(SQL) code could be found at https://github.com/
MIT-LCP.
Multiple hospital admissions from the same patient

were included as independent cases. Only the first ICU
admission was included for analysis for patients who had
multiple admissions to ICU.

Demographical and laboratory variables
The following variables were extracted from the
MIMIC- III database: age at the time of hospital admis-
sion, gender, admission type, sequential organ failure as-
sessment (SOFA) score, each component of SOFA score,
use of vasopressors (including dopamine, epinephrine,
norepinephrine, phenylephrine, and vasopressin), and
renal replacement therapy (RRT). SOFA score was calcu-
lated within the first 24 h after the ICU admission. The
laboratory variables included platelet count, activated
partial thrombin time (aPTT), international normalized
ratio (INR), and creatinine. Other clinical variables such
as urine output (UO) for the first 24 h, Glasgow Coma
Scale (GCS) score, mean blood pressure (BP), vasopres-
sors, and arterial partial oxygen pressure (PaO2) were in-
cluded. The median value was computed for variables
measured more than once during the first 24 h after ICU
admission. The lowest value of GCS score reported in
the first 24 h was used in the study.
The primary endpoint was hospital mortality, which

was defined as the status of patient survival at the time
of hospital discharge. Secondary endpoints included
length of stay (LOS) in the ICU and hospital. The
90-day mortality was also obtained by linking to the so-
cial security database by the database investigators.

Missing values
Variables with more than 40% missing values were ex-
cluded from the analysis (Additional file 1: Figure S1).
Variables such as base excess, albumin, and calcium had
missing values greater than 40% and were excluded from
the study. Multiple imputation was performed for the
remaining variables [17].

Latent profile analysis
Clinical variables were selected for constructing latent
profiles as indicator variables. Platelet count, aPTT, and
INR were used for the hematological system; creatinine
and UO were used for the renal function; GCS score
was used to assess the cerebral function, the circulatory
system was measured by the mean BP and vasopressors,
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and respiratory function was measured by PaO2 and par-
tial pressure of carbon dioxide (PaCO2). Multiple kinds
of vasopressors (including dopamine, epinephrine,
norepinephrine, phenylephrine, and vasopressin) were
recorded in the MIMIC-III database. Therefore, their
use was scaled by the standard deviation and centered at
mean and then combined as one variable. Continuous
variables were scaled to have similar variances. The
distributions of included variables were examined be-
fore analysis, and severely skewed data would be
transformed.
The goal of latent profile analysis (LPA) is to fit a mix-

ture of distributions. The keys are that the underlying
distributions must exist and the analyst must have the
variables that best separate out those distributions [18–
20]. In the study, the number of profiles was determined
by Bayesian information criteria (BIC) and bootstrap
likelihood ratio test (BLRT). Specifically, BIC was used
to compare models with different numbers of clusters or
specifying different parameterizations or both. Lower
values of the BIC are indicative of better model fit. BLRT
was used to assess the number of mixture components
in a specific finite mixture model parameterization. The
observed significance is approximated by using the boot-
strap for the likelihood ratio test statistic (LRTS). BLRT
computed P values for the comparison of k-class model
with (k-1)-class model [21]. A P value of 0.05 was used
to judge the statistical significance for the bootstrap like-
lihood ratio test. Furthermore, because the number of
patients should be sizable in each latent profile, we
pre-specified that the patient proportion should be
greater than 5% in any of the latent profiles [22]. The
clinical interpretation was also considered when deter-
mining the number of latent profiles. The LPA model
was first fit by using patients admitted before 2008 and
then validated in patients admitted after 2008. The final
LPA model was fit on the whole dataset.

Statistical analysis
Continuous variables were expressed as the mean
(standard deviation) or median (interquartile range, or
IQR) as appropriate and were compared between the
different profiles of sepsis using analysis of variance [23].
The CBCgrps package was employed for the statistical
description and bivariate inference [24]. Clinical out-
comes such as the mortality rate, LOS in the ICU, and
the entire hospitalization were compared between latent
profiles.
The multivariable logistic regression model was

employed to investigate the independent association of
fluid input and mortality outcome, and an interaction
between fluid input and latent profiles was included.
Other covariates included in the models were SOFA
score, age, gender, admission type, ethnicity, ICU types,

and the use of RRT. The covariates were selected be-
cause they were potential confounders as determined by
subject-matter knowledge. Odds ratio (OR) and relevant
95% confidence interval (CI) were reported for the im-
pact of each 2000 mL increase in fluid input on mortality
outcome.
All statistical analyses were performed by using R

package (version 3.4.3). A P value less than 0.05 was
considered to be statistically significant.

