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Abstract

Catecholamines, in concert with fluid resuscitation,
have long been recommended in the management of
septic shock. However, not all patients respond
positively and controversy surrounding the efficacy-
to-safety profile of catecholamines has emerged,
trending toward decatecholaminization. Contextually, it
is time to re-examine the “maintaining blood pressure”
paradigm by identifying safer and life-saving alternatives.
We put in perspective the emerging and growing
knowledge on a promising alternative avenue: the
apelinergic system. This target exhibits invaluable
pleiotropic properties, including inodilator activity,
cardio-renal protection, and control of fluid homeostasis.
Taken together, its effects are expected to be greatly
beneficial for patients in septic shock.
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Septic shock is a life-threatening condition initiated by
an acute systemic inflammation with unbalanced host
responses to microbial infection [1]. Persistent
hypotension related to generalized vasodilation, refrac-
tory constrictive responsiveness, huge plasma capillary
leak syndrome, coagulation/fibrinolysis imbalance, and
metabolic disturbance highlighted by elevated blood-
stream lactates are hallmarks of worst outcome in this
critical condition [2]. Indeed, an alarming multiple organ
failure (MOF) occurrence, aggravated by sustained low
blood pressure/perfusion, is closely associated with high
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morbidity, long-term sequelae, and elevated mortality in
septic shock [3].
Preventing insufficient blood delivery to tissues is rap-

idly recommended as a first-line treatment of septic
shock after time-limited fluid resuscitation [2, 4]. This
mandates the administration of catecholamine vasopres-
sors such as norepinephrine (NE), a predominantly se-
lective α-adrenergic receptor (α-AR) agonist [4].
Importantly, hemodynamics bedside assessment reveals
a high prevalence of myocardial dysfunction which can
be detected early in up to 60% of septic patients [5]. In
such cases, when cardiac output remains low despite
fluid resuscitation (defined per se as a low-output septic
shock), additional stimulation of the β-adrenergic recep-
tor (β-AR) by administration of dobutamine is suggested
as a strong positive ino-/chronotrope drug [4]. However,
whether recommended or only attempted, refractoriness
of cardiac response to dobutamine is common in low-
output septic shock, which negatively affects treatment
efficacy and critically impacts survival, with increased
mortality rates of up to 90% [6, 7]. Thus, can we do bet-
ter than dobutamine? Yes, indeed, provided that lessons
taught by history are remembered [8].
In this respect, alternative therapies with better po-

tency/efficacy, less undesired effects, and improved
vaso-/cardio-protective impact are urgently needed. The
endogenous apelinergic system has recently emerged as
a compelling target to sustain cardiovascular function in
shock. Indeed, cardiac contractility and vascular tone,
fluid homeostasis and kidney function, as well as energy
metabolism, inflammatory response, and thrombosis are
all physiological hallmarks impacted by apelin receptor
(APJ) engagement (Fig. 1) [9–12]. Collectively, the above
effects would be beneficial in septic shock and related
conditions, with potential added value for outcome.
Considering the proven “druggability” of G-protein-
coupled receptors (GPCRs) and existing preclinical data,
we outline the promising therapeutic potential of the
apelinergic system in critically ill septic patients, with a
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focus on the stabilization of failing cardiovascular
hemodynamics and kidney function.

The need for decatecholaminization of critically ill
patients
Although useful vaso-/cardio-active agents to manage
septic shock, catecholamines increase oxidative stress,
interfere with cellular energy metabolism, disturb im-
munological response, and thus undermine their thera-
peutic value, sometimes exacerbating pre-existing
myocardial dysfunction in sepsis [6, 13, 14]. Moreover,
important endogenous fractions of mostly inefficient/ox-
idized circulating catecholamines combined with desen-
sitized β-AR contribute to the hyporesponsiveness of
cardiovascular sympathetic activation in septic shock
[15–17]. Consequential excessive exogenous catechol-
amines (including dobutamine) are used to increase

cardiac index, often without tangible benefits yet with
exacerbated side effects and worse outcomes [18]. Inter-
estingly, despite almost half a century of dobutamine
use, β-blocking the septic heart is now proposed for
cardioprotection, with recent evidence of the feasibility
and effectiveness at both preclinical and clinical levels
[19, 20]. Thus, rather than searching for a catecholamine
with the best pharmacological properties, a new para-
digm called “decatecholaminization” is proposed to par-
tially or completely spare exogenous catecholamine use
[21, 22]. Nonetheless, administering β-blockers is not
the only way to achieve cardiovascular protection, and
other non-adrenergic pathways hold great potential to-
ward such a goal (Fig. 2).
In this context, GPCRs are attractive targets for the

development of new drugs with beneficial cardiovascular
effects on sepsis. For instance, engagement of the

