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Abstract

Sepsis is the leading cause of acute kidney injury (AKI) in the intensive care unit (ICU). Septic AKI is a
complex and multifactorial process that is incompletely understood. During sepsis, the disruption of the
mucus membrane barrier, a shift in intestinal microbial flora, and microbial translocation may lead to systemic
inflammation, which further alters host immune and metabolic homeostasis. This altered homeostasis may
promote and potentiate the development of AKI. As part of this vicious cycle, when AKI develops, the
clearance of inflammatory mediators and metabolic products is decreased. This will lead to further gut injury
and breakdown in mucous membrane barriers. Thus, changes in the gut during sepsis can initiate and
propagate septic AKI. This deleterious gut–kidney crosstalk may be a potential target for therapeutic
maneuvers. This review analyses the underlying mechanisms in gut–kidney crosstalk in septic AKI.
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Background
Acute kidney injury (AKI) is a serious complication in crit-
ically ill patients and its development is associated with a
high rate of mortality and morbidity as well as increased
costs [1]. Sepsis is the leading cause of AKI in the intensive
care unit (ICU), and 45 to 70% of all AKI is associated with
sepsis [2]. Dialysis requiring AKI, when associated with dis-
tant organ dysfunction such as cardiac or respiratory fail-
ure, is associated with mortality rates as high as 60 to 80%
[3, 4]. Septic AKI is a complex and multifactorial process,
and our understanding of its pathogenesis remains incom-
plete [5]. The current understanding of septic AKI involves:
microcirculatory abnormalities, renal tubular epithelial cell
metabolic dysfunction and injury, and inflammatory
changes [6].
Inflammation is a prominent component of septic AKI.

Sepsis and inflammation at the tissue and cellular levels
are associated with decreased levels of intracellular adeno-
sine triphosphate (ATP) and with mitochondrial injury in
the kidney [7]. It has been well described that higher

cytokine concentrations are associated with slower renal
recovery from AKI and increased mortality rates [8, 9].
The gastrointestinal tract (gut) is the most common

source of secondary infections which occur predominately
in the later stages of sepsis. The gut is home to 70–80% of
the body’s immune cells and at least hundreds of different
microbiome species [10]. In septic patients, inflammation
and hypoperfusion play an important role in the patho-
physiology of gut injury [11]. Gut injury may lead to im-
paired gut barrier function, which may result in
translocation of bacteria and toxins from the intestinal
lumen to the mesenteric lymph and systemic circulation.
Subsequently, this bacterial translocation may amplify the
systemic inflammatory response and contribute to mul-
tiple organ failure and death [12]. This dysregulated cross-
talk between the gut’s epithelium, immune system,
endogenous microflora, and kidney may lead to worsening
of systemic inflammation and potentiation of AKI [13]
(Fig. 1).
The understanding of the gut’s role in initiating septic

AKI has led to potential novel therapeutic targets that
are currently under investigations. In this review, we
summarize the underlying mechanisms of gut–kidney
crosstalk in septic AKI.
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The effect of septic AKI on gastrointestinal
function
During septic AKI, increased inflammatory cytokines as
well as impairment in the clearance of water and metabolic
products (urea in particular) can cause gut injury (Fig. 2).
Specifically, increased inflammatory cytokines can damage
gut barrier function and increase permeability. The gut’s
barrier function is due to apical tight junctions and junc-
tional adhesion molecules (JAM), which prevent luminal
contents from escaping into the local extra-luminal envir-
onment. During septic AKI, increased levels of cytokines
can act on these junctional complexes to modulate perme-
ability [14]. Intestinal hyper-permeability may result when
sepsis alters the expression of zonulaoccludens 1 (ZO-1),
any one of multiple claudin isoforms, or occludin in the
tight junction complex. Alternatively, hyper-permeability
may be induced by altering expression of components of
JAM [14]. Activation of myosin light chain kinase (MLCK)
by cytokines can also worsen para-cellular permeability.
MLCK phosphorylates myosin light chain, which results in
contraction or opening of the apical tight junction [15].
MLCK activation is associated with an increase in interleu-
kin (IL)-6, tumor necrosis factor α (TNF-α), and IL-1β. The

net result is an increase in intestinal permeability. The in-
creased intestinal permeability leads to an amplification of
the systemic inflammatory response in a positive feedback
response. The increased systemic inflammation further pro-
motes kidney injury.
During septic AKI, the dysfunction in clearance of

