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Abstract

Precision medicine is increasingly touted as a groundbreaking new paradigm in biomedicine. In the ICU, the
complexity and ambiguity of critical illness syndromes have been identified as fundamental justifications for the
adoption of a precision approach to research and practice. Inherently protean diseases states such as sepsis and
acute respiratory distress syndrome have manifestations that are physiologically and anatomically diffuse, and that
fluctuate over short periods of time. This leads to considerable heterogeneity among patients, and conditions in
which a “one size fits all” approach to therapy can lead to widely divergent results. Current ICU therapy can thus be
seen as imprecise, with the potential to realize substantial gains from the adoption of precision medicine approaches.
A number of challenges still face the development and adoption of precision critical care, a transition that may occur
incrementally rather than wholesale. This article describes a few concrete approaches to addressing these challenges.
First, novel clinical trial designs, including registry randomized controlled trials and platform trials, suggest ways in
which conventional trials can be adapted to better accommodate the physiologic heterogeneity of critical illness.
Second, beyond the “omics” technologies already synonymous with precision medicine, the data-rich environment of
the ICU can generate complex physiologic signatures that could fuel precision-minded research and practice. Third, the
role of computing infrastructure and modern informatics methods will be central to the pursuit of precision medicine
in the ICU, necessitating close collaboration with data scientists. As work toward precision critical care continues, small
proof-of-concept studies may prove useful in highlighting the potential of this approach.
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Background
Spurred by advances in genomics and big data analytics,
precision medicine is increasingly touted as a groundbreak-
ing new paradigm in biomedicine. Broadly construed, the
term “precision medicine” describes an approach to disease
prevention and treatment that exploits the multiple distinct
characteristics of each individual (in gene, environment,
and lifestyle) to maximize effectiveness [1]. Early advances
in precision medicine have largely occurred in oncology,
where both diagnosis and treatment are increasingly based
on genomic features. Better success rates from the treat-
ment of her2-positive breast cancer [2] and EGFR-positive
lung cancer [3] highlight the potential of precision medi-
cine to lead to widespread changes in clinical practice.
Growing interest is also reflected in new large-scale preci-
sion health projects, such as the NIH-sponsored Precision

Medicine Initiative in the United States and the NHS-
sponsored 100,000 Genomes project in Great Britain, as
well as by citizen support for such ventures [4].
Enthusiasm for precision medicine can be seen across

the spectrum of biomedical research, not only in oncol-
ogy but also in cardiology [5], pulmonology [6], allergy
[7], psychiatry [8], and public health [9]. Recently, a
potential role for precision medicine in the ICU has also
been discussed [10–18]. These discussions point to both
the complexity and the ambiguity of critical illness syn-
dromes as the fundamental justification for a precision
approach. As inherently protean entities, common ICU
conditions like sepsis, acute respiratory distress syn-
drome (ARDS), acute kidney injury, and delirium have
manifestations and sequelae that are physiologically and
anatomically diffuse, and that fluctuate over short pe-
riods of time. This leads to considerable heterogeneity
among patients, and conditions in which a “one size fits
all” approach to therapy can lead to widely divergent
and even contradictory results [11, 19–21].
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Important differences between patients—including dif-
ferences in pathophysiology and variable risk of experi-
encing adverse events—are even seen in well-designed
randomized clinical trials, in which patients are enrolled
based on clinically defined syndromes [22]. This hetero-
geneity of treatment effect (HTE) may lead to significant
variability in the overall benefit that patients stand to
receive from the treatment under investigation. In these
ways, current ICU therapy can be seen as imprecise, and
thus has the potential to realize substantial gains from
precision medicine approaches.
Recent studies suggest some ways in which complex