Fig. 1 Potential impacts of modulating the apelinergic system in human septic shock with multi-organ failure (MOF). Acute and continuous infusions of
the endogenous apelin receptor (APJ) ligands Apelin-13 (APLN-13) and Eleabela (ELA) display several beneficial effects in preclinical septic shock (i.e.,
endotoxin and cecal ligation and puncture models) as well as in sepsis-related organ failure. Both APLN-13 and ELA reduce bloodstream and tissue
inflammation, improve cardiovascular hemodynamics (e.g., enhanced inotropy, reduced pre- and after-load, as well as vascular permeability) and
enhance diuresis. Specifically, APLN-13 and ELA exhibit a differential interplay with the vasopressinergic system and therefore modulate fluid
homeostasis. APLN-13 alleviates pituitary AVP release, thus inducing low blood AVP and enhanced aquaresis. In contrast, ELA stimulates diuresis in a
pressure- and kidney-dependent manner without modified blood AVP, preserving functional water reabsorption and contributing to enhanced plasma
volume. Both APLN-13 and ELA infusions confer tissue protection and contribute to reduced mortality and improved outcomes in experimental septic
shock. Inhibition of platelet function has been recently described as a novel property of APLN-13, potentially relevant to septic shock, but not addressed
in this perspective. CNS central nervous system
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vascular arginine vasopressin (AVP) receptor V1A

represents a potential target in septic shock [23]. Indeed,
low-dose AVP infusion is helpful to restore vascular
tone, with catecholamine-sparing ability in septic pa-
tients, and additional beneficial effects have been ob-
served with selepressin (a selective V1A receptor agonist)
in both a relevant preclinical model of sepsis and septic
shock patients [24, 25]. Targeting the angiotensin system
could also be beneficial in patients with NE-refractory
shock, by acting on the angiotensin II (Ang II) type 1 re-
ceptor (AT1 receptor), another GPCR with strong vaso-
pressor activity [26]. However, AVP, Ang II, and all their
derivatives are pure vasopressors without obvious direct
supportive impact on the failing heart but result in
potential inappropriate increased myocardial workload
and, moreover, have significant drawbacks in unselected
patients. With these considerations in mind, our group
recently hypothesized that the inodilator properties (i.e.,
positive inotropic and vasodilator effects) of the
apelinergic system might offer superior therapeutic
value, compared to the standard of care, for the
treatment of low-output septic shock. By combining
those aforementioned capacities, apelinergic agonists
would improve arterial–ventricular couplings and overall
cardiac index delivery as well as organ perfusion.

Functional and protective cardiovascular impacts
of the apelinergic system
An unknown receptor sharing high sequence homology
with the angiotensin II type 1 receptor (AT1) gene was
identified in 1993 and denominated APJ (Apelin Peptide
Jejunum) [27]. This novel receptor, not activated by Ang
II, remained an “orphan” GPCR until 1998, when a pep-
tide isolated from bovine stomach homogenates was
identified as a selective ligand [28]. APJ is expressed by a
wide range of eukaryotic cells and is prevalent in the
central nervous system and peripheral organs, including
lung, heart, vasculature, and kidney [29]. APJ activation
is essentially triggered by two distinct endogenous pep-
tides, i) apelins (APLNs) and ii) the recently discovered
(in 2013) ELABELA (ELA; also known as Toddler or
Apela) (Fig. 2). APLNs are members of the neuropep-
tide/adipokine families, and are physiological regulators
of cardiovascular function, fluid homeostasis, and energy
metabolism [9, 10]. Mature endogenous APLNs—apelin-
36, apelin-17, and apelin-13 (APLN-13)—possess over-
lapping bioactive properties, but APLN-13 is the domin-
ant isoform detected in human heart, vessels, and
bloodstream [30, 31]. Physiologically, APLNs increase
cardiac contractility in isolated hearts with equivalent ef-
ficiency to isoproterenol but with a much more

Fig. 2 Hemodynamic drug support in septic shock-related myocardial dysfunction: pharmacological state-of-the-art evidence and new approach concepts.
Current recommendations after optimal fluid resuscitation are the introduction of adrenergic agonists with emphasis on the β1AR agonist dobutamine
when cardiac index remains low, and somewhat often a hyporesponsiveness/increased dosage profile along with β1AR myocardial down-regulation. In
spite of this decreased AR availability, cardioprotection and improved survival have been obtained with β1AR blockade. Apelinergic agonists offer cardio-
protection and improved outcomes with a high responsiveness/dosage profile at the pre-clinical side. References supporting assumptions are cited in the
text. ELA Eleabela
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sustained action through activation of protein kinase Cɛ
and extracellular signal-regulated kinase 1/2 signaling
pathways [32]. Additionally, myosin long-chain kinase
activation represents a downstream mechanism by
which APLNs could sensitize cardiac myofilaments to
Ca2+ [30]. Increased cardiomyocyte cytosolic pH and
intracellular Ca2+ content through sodium hydrogen
(NHE) and sodium calcium (NCX) exchanger activation
have also been suggested to be involved in APLN-
dependent stimulation of cardiomyocyte contractility
[33]. Lastly, APLN-dependent dromotropic effects
through sodium channel (INa) activation may potentially
confer antiarrhythmic abilities [34]. In vivo
hemodynamic impacts of APLNs (e.g., induced nitric
oxide-dependent and -independent decline in systemic
vascular resistance and after load; increased load-
independent myocardial contractility and enhanced car-
diac index and stroke volume) were confirmed both in
preclinical models [35, 36] and at the bedside in humans
[37]. Thus, APLNs are clearly members of the “inodila-
tor” family.
ELA, on the other hand, is a long peptide that also ac-

tivates APJ with similar binding affinity to APLNs [38].
First identified in a “noncoding” DNA region and then
ignored, ELA is a potent regulator of early cardiac devel-
opment in zebrafish [39]. ELA is highly expressed in un-
differentiated human embryonic stem cells [40] and
kidney [41], and has restricted expression in endothelial
cells of adult human vessels [42]. Very recently, an early
ELA defect was closely linked to hypertension-related
preeclampsia [43]. Beyond its role in development, the
ELA/APJ signaling axis is effective in promoting angio-
genesis and counteracting Ang II production in adult ro-
dents [44].
Recent results from our group and others demon-

strated that exogenous delivery of APLN-13 is beneficial
in experimental models of sepsis (e.g., endotoxemia,
peritonitis, burns), reducing MOF and improving out-
comes [12, 45, 46]. In fact, circulating and myocardial
APLN-13 levels are low or weakly reactive in experimen-
tal sepsis and septic shock patients [47]. Compared to
dobutamine continuous infusion, APLN-13 significantly
increases survival and robustly improves left ventricular
performance with reduced inflammation and stress [45].
Furthermore, APJ blockade exacerbates myocardial dys-
function and mortality in endotoxin-challenged rats,
suggesting that the endogenous apelin system does con-
tribute to counteracting life-threatening hemodynamic
alterations [45]. ELA is also powerful and stronger than
APLN-13 in stimulating healthy isolated hearts and im-
proving hemodynamics in rats with peritonitis. This su-
perior in vivo inotropic impact of ELA over APLN-13
was confirmed by others [41], including in right hearts
with pulmonary arterial hypertension (PAH) [42]. In

addition, continuous ELA infusion drives beneficial out-
comes over APLN-13 and optimizes pressure–volume
relationships of the Frank–Starling curve in a volume-
dependent manner [12]. This later observation seems at-
tributable to a differential interplay between APLN-13
and ELA with the vasopressinergic system in the regula-
tion of kidney water reabsorption. Reduction of circulat-
ing levels of pro-inflammatory cytokines induced by
APLN-13 and ELA also contributes, reducing myocar-
dial injury and systemic vascular permeability, with pre-
served plasma volume and hemodynamics [12].
Importantly, while sepsis dampens myocardial respon-
siveness to β1AR agonists, the apelinergic potency on
the cardiac response is boosted under systemic inflam-
matory conditions [45] or polymicrobial infection [12],
thus increasing its potential as a therapeutic target
(Fig. 2).

The apelinergic system in fluid homeostasis and
renal failure
Body fluid homeostasis is another important physio-
logical role of the apelinergic system that would be
beneficial in the management of the septic condition [9].
This system regulates both diuresis and thirst [48], and
both APLN-13 and ELA stimulate urinary output and
water intake [12]. Conversely, an abnormal fluid balance
was observed in APJ-null mice [49]. APLN-13 enhances
urinary output through direct and specific vasodilation
of efferent renal arterioles, and the expression of APJ in
collecting ducts further suggests aquaretic functions,
reflecting an APLN-driven specific interplay with the
vasopressinergic system [50]. Indeed, AVP binding to V2

receptors activates Gαs-mediated adenylyl cyclase activ-
ity and leads to aquaporin 2 (AQP2) apical docking,
driving water reabsorption and decreased diuresis. Acti-
vation of APJ coupled to Gαi counterbalances the action
of AVP, preventing AQP2 membrane re-localization
through adenylyl-cyclase inhibition [50]. APLNs also act
in the central nervous system, inhibiting AVP neuron ac-
tivity and consequent pituitary release in the blood-
stream, with increasing aquaresis [48].
During experimental sepsis, whereas continuous infu-

sion of APLN-13 or ELA both restore hemodynamics,
only ELA is effective in reducing kidney dysfunction/in-
jury and significantly improves fluid homeostasis, thus
limiting hypovolemia [12]. Indeed, APLN-13 infusion
lowers blood AVP levels in rats with peritonitis and tilts
urinary balance toward undesired aquaresis with subse-
quent plasma volume loss. Conversely, ELA, which over-
all shares APLNs’ physiological effects, does not modify
blood AVP content and improves fluid balance through
preserved AVP-dependent renal water reabsorption.
Moreover, ELA reduces sepsis-induced kidney acute in-
jury and inflammation compared to APLN-13 [12]. Such
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observation is consistent with the exhaustion of AVP re-
lease observed in human sepsis, which is suspected to
promote sustained hemodynamic failure and immune
dysfunction [51, 52]. Indeed, AVP supply affords a non-
catecholaminergic pathway to limit hypotension in pa-
tients with septic shock [23]. These findings indicate that
ELA and APLN-13 differentially affect the cardio–renal
axis, mainly through opposing effects on vasopressiner-
gic system counter-regulation, especially on an AVP-
driven pathway, which could be centrally mediated and
possibly related to the existence of an alternative cell-
surface receptor yet to be discovered [40], or to distinct
cellular outcomes of ELA binding to APJ.
This opens a wider discussion on the opportunity to

optimize biased apelinergic agonists by modulating their
structure–signaling relationship, with the final objective
of selecting molecules specific for individualized clinical
phenotypes.

Potential of biased apelinergic agonists to
improve hemodynamic support in septic shock
During the past decade, advances in APLN research
have revealed a ligand-dependent physiological response,
suggesting several signaling pathways downstream of
APJ. Traditionally, GPCR activation was considered to
stimulate indiscriminately both G protein-dependent
and -independent pathways, irrespective of ligand struc-
ture (Fig. 3) [53]. However, some ligands can selectively
activate favorable pathways and/or block the contribu-
tion of undesirable ones, leading to the concept of

biased signaling. Fundamentally, this concept (i.e., func-
tional selectivity) adds an additional layer of complexity
to our understanding of the pharmacological action of

drugs targeting GPCRs (Fig. 3) [54]. It can be harnessed
advantageously, through drug design and structural
modifications, to primarily trigger desired cellular out-
comes in the hope of significantly improving risk/benefit
ratios in pathophysiological conditions. Indeed, previous
studies have already demonstrated the value of targeting
the apelinergic system in cardiovascular processes such
as heart failure, leading to the discovery of biased APJ
agonists [55].
According to current knowledge, canonical APJ signal-

ing involves Gαi activation after stimulation by APLNs,
leading to inhibition of adenylyl cyclase, decreased intra-
cellular cAMP, and subsequent physiological effects [28].
As mentioned above, a specific interplay between natural
apelinergic agonists (e.g., APLN-13 vs ELA) and the
vasopressinergic system could induce distinct APJ/Gαi-
driven outcomes on fluid balance and renal or cardiac
functions during experimental sepsis. APJ activation also
commits scaffolding proteins β-arrestins, which typically
promote receptor internalization and initiate G-protein-
independent signaling cascades [56]. Interestingly, β-
arrestin signaling has beneficial properties with regard to
inhibiting sepsis-related inflammatory response [57].
Furthermore, β-arrestin overexpression dramatically at-
tenuates sepsis-induced myocardial dysfunction [58].
Consistent with these experimental data, our group is

currently elucidating the structure–activity relationship
of APLNs and ELA, providing insight into binding and
signaling to discover novel APJ biased ligands [38].
Overall, biased compounds are critical tools to improve

the understanding of APJ-mediated cellular processes
and their physiological consequences. Ultimately, those
with advantageous effect(s) or devoid of undesirable

Fig. 3 The concept of biased signaling. a) In the classic model, ligand L1 binds and elicits a set of signaling pathways leading indiscriminately to
multiple physiological effects. b) In biased signaling, ligand L2 biases the receptor toward signaling pathway 1, whereas ligand L3 induces bias for
pathway 2, leading to distinct physiological outcomes
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effects and associated with specific signaling pathways
can be selected and trialed in sepsis or any other indica-
tion potentially associated with GPCR targets. To date,
the jury is still out and investigations to associate APJ
signaling with in vivo phenotypic cardiovascular and
renal functions is a conundrum that will have to be
solved with the help of biased agonists demonstrating
beneficial therapeutic impacts and reduced undesired ac-
tivities in sepsis.

Conclusions
After its “first-in human” pilot study, the apelinergic sys-
tem recently gained credibility at both the preclinical
and early clinical stages as a potential therapeutic in
chronic heart failure. Although exhibiting enriched
pleiotropic abilities, recent evidence supports its protect-
ive impact on the cardiovascular and renal axes, which
are prevalently compromised in septic shock with an
acute myocardial dysfunction. Further knowledge and
the development of dedicated biased agonists are ongoing
and mandatory to bring to the market a new family of
apelinergic drugs able to substitute for catecholamines in
the treatment of sepsis.
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