Results
Choose the number of latent classes
A total of 14,993 patients fulfilled the inclusion criteria
for the analysis. Models with different number of profiles
were compared. In patients enrolled before 2008, the
best number of profiles was 4, which was validated in
patients admitted after 2008 (Additional file 1: Tables S1
and S2). Then the LPA model was fit to the whole data-
set. The BIC and AIC values decreased from 3-class
model rapidly to the 4-profile model (dropped by
10,000) and remained relatively stable from 4- to
5-profile (decreased by 3000). The entropy dropped re-
markably from 4- to 5-profile model. The number of pa-
tients in each profile was less than 5% for the 6- and
7-profile models. Taken together, the 4-profile model
was chosen as the best one (Table 1).

Different clinical features between profiles
Clinical features of all the four profiles are shown in
Tables 2 and 3. Profile 1 (69%) was the largest group and
had the lowest mortality rate (16.9%) and was considered
the baseline type; profile 2 (9%) was characterized by re-
spiratory dysfunction (low PaO2 and high PaCO2); pro-
file 3 (11%) was characterized by multiple organ
dysfunction (kidney, coagulation, liver, and shock); and
profile 4 (11%) was characterized by neurological dys-
function (low GCS score) (Fig. 1). Table 2 shows that
profile 3 has the largest amount of vasopressor use and
the lowest BP.
Profile 3 showed the highest mortality rate (45.4%),

and profile 1 showed the lowest mortality rate
(16.9%). Profile 1 showed the longest LOS in the hos-
pital (P <0.001; Table 3). Profile 3 had the highest
SOFA score on day 1 (median 9, IQR 6 to 12),
followed by profile 4 (median 8, IQR 5 to 10). Profile
1 had the lowest SOFA score (median 4, IQR 2 to 6).

Fluid input
Overall, the amount of fluid input was the largest on day
1 (median 5115 mL, IQR 2662 to 8800 mL) and de-
creased rapidly on day 2 (median 2140mL, IQR 900 to
3872 mL). Patients in profile 2 received less fluid input
than all other profiles, and those in the profile 3 received
the largest amount of fluid input on day 1 (Table 3). In
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the multivariable regression model by adjusting for
SOFA score, age, gender, admission type, ethnicity, ICU
type, and the use of RRT, higher cumulative fluid input
in the first 48 h was associated with reduced risk of hos-
pital death for profile 3 (OR 0.89, 95% CI 0.83 to 0.95
for each 1000-mL increase in fluid input) and with in-
creased risk of death for profile 4 (OR 1.20, 95% CI 1.11
to 1.30). Of note, more fluid inputs were associated with
improved outcome in profile 3, which was consistent
with the fact that this profile was characterized by circu-
latory shock (lowest mean BP and elevated requirement
of vasopressor).

Clinical outcomes
By using profile 1 as reference, profile 3 (OR 2.16, 95% CI
1.88 to 2.47) was associated with increased risk of hospital
morality (Table 4). In the Cox regression model investigat-
ing independent predictors of 90-day survival (Additional
file 1: Table S4), profile 2 (hazard ratio (HR) 1.15, 95% CI
1.02 to 1.28) and 3 (HR 1.79, 95% CI 1.63 to 1.97)
showed increased risk of 90-day mortality as com-
pared with profile 1.

Sensitivity analysis
It is of concern that the elevated aPTT in profile 3 might
be explained by the use of heparin. Thus, sensitivity

analysis was performed by restricting to patients without
heparin (Additional file 1: Table S3). A subclass charac-
terized by elevated aPTT and vasopressor requirement
was identified (Additional file 1: Figure S2). The under-
lying subphenotypes were also verified by using latent
class analysis. As shown in Additional file 1: Table S5,
the best number of classes was 4 as judged by entropy.
Characteristics of the four classes are shown in Fig. 2.
Consistent with the result obtained by LPA, class 1 was
characterized by respiratory dysfunction, class 2 was the
baseline type, class 3 was characterized by neurological
dysfunction, and class 4 was characterized by multiple
organ dysfunction. Note that owing to the random
process, the class number may not be consistent with
the LPA model .