ICU syndromes can be parsed into subtypes. Gene ex-
pression analysis has been used not only to differentiate
sepsis from clinically similar non-infectious states [23],
but also to distinguish molecularly defined subtypes of
sepsis and septic shock [24–26], and to estimate how
likely those subtypes are to respond to various
treatments, such as corticosteroid therapy [27]. Targeted
sequencing of candidate genes has been used to identify
single nucleotide polymorphisms associated with either
favorable or unfavorable outcomes in both sepsis [14, 28]
and ARDS [29]. Genome-wide association studies
(GWAS) of sepsis [30] and ARDS [31] have begun in
earnest, and several pharmacogenes have also been identi-
fied that might add precision to the prescribing of drugs
used in sepsis, such as norepinephrine, vasopressin, and
corticosteroids [32].
Beyond genomics, greater precision has also emerged

from other types of data. Clinical data have been used to
identify four distinct subtypes of sepsis using machine
learning techniques [33]. Serum biomarkers have shown
promise in differentiating septic patients with ARDS
from those without [34], and in classifying ARDS as due
to either direct or indirect injury to the lungs [35]. Clin-
ical data including vital sign measurements, ventilator
settings, and laboratory data have been used alongside
serum biomarker data to identify two physiologically dis-
tinct subtypes of ARDS [36]. These subtypes, also called
endotypes, correlate not only with mortality, but also
with a favorable response to specific therapeutic maneu-
vers such as ventilation with high PEEP [36] and conser-
vative fluid management [37].
The recent identification of critical illness subtypes

points to a growing need to harmonize them with pre-
cise therapies. But despite early gains in this new area of
inquiry, the path to precision in the ICU is far from
clear. In what follows we explore some of the challenges
facing precision medicine in the ICU, along with specific
measures to address these.

Challenges of precision medicine
While there are compelling reasons to believe that crit-
ical care has much to gain from a precision medicine

approach, such a pivot could be disruptive in many ways.
ICU practice differs from that of the outpatient clinics
where precision medicine programs are currently being
developed; no template exists to guide its deployment in
acute care settings. In defining a path to precision in the
ICU, practitioners and researchers will confront the
same challenges facing the precision medicine move-
ment in general, along with obstacles unique to the fast-
paced environment of the ICU.
Among the many possible challenges, we foresee three

ways in which operationalizing precision medicine in the
ICU may prove difficult. First, testing of individualized
therapies implies ever-smaller cohorts of patients, meeting
increasingly narrow eligibility criteria. Following the logic
of precision medicine to its inevitable conclusion—namely
that every patient is unique—leaves us with countless
“n of 1” scenarios, a condition that, except in rare cases, is
incompatible with current experimental approaches. This
could lead to significantly longer recruitment times,
increased complexity, and increased costs in carrying out
clinical trials.
While this circumstance confronts all potential applica-

tions of precision medicine, the implications may be most
evident in the ICU where multiple comorbidities, interac-
tions between concurrent therapies, and rapidly changing
physiologic states all enhance disease complexity. These
added exigencies stand to complicate the time-sensitive
task of recruiting acutely ill patients—many of whom lack
decision-making capacity—into clinical trials.
Second, the process of developing and validating novel

biomarkers to enhance treatment precision is long and
onerous, with significant scientific, regulatory, and
commercialization hurdles to be cleared. Despite more
than 1000 publications on genetic polymorphisms in
sepsis—a condition known to have important genetic de-
terminants [38, 39]—none has led to the development of
a so-called “companion diagnostic” test that would
match patients with specific genotypes to a correspond-
ing therapy [32]. Furthermore, to be useful in the ICU,
diagnostic tests must be deployable at the point of care,
with rapid turnaround times and low barriers to use.
While today’s genome-wide technologies may be useful
for biomarker discovery research, they are too slow for
use in the ICU. Other biochemical, physiological, or
clinical biomarkers may be more readily available, lead-
ing to greater utility in ICU settings.
Third, the vast quantities of ICU data needed to fuel

precision medicine research are seldom readily available.
Although most ICUs generate gigabytes of data each
day, only a small fraction is accessible for research pur-
poses [40]. Vital sign waveforms are often purged from
bedside monitors at the time of ICU discharge. The use
of electronic medical record (EMR) data is hindered by
poor interoperability between platforms, legal and
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regulatory barriers to access, and questions of data
validity and reliability [41]. Genome-wide data from the
ICU remain relatively scarce, although genomic data
generated for other purposes—such as clinically directed
pharmacogenomic testing or personally directed sequen-
cing done through direct-to-consumer products—have
the potential to address this scarcity in part. Nonethe-
less, barriers to access and interpretability continue to
limit the utility of these data. Critical care data infra-
structure at the hospital and health system levels re-
mains underdeveloped, undermining efforts to advance
precision medicine in the ICU.