metabolic products and water can also directly weaken
the gut barrier and increase gut permeability. In septic
AKI, kidney dysfunction (with resulting retention of
uremic solutes, urea, sodium, and water) as well as ag-
gressive fluid resuscitation can cause a dramatic increase
in gut wall edema. This can cause disruption of the co-
lonic epithelial tight junction apparatus [16, 17]. Urea
diffuses from the blood into the gut lumen and is metab-
olized by gut bacterial urease to ammonia (CO(NH2)2 +
H2O→CO2 + 2NH3). The ammonia is converted into
caustic ammonium hydroxide (NH3 + H2O→NH4OH),
which is capable of disrupting tight junction proteins
that seal the gap between epithelial cells [17]. Break-
down of this protein triggers influx of luminal toxins as
well as bacterial translocation, thus promoting local and
systemic inflammation and further damaging the gut’s
barrier function.

Fig. 1 Effect of disruption of the gut mucosal barrier and bacterial translocation on the systemic inflammatory response in septic AKI. During
sepsis, the combined effect of disruption of the mucus membrane barrier, a shift in the composition and virulence of intestinal microbes, and
microbe translocation in gut lead to expansive inflammation, which will further alter host immune and metabolic homeostasis. The altered
immune homeostasis and systemic inflammation can promote AKI in sepsis
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Increased cytokine levels in septic AKI can lead to
dysregulation of gut stem cell proliferation/apoptosis
Toll-like receptors (TLRs) which act as pathogen recep-
tors are expressed on various types of epithelial cells,
including in the kidney and gut [13, 18]. Intestinal
stem cells express TLR4, which regulates whether
they proliferate or die by apoptosis [19]. On a cellular
level, crypt proliferation is markedly decreased and
both crypt and villus apoptosis are simultaneously
increased following sepsis [20]. Although epithelial
migration is slowed in critical illness in a TLR4-
dependent manner, changes in proliferation and
apoptosis overwhelm this slowed migration of cells,
resulting in a marked diminution of villus length during
sepsis [21]. Simultaneously, critical illness induces global
alterations in the mucus layer (reduced thickness, dimin-
ished luminal coverage, and poor adherence) and altered
gut barrier function [22]. Furthermore, increased cytokine
concentrations seen in septic AKI can impair gut cell re-
generation and stimulate apoptosis in a TLR4-dependent
manner [23]. The increased inflammatory cytokine levels
can also cause gut cell apoptosis directly. The net result is
that gut apoptosis can enhance hyper-permeability, bacter-
ial translocation, and expansion of the inflammatory re-
sponse [24].
To summarize, during septic AKI, increased inflamma-

tory cytokine concentrations and retention of urea as
well as other metabolites and water can damage the gut
barrier, leading to increased permeability. Impaired gut
barrier function results in translocation of bacteria and
toxins from the intestinal lumen to the mesenteric lymph

system and to the systemic circulation. Subsequently, this
bacterial translocation may amplify the systemic inflamma-
tory response and contribute to multiple organ failure and
death [12].

The role of the microbiome in gut–kidney
crosstalk
The intestinal microbiome is made up of more than 100
trillion microorganisms, and is continuously changing
over the life of the host, based on diet, age, drug intake,
and presence or absence of disease [25]. Increasingly, it
is recognized that the microbiome plays a crucial role in
the maintenance of health and that alterations in the
type, number, and function of microorganisms in the
microbiome can have a critical role on survival in critical
illness [26]. During septic AKI, elevation in inflamma-
tory cytokine levels as well as ischemia can induce
changes in the constituent organisms that make up the
microbiome of the gut. Importantly, the severity of in-
flammation can be modulated by the microbiome [25].
For instance, microbes or microbial products can ac-
tively change TLR expression in most cellular compart-
ments of the gut tract, and this alters the host’s ability to
sense and respond to the microbiota. Several other
changes occur in gut physiology in septic patients, due
to either extrinsic factors (antibiotics and parenteral
nutrition) or intrinsic factors (systemic inflammation
and gut leakage). These changes, in turn, influence the
composition of the enteric flora [27]. A massive loss of
microbe diversity occurs in patients with severe sepsis,
particularly loss of anaerobic diversity [28]. For instance,