Discussion
This study identified four subclasses of sepsis: profile 1
was the baseline group characterized by low mortality out-
come; profile 2 was characterized by respiratory dysfunc-
tion; profile 3 was characterized by multiple organ
dysfunction involving kidney, liver, coagulation, and circu-
latory failure; and profile 4 was characterized by neuro-
logical dysfunction. Whereas profile 1 showed the lowest
mortality rate, profile 3 had the highest mortality rate.
Since the profile 3 was characterized by hemodynamic

Fig. 1 Characteristics of latent profile groups. The y-axis shows the standardized mean for each variable (that is, each variable is centered at the
sample mean and scaled by its standard deviation). Abbreviations: aPTT activated partial thrombin time, BP blood pressure, GCS Glasgow Coma
Scale, INR international normalized ratio, RR respiratory rate, UO urine output, VR vasopressor rate, WBC white blood cell count
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instability, an increased amount of fluid input in the first
two days was associated with improved mortality out-
come, after adjustment for multiple confounding factors.
For profile 4, more fluid input was associated with worse
outcome.
The study employed LPA to identify subphenotypes of

patients. There are a number of ways to perform agnos-
tic clustering, such as latent variable mixture modeling,
K-means clustering, and latent class analysis (LCA) [25–
27]. Whereas LCA allows only categorical variables, the
LPA allows continuous indicator variables. The main dif-
ference between LPA and other clustering algorithms is
that LPA provides a “model-based clustering” approach
that derives clusters using a probabilistic model that de-
scribes distribution of the data. So instead of looking for
clusters with some arbitrary chosen distance measure,

LPA fits a model that describes distribution of the data
and based on this model you assess probabilities that
certain patients are members of certain latent profiles.
Because LPA uses a statistical model, assessing goodness
of fit (GOF) is possible. The clustering method does not
allow the assessment GOF. Furthermore, we had as-
sumed that there were some processes or “latent struc-
ture” underlying the structure of our data. Thus, LPA
seemed to be an appropriate choice since it allowed us
to model the latent structure behind the data (rather
than just looking for similarities).
Several studies have focused on the identification of

subgroups of sepsis on the basis of the genomic and
transcriptomic data [28–30]. In the pediatric septic
shock, three subgroups were identified with subtype A
showing a higher mortality rate, pediatric risk of

Table 4 Association of fluid input and mortality outcome in different profiles

Variables Odds ratio Lower limit of 95% CI Upper limit of 95% CI P value

Age (each 10-year increase) 1.26 1.22 1.30 <0.001

SOFA 1.24 1.22 1.27 <0.001

ICU type (CCU as reference)

CSRU 0.72 0.58 0.89 0.002

MICU 1.12 0.98 1.28 0.086

SICU 1.14 0.96 1.35 0.140

TSICU 1.02 0.84 1.24 0.840

RRT (yes as reference) 0.74 0.63 0.88 <0.001

Admission type (elective surgery as reference)

Emergency 1.85 1.47 2.34 <0.001

Urgent 1.60 1.13 2.28 0.008

Gender (female as reference) 1.03 0.94 1.12 0.543

Ethnicity (Asian as reference)

Black 0.84 0.61 1.15 0.265

Hispanic 0.86 0.58 1.27 0.451

Unknown 2.01 1.49 2.74 <0.001

White 1.22 0.93 1.64 0.163

Vasopressor use (yes as reference) 0.78 0.70 0.88 <0.001

Profile (1 as reference)

Profile 2 1.15 0.96 1.37 0.123

Profile 3 2.16 1.88 2.47 <0.001

Profile 4 0.94 0.82 1.07 0.359

Interaction between profile and fluid inputa

1 0.99 0.96 1.02 0.615

2 0.94 0.82 1.06 0.318

3 0.89 0.83 0.95 0.046

4 1.20 1.11 1.30 <0.001
aFluid input was the cumulative fluid input for the first 48 h after intensive care unit (ICU) admission. Odds ratio of mortality was reported for each 1000-mL
increase in fluid input at each level of profiles. There was statistically significant interaction between profile and cumulative fluid input. To facilitate clinical
interpretation, the effect sizes (odds ratio) of fluid input within each profile were reported
Abbreviations: CCU coronary artery unit, CI confidence interval, CSRU cardiac surgery recovery unit, MICU medical intensive care unit, RRT renal replacement
therapy, SICU surgical intensive care unit, SOFA sequential organ failure assessment, TSICU trauma-neuro intensive care unit
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mortality (PRISM) score, pediatric sepsis biomarker risk
model (PERSEVERE)-based mortality risk, and max-
imum number of organ failures compared with other
subtypes [31]. Sweeney et al. investigated subtypes of
sepsis by using transcriptomics [32]. The study identified
three subtypes of sepsis, which were coined “coagulo-
pathic”, “adaptive”, and “inflammopathic” subtypes. In
our study, coagulopathy was found to be present in pro-
file 3, coexisting with other organ dysfunctions. Consist-
ent with our study, the coagulopathic type showed the
highest mortality rate. The adaptive subtype was equiva-
lent to profile 1 in our study, which showed the best
clinical outcome. However, transcriptomics are not rou-
tinely obtained in real clinical practice, which limited its
widespread applicability. To the best of our knowledge,
our study is the first to explore subphenotypes of the
sepsis by using the clinical variables obtained from EHR,
which would facilitate application of the results to daily
clinical practice. Since the different subclasses showed