Novel approaches to clinical trials
The precision medicine movement boldly confronts
current practices in clinical research, in which large-
scale randomized controlled trials (RCTs) recruit a het-
erogeneous group of patients in order to study the effect
of an intervention. Within this framework, results are
presented “on average” in a way that is antithetical to
the precision ethos. With only a small minority of crit-
ical care RCTs yielding actionable evidence [19, 42],
large-scale trials of heterogeneous patient populations
are not achieving the goal of demonstrating the potential
positive effect of the therapies studied. Changing funding
priorities increasingly value innovative trial designs over
expensive and time-consuming mega-trials. New trial
designs are therefore needed [43–45].
One approach is to recruit more homogeneous groups

of patients, with the hope that reducing population het-
erogeneity will increase the magnitude of the treatment
effect [11, 19, 45, 46]. While the idea of studying an
array of individual endotypes is daunting, a first approach
is to start in earnest, by dividing a syndrome into just two
distinct subtypes. This strategy was adopted by the MON-
ARCS trial, which studied the effects of afelimomab—a
monoclonal antibody to TNF-α—in the setting of septic
shock [47]. The authors hypothesized that the study drug
would be most effective in patients with high baseline
levels of IL-6, and found that while the study population
as a whole showed no difference in mortality, patients
with elevated IL-6 levels realized a modest benefit.
As traditional RCTs become more precision oriented,

we will be confronted with a more limited pool of
patients, and will be forced to accept a smaller sample
size, a longer time horizon for recruitment, or some
degree of both. But by including only an enriched group
of patients, a loss in statistical power due to smaller
sample size may be offset by a gain in effect size.
Other potential solutions to the problem of narrow

eligibility criteria involve entirely novel trial designs.
One such design is the registry-based randomized con-
trolled trial (RRCT), which capitalizes on data collected

routinely for other reasons [48]. Patients being entered
into an existing registry who meet prespecified enroll-
ment criteria can be approached for consent and ran-
domized; the screening, data capture, and outcomes
measurement are all built in. The TASTE trial examining
the use of thrombus aspiration in ST-segment elevation
myocardial infarction used a RRCT design, resulting in
substantial cost savings and rapid recruitment [49]. This
strategy allows investigators to control costs, focus on
patient recruitment, and still benefit from the power of
randomization to draw the strongest possible conclu-
sions about causation. Enhanced precision may then fol-
low from enhanced recruitment that can more readily
identify patients of a given subtype.
By screening vast groups of patients—theoretically

those of an entire jurisdiction, health system, or investi-
gator collaborative—RRCTs could systematically identify
cohorts with specific characteristics, fulfilling the preci-
sion medicine mandate to study narrowly construed
subgroups. Real-time data collection and analysis could
augment this capability by enabling electronic surveil-
lance systems (ESSs)—so-called “sniffers”—to rapidly
identify suitable patients. The sniffer concept is perhaps
best illustrated by the METRIC Data Mart, a clinical
data warehouse built from the data of ICU patients at
the Mayo Clinic [50]. METRIC receives EMR data
uploads with a lag time of only 15 minutes, making it
capable of rapid screening and detection of changing
clinical states. METRIC sniffers have been used to ex-
pedite clinical research by identifying patients with acute
kidney injury [51] and sepsis [52] in real time, so that
study personnel can be notified quickly when patients
meet enrollment criteria. In the case of the sepsis study,
enrollment rates doubled after sniffer implementation.
A number of health jurisdictions are already posi-

tioned to turn existing registries into real-time alerting
and reporting systems capable of supporting RRCT and
ESS methodologies. In the Netherlands, nearly all of the
90 hospitals with ICUs contribute patient-level clinical
data to a registry that now contains information on
more than half a million ICU admissions [53]. The
Australia and New Zealand Intensive Care Society
(ANZICS) registry contains detailed clinical data on
some 1.3 million admissions from more than 140 ICUs
[54]. Nearly 20 countries have some form of ICU regis-
try, with newer coalitions such as the International
Forum for Acute Care Trialists (InFACT) raising the
possibility of future international ICU registries [55].
Another new trial design for enrichment of treatment-

