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Abstract

This article is one of ten reviews selected from the
Annual Update in Intensive Care and Emergency
medicine 2016. Other selected articles can be found
online at http://www.biomedcentral.com/collections/
annualupdate2016. Further information about the
Annual Update in Intensive Care and Emergency
Medicine is available from http://www.springer.com/
series/8901.

Background

Metabonomics is “the quantitative measurement over
time of the metabolic responses of an individual or
population to drug treatment or other intervention”
[1], such as a disease process, and provides a ‘top-
down’ integrated overview of the biochemistry in a
complex system. The metabolic profile is determined
by both host genetic and environmental factors [2].
As such, metabonomics has great potential for inten-
sive care medicine, where patients are complex and
understanding the relationship of host factors, disease
and treatment effects is key to improving care.
Approaches that focus on single or small sets of bio-
markers may fail to capture this complexity, so meta-
bonomics may have advantages for both understanding
diseases and improving diagnostics and treatment
monitoring.

Spectroscopic techniques, including nuclear mag-
netic resonance (NMR) spectroscopy and mass spec-
trometry, have been used to determine the global
metabolic profiles of numerous types of biological
samples. Most commonly, blood and urine are ana-
lyzed but any biological specimens, including tissue,
cerebrospinal fluid or exhaled breath condensate, can
be used [3—-6]. Metabonomic methods have been used
to evaluate numerous clinically-significant conditions
including trauma [7, 8], acute kidney injury (AKI) and
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monitoring of dialysis [9-11], subarachnoid hemorrhage
[12], and acute lung injury (ALI) [13].

The two broad analytical platforms, NMR and mass
spectrometry, each have their own strengths and weak-
nesses and together give complementary information.
Data can be acquired that either provides non-targeted
global metabolic information, which is useful for initial
biomarker discovery, or can be targeted to obtain de-
tailed information on a specific class of metabolites or
metabolic processes.

Nuclear magnetic resonance spectroscopy

NMR spectroscopy harnesses the magnetic properties of
certain nuclei that possess spin, for example 'H and '*C.
Commonly in metabonomics, 'H or proton NMR is
used. NMR spectrometers use superconductors to gener-
ate a strong magnetic field (Fig. 1). A spinning charge
placed in such a magnetic field produces two spin states:
one up, aligned with the magnetic field; and one down,
aligned against the magnetic field. The energy difference
between the two spin states is influenced by the local
electron environment, which acts to shield the nucleus.
When a sample containing these nuclei is excited
with a radio frequency pulse, those nuclei in the
lower energy spin state excite into the higher energy
state and the subtle differences in the resonances gen