Fig. 2 Effect of increased inflammatory cytokines and decreased urea clearance in septic AKI on the gut
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within 6 h after the onset of sepsis, 90% of the normal
anaerobic flora is lost in the gut [29]. In addition, critic-
ally ill septic patients relying on parenteral nutrition
commonly have thinning of the protective mucus layer.
This leads to a decrease in barrier integrity and the avail-
ability of immunomodulatory short-chain fatty acids
(SCFAs) in the gut [13, 30].
Commensal bacteria (which are lost in sepsis) catabolize

polysaccharides to generate SCFAs, and SCFAs play an im-
portant role in maintaining immune homoeostasis [31].
SCFAs can enhance the intestinal epithelial barrier function
and activate the development of regulatory T (Treg) cells
[31]. Monocytes are modulated by microbiota-derived
products to prime natural killer (NK) cells via the interferon
signaling pathway, which is pivotal in the immune response
against other viral infections [32]. Interestingly and as a
proof of the importance of the microbiome, therapy with
three microbiota-derived SCFAs (acetate, propionate, and
butyrate) can improve kidney function in a septic AKI
model [32]. This protection was associated with low levels
of local and systemic inflammation, oxidative cellular stress,
cell infiltration/activation, and apoptosis. In addition,
SCFAs ameliorated the effects of hypoxia in kidney epithe-
lial cells by improving mitochondrial biogenesis.

Effect of gut injury on the kidney in septic AKI
The impaired gut barrier function and bacterial transloca-
tion in septic AKI increase systemic inflammation, which

are associated with slow renal recovery and mortality [8,
9]. After gut injury, the increased permeability results in
translocation of bacteria and toxins from the intestinal
lumen to the mesenteric lymph and systemic circulation
[33, 34]. The influx of toxin contents can directly enter
the circulation [35, 36] and/or educate circulating im-
mune cells [37–39], which will cause an amplified inflam-
mation in septic AKI that shifts metabolism towards
aerobic glycolysis [40]. These changes are associated with
decreased levels of intracellular adenosine triphosphate
(ATP) and with mitochondrial injury in the kidney [7].
The decreased ATP synthesis and mitochondrial injury
are the main causes of kidney dysfunction and injury [9].
The increased inflammatory cytokines (especially TNF-α)
can induce kidney apoptosis through the extrinsic path-
way in septic AKI [41, 42]. Up-regulation of Bcl-2 consist-
ently blocks Bax and Bak activation, resulting in the
preservation of mitochondrial integrity and cell viability
and further supports the intrinsic pathway of apoptosis in
septic AKI [41] (Fig. 3).

The role of monocytes/macrophages in gut–kidney
crosstalk
Monocytes/macrophages play an important role in the ini-
tiation or progression of inflammatory diseases [43].
Inflammation is closely related to macrophage activation:
M1 macrophages exert pro-inflammatory activities, whereas
M2 macrophages are involved in resolving inflammation

Fig. 3 The different pathways (intrinsic and extrinsic) involved in renal apoptosis in septic AKI. ER endoplasmic reticulum

Zhang et al. Critical Care  (2018) 22:117 Page 4 of 8



[44] and in facilitating tissue repair [45]. Infection causes
monocytes to migrate and infiltrate into organs where they
differentiate via M1 or M2 pathways into pathogen-killing or
tissue-repair phenotypes, respectively. Therefore, strategies
that limit early macrophage infiltration or activation may
represent a novel approach in the prevention or treatment of
AKI in septic patients. However, the signaling pathway in-
volved in the repair mechanism of M2 macrophages needs
further investigation [46]. During sepsis, as the gut barrier
function is impaired, bacteria translocation and expanding
inflammation change the immune microenvironment, which
may determine the fate of macrophage differentiation in the
gut, kidney, or other distant organs into a more pro-
inflammatory phenotype.

Targeting the microbiome for therapeutic gain in
gut–kidney crosstalk
As the gut plays an important role in the progression
of inflammation and septic AKI, efforts to modulate
the gut microbiome and barrier function to improve
outcomes make great sense. Strategies include intake
of live microbiota, addition of the necessary nutrients
for microbiota regeneration, and administration of ex-
ogenous supplements such as SCFAs that are the
products of microbiota. Selective decontamination of
the digestive tract, probiotics, phosphate, and SCFAs
are the most studied interventions in this regard and
targeting the microbiome for therapeutic gain to
regulate the immune function is a promising strategy
to improve outcomes in sepsis. However, human data
are still evolving in this therapeutic area.