responsive patient populations is the platform trial, so
named because of the experimental platform used to
conduct the study, which may persist thereafter and pro-
vide ongoing support for research and practice [56]. This
design uses response-adaptive randomization to test a
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variety of treatments—either alone, in combination, or
in different sequences—among a group of patients with
a particular disease of interest. Heterogeneity within the
study population is tackled explicitly, with precise sub-
groups defined at the outset. Patient randomization is
weighted toward therapies that are likely to be more ef-
fective in subsequent clinical trials, based on Bayesian
analysis of study data accrued to date. Treatments that
prove less effective are eventually dropped, as are patient
subgroups for which no effective treatment is identified.
Only a handful of studies have as yet used a platform de-
sign, but the approach has the potential to rapidly and
efficiently evaluate the harmonization of precision diag-
nostics with tailored therapies.
In critical care, a platform design is being used in a large

European study of community-acquired pneumonia
(AD-SCAP) to test various combinations of antibiotics,
steroids, and ventilation strategies (ClinicalTrials.gov
NCT02735707). The complex forecasting used in plat-
form trials relies on vast quantities of data to probabilistic-
ally match patients with distinctive disease traits to the
most promising therapies. These features suggest platform
trials could serve as a first step toward precision medicine,
in that they enroll a heterogeneous group of patients but
allow for subtype-specific analysis in real time. This stands
to lessen the chance that a clinical trial returns negative
results due to differential treatment effects.

Beyond genomics
The precision medicine movement is closely linked with
genomics, and increasingly with other “omics” technolo-
gies, including epigenomics, proteomics, and metabolo-
mics. These data have already been used in critical care
research, including one study identifying metabolomic
profiles that correlate with ICU survival [57], and others
that investigate the role of the microbiome in critical
illness [58]. However, most omics-based tests are still
too slow to be useful in the ICU, and the data they gen-
erate do not readily inform clinical decision-making.
Researchers must therefore look to other sources of data
that better lend themselves to rapid collection and
analysis.
Some investigators have looked at ways to downsize

whole genome disease signatures to the smallest number
of genes possible. Examples include an 11-gene signature
to distinguish sepsis from non-infectious inflammatory
states [23], and a two-gene signature to classify infection
in children as either viral or bacterial in origin [59]. In one
study, a gene expression signature was used to identify
pediatric patients with sepsis who were at increased risk
of acute kidney injury [60]. The serum protein levels of
two of these gene products showed high sensitivity for
identifying this condition. In another study [61], a 63-gene
expression signature was identified that performed well in

differentiating uncomplicated from complicated clinical
trajectories following trauma. Based on this gene set, the
investigators developed a novel assay using nanoString
“molecular barcoding” technology that was able to
generate an easily understandable composite score with a
12–24-hour turnaround time. Test performance surpassed
that of traditional severity of illness scores such as the
APACHE II score and the Injury Severity Score (ISS).
These last examples show how diagnostic and prognostic
signals identified using high-dimensional genomic
data might be downsized to simpler tests with clinical
applicability.
Beyond genomics, high-dimensional clinical data from

the EMR may be useful in identifying groups of patients
or even individuals with certain prognostic features. For
example, detailed chronic comorbidity profiles could be
used to more precisely prognosticate functional outcomes
[62]. Such a system might capitalize on work being done
to combine large volumes of clinical data with machine
learning algorithms, in order to develop real-time predict-
ive analytics capable of identifying meaningful subtypes.
Novel physiologic markers might also prove useful, not
only in making distinctions between endotypes but in
providing continuous monitoring to characterize illness
trajectory and track response to interventions. As one
example, near-infrared spectroscopy (NIRS) technology
may be useful in identifying specific subgroups of patients
based on brain tissue oxygenation [63].
Routinely collected physiologic signals, such as continu-

ous ECG tracings, may also prove useful in distinguishing
patients who might otherwise appear similar. For example,
the use of heart rate variability (HRV) metrics in critical
care has been well studied [64] but is not currently used
in clinical practice. With the potential to accurately prog-
nosticate clinical deterioration and other intermediate out-
comes, HRV monitoring could prove useful both in more
precisely defining separate disease states and in detecting
the dynamic transitions between these.
In one study, healthy participants receiving either