different clinical presentations and responses to the fluid
strategy, our sepsis classification could be used to design
future trials. However, it is largely unknown whether tai-
lored treatment according to the classification system is
beneficial for patients with sepsis, and further trials are
required to test this hypothesis.
Clinical variables employed for modeling LPA in the

study included indicator variables for major organ dys-
functions that are typically involved in sepsis. The LPA
model showed that the organ dysfunctions were related
to each other with special patterns. For example, profile
3 was characterized by the multiple organ failure and
circulatory shock, supporting the notion that multiple
organ failures have common underlying pathophysio-
logical process of circulatory shock. There is evidence
that the circulatory shock usually coexists with coagu-
lopathy and the latter is a good prognostic marker for
survival outcome [33, 34]. Sepsis-associated encephalop-
athy (SAE) is an important complication of sepsis [35]

Fig. 2 Characteristics of classes identified by latent class analysis. The response category of 1 to 4 is the quartile category by cutting continuous
variables into four quartile categories. Category 1 refers to the lowest value and category 4 is the highest value. The vertical axis is the proportion
of each response category. Abbreviations: aPTT activated partial thrombin time, BP blood pressure, GCS Glasgow Coma Scale, INR international
normalized ratio, RR respiratory rate, UO urine output, VR vasopressor rate, WBC white blood cell count
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and can occur in up to 82% of patients with sepsis [36].
SAE presents with varying severity ranging from mild
confusion to coma. In this study, we identified a sub-
group of sepsis patients who were characterized by the
severe SAE with a median GCS score of 7 points. The
mortality rate of this subclass was the second highest
despite preserved functions of other organs, indicating
the importance of neurological injury in sepsis.
Several limitations must be acknowledged in this

study. First, this study used EHR data which were pro-
duced by routine clinical practice. Thus, having missing
values is a big problem. Although there are many sophis-
ticated methods to deal with missing values, significant
bias may be introduced for those with missing rates
greater than 40% [17, 37]. Thus, these variables were ex-
cluded from analysis. Multiple imputations were per-
formed for variables containing missing values. Second,
although restricting the variables used for modeling to
those available in clinical practice is reasonable, it may
limit the separation of classes. It would be better to use
biomarkers and genomics as well. However, the bio-
markers not routinely obtained were not available in the
database. Third, the study was limited by the lack of ex-
ternal validation and thus the results need to be vali-
dated in other external datasets. However, we performed
internal validation by splitting the whole dataset. The
LPA model was first fit in patients enrolled before 2008
and then the model was validated in patients admitted
after 2008. Fourth, fluid responsiveness was assessed ob-
servationally, as one of several exposures among several
subgroups; hence, this association is less robust than if
this were done within a randomized trial context. Fi-
nally, LPA does not provide a definitive class member-
ship but instead provides posterior probabilities of each
class and assigns the class with the highest posterior
probability. Because of this, there is uncertainty regard-
ing class membership (for example, patient A has 90%
probability of being in class 1, 2% in class 2, 4% in class
3, and 4% in class 4).

Conclusion
This study identified four subphenotypes of sepsis,
which showed different mortality outcomes and re-
sponses to fluid resuscitation. The subphenotypes need
to be validated in external datasets.

Additional file

Additional file 1: Figure S1. Missing rate for clinical and laboratory
variables extracted from the database. Variables with missing rate greater
than 40% were excluded from analysis. Figure S2. Characteristics of
latent profile groups by restricting to patients without using heparin.
Owing to the random process, the specific profile number may not be
consistent with the main analysis. Abbreviations: aPTT activated partial
thrombin time, BP blood pressure, GCS Glasgow Coma Scale, INR

international normalized ratio, RR respiratory rate, UO urine output, VR
vasopressor rate, WBC white blood cell count. Table S1. Latent profile
analysis restricting to patients admitted after 2008. Table S2. Latent
profile analysis restricting to patients admitted before 2008. Table S3.
Sensitivity analysis restricting to patients who did not receive heparin.
Table S4. Cox regression model to adjust for confounding for the 90-day
survival. Table S5. Choosing the best number of classes by using latent
class analysis. (DOCX 76 kb)
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