Selective decontamination of the digestive tract
Selective decontamination of the digestive tract (SDD)
uses non-absorbable microbials, which are applied
daily in the oropharynx and the gastrointestinal tract.
The aim of this intervention is to prevent secondary
colonization and overgrowth of potential bacterial
pathogens while preserving the anaerobic microbiota,
thereby preventing excess infectious disease in critic-
ally ill patients [47, 48]. As 90% of the normal anaer-
obic flora is lost after a sudden insult such as sepsis
[29], the addition of SDD to a septic AKI patient is
promising to rebuild the gut’s barrier, microbiome,
and immune function. The aim of this intervention is
to break down the continuous cycle of injury followed
by amplification of inflammation that occurs in the
gut–kidney crosstalk pathway [32]. A comprehensive
systematic review and network meta-analysis [48],
which encompasses more than 60 clinical studies and
ten meta-analyses, suggested that SDD can prevent
noscomial infections in critically ill patients and de-
creases overall mortality rates. However, randomized
controlled trials are still needed in this area.

Probiotics
Probiotics are live bacteria and yeasts that, when admin-
istered in adequate amounts, confer a health benefit on
the host. Although their clinical use is rising, data on ef-
ficacy are still emerging. In a murine cecal ligation and
perforation model of sepsis, the administration of the
probiotics Lactobacillus rhamnosus GG (LGG) and
Bifidobacterium longum (BL) improved mortality follow-
ing sepsis and prevented sepsis-induced changes in gut
epithelial apoptosis and proliferation [49]. Additionally,
probiotics can attenuate growth of pathogenic intestinal
bacteria, potentially limiting endotoxin production and
preventing bacteremia [50]. As a corollary to probiotic
administration, there is also increasing evidence that
fecal microbiota transplantation is significantly more ef-
fective in the treatment of recurrent Clostridium difficile
infection than standard antibiotic therapy by increasing
fecal bacterial diversity in recipients [51].

Short-chain fatty acids
SCFAs are microbial metabolic products of dietary fi-
bers, and the most studied SCFAs are butyrate, propi-
onate, and acetate. These metabolites are sensed by
the G-protein-coupled receptors (GPR) on intestinal
epithelium and can also diffuse across the epithelium
[13, 30] to affect enteric nervous and immune sys-
tems. SCFAs can directly affect Treg cells [52, 53],
neutrophils [54], monocytes [55], and mast cell [56]
through the GPRs expressed on them, which will
modulate the immune homeostasis of the body. It has
been shown in animal experiments that therapy with
three microbiota-derived SCFAs (acetate, propionate,
and butyrate) improved renal dysfunction in a sepsis
model, largely through epigenetic modulation of the
inflammatory process [32]. SCFAs were also sufficient
to up-regulate serotonin (5-HT) [57] . 5-HT can pro-
mote immune function of leukocytes by either enhan-
cing dendritic cell-mediated T-cell activation or
affecting macrophage polarization and phagocytosis
[58] (Fig. 4). This promising avenue of research re-
quires future study.

Other therapies
The most common treatment for septic AKI is continu-
ous renal replacement therapy (CRRT). CRRT can aid in
removal of uremic toxins, sodium, and excessive volume.
Thus, CRRT might positively impact gut wall edema and
lessen the risk of bacterial translocation; future studies
on CRRT should explore this possibility.

Conclusions
Many aspects of sepsis remain undefined, and the
interplay between the gut and kidney during septic
AKI remains an interesting avenue for investigation.
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During sepsis, the combined effect of erosion of the
mucus barrier, a shift in the composition and viru-
lence of intestinal microbes, and the inability of the
host epithelium to regulate its proliferative and apop-
totic responses may lead to a tipping point in gut
function where cascading inflammation drives AKI.
During AKI, the clearance of inflammatory mediators
is decreased, and metabolic products accumulate that
can increase systemic inflammation. The continuous
cycle of injury/amplification of inflammation can lead
to devastating consequences. In theory, rational ther-
apies aimed at restoring gut integrity, the micro-
biome, and the homeostatic balance between the two
systems represents an exciting avenue in the battle
against critical illness.
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