enteral or parenteral nutrition experienced a significant
decrease in HRV compared with those given an oral diet
[65]. Those receiving parenteral nutrition also showed a
significant change in monocyte gene expression after
72 hours of feeding. Another study examining HRV and
genomic data together showed that trauma patients with
either reduced HRV or specific polymorphisms in beta
receptor genes had an increased risk of death following
injury [66]. These studies suggest that surrogate markers
of genomic features may be found within more readily
accessible physiologic signals.
Ultimately, precision arises from our capacity to differ-

entiate one patient’s manifestations of a syndrome from
those of others. These distinctions arise from the in-
creasing breadth and depth of data by which a patient’s
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condition can be characterized. Simply put, more data
lead to better distinctions (Fig. 1). While genomic data
will undoubtedly continue to play a role in precision
critical care research, other more accessible sources of
biomedical data will be vital in translating basic science
insights into working tools for clinicians.

Infrastructure and informatics for precision critical
care
No matter what strategy is ultimately pursued, the path to
precision in the ICU will run through large swaths of data.
Large data sets—whether derived from new genomics
platforms, physiologic waveforms, RCTs, or EMRs—are
the cornerstone of precision medicine, underpinning new
insights into the pathophysiology of critical illness,

enabling the identification of distinct disease endotypes,
and furnishing an infrastructure upon which to generate
and test new hypotheses. With the costs of data storage
falling, there is now an opportunity to harvest these data
for use in research.
Some registries have already proven to be valuable

commodities in critical care research. The MIMIC III
database is one example of a large repository of ICU
data that has been used to power retrospective analyses
for hypothesis-generating research [67]. ICU data sets
were also instrumental in the recent establishment and
validation of the new definitions for sepsis [68]. How-
ever, collecting data is only a first step. Data must be val-
idated, cleaned, stored, transformed, shared, protected,
and analyzed, all of which requires dedicated informatics

Fig. 1 Effect of increasing quantities of data on revealing important distinctions. Four hours of mean arterial pressure (MAP) monitoring data
(simulated) are shown for three different patients. With data recorded every hour (top row), MAP trajectories appear similar between patients,
with a median MAP of 70 for all cases (dashed line). With data recorded every minute (bottom row), the median MAP is still 70 for all cases but
important differences between patients become evident, with Patient 1 showing a relatively stable MAP, Patient 2 showing a precipitous drop
in MAP at around 16:15, and Patient 3 showing a gradually decreasing MAP. In this case, the more granular data reveal differences between
physiologic trajectories that were not evident from the sparse data or the median values
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infrastructure and close coordination with informatics
specialists. The collaborative task of developing bioinfor-
matics platforms for precision medicine has begun in
the field of cancer, with systems being designed to amal-
gamate genomic and clinical data, and to facilitate com-
mon analyses used in precision medicine research [69].
Similar systems for critical care research will have to
account for ICU-specific data types (e.g., streaming
physiologic waveforms), as well as the real-time exigen-
cies of acute care practice.
The creation of data registries requires a significant in-

vestment, with dedicated computing resources needed to
securely store data and ensure their protection. Database
software tools are needed to structure and organize data,
and to provide a portal of entry so that data can be con-
tributed either manually or by automated transfer from
other sources such as EMRs. Open source electronic
data capture (EDC) tools may prove valuable in this re-
gard, and have even been integrated with web-based
randomization tools, demonstrating how informatics
infrastructure could be used to support RRCTs [70].
Mobile interfaces for these applications could be useful
in facilitating data collection at the bedside.
Maximizing the potential of large data sets will involve

merging different data types in order to add clinical con-
text to biological data. It will also require that data from
different sites are coanalyzed to add statistical power to
“small n” studies of disease subtypes. The sharing of
biomedical data has become challenging as the sheer
volume of data skyrockets, and as concern for security
increases. Explicit data management strategies must be
developed to protect sensitive health information, while
respecting the tenets of data sharing, open science, and
collaboration between research groups. Data stewardship
plans must address issues of access, security, and account-
ability, and must have protocols in place for anonymizing
patient data, creating research ethics protocols, and gener-
ating data sharing agreements. Compliance with regula-
tory requirements should be considered so that data from
investigator-initiated and industry-sponsored trials can be
intermingled, and so that hospitals can confidently create
linkages for data uploads. Ultimately the path of least re-
sistance may be a flipped model of data analytics in which
the analysis is brought to the data, obviating the need to
push data around. This model would address potential
concerns around relinquishing control over data, ensuring
data protection, and mitigating risks from technical fail-
ures and unscheduled downtime.
Regardless of whether data are migrated to a central

location, or analytic tools are brought to local data
stores, the task of processing data from diverse sources
will benefit from the development of a formal ontology
of critical care concepts. An ontology is a controlled vo-
cabulary specifying a set of terms and the relationships

between them, providing an essential ground truth to
mediate the merging of data elements from different
sources [71]. By mapping terms to a common ontology,
data from disparate sites—where EMRs, bedside
monitors, and genomic platforms might differ—can be
coanalyzed. Numerous biomedical ontologies have been
generated, including some dealing with precision medi-
cine concepts [71, 72]. Work in this area should include
clinicians, researchers, ethicists, and patient representa-
tives, so that informatics tools meet the closely linked
needs of providing EMR-enabled patient care and con-
ducting patient-centered research.

Costs and opportunities
Although the cost of sequencing and other genomics
technologies continues to fall, research in precision
medicine will undoubtedly be expensive, with more
studies needed to answer more precise questions. The
approaches described, such as those in which RRCTs are
used to study a small number of endotypes, may repre-
sent a useful starting point. However, important ques-
tions remain around how best to implement precision-
based testing and treatment. To what extent should
existing strategies that confer a marginal benefit to a
large group of people be supplanted by those that offer
better overall results but to a select few [73]?
One illustration of some of the tensions around large-

scale implementation of precision medicine is the decision
by the US Center for Medicare and Medicaid Services
(CMS) not to reimburse pharmacogenomic-guided pre-
scribing of warfarin. Although patients with rare genomic
variants likely benefit from this approach, clinical out-
comes remain equivalent to conventional prescribing
when the testing is deployed across large groups [73, 74].
Conventional warfarin prescribing may therefore be cost-
effective overall, but needlessly detrimental to a minority
of patients in whom preventable bleeding or thrombotic
complications may ensue.
These circumstances have parallels with critical care

practice, in which considerable resources are expended
to provide patients with treatment that may be useful in
some cases, but ineffective or harmful in others. Preci-
sion methods may prove useful in the early identification
of patients for whom a particular therapy will be inef-
fective (so-called “nonresponders”), which may lead to
the avoidance of harms, fewer delays to treatment, and a
more effective allocation of resources.
Closely related to the concepts of ineffective or harm-

ful treatments is the notion that some treatments in the
ICU are in fact unwanted altogether. Precision critical
care may thus involve not only matching treatments
with the patients most likely to benefit, but also ensuring
that treatments are aligned with patient preferences.
This can be done immediately—and at negligible
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cost—by making sure that aggressive care is provided
only to those who want it, especially at the end of life
[75]. While some aspects of precision medicine research
and practice may prove to be costly, so too is the sus-
tained use of invasive life support among patients who
will not ultimately benefit or who might wish to forgo
such treatment altogether.

Conclusion
A deluge of data accompanies the tremendous complex-
ity and heterogeneity of critical illness. These conditions
make critical care fertile ground for an exploration of
precision medicine approaches to research and practice.
Change may be incremental rather than wholesale, in
which small proof-of-concept studies demonstrate the
viability of precision critical care. Novel trial designs will
be needed to more efficiently enroll patients with nar-
rowly defined syndrome subtypes. Both genomic and
nongenomic data must be coopted to derive new in-
sights into critical care endotypes and rapidly identify
patients at the bedside. These tasks must be supported
by a robust data infrastructure developed by clinicians,
researchers, and data scientists.
Precision medicine defines an approach in which the

clinician comes to the bedside seeking to interrogate and
understand their patient’s unique physiology. While the
terminology may be new, this sensibility harkens back to
the earliest incarnations of critical care, and remains as
its core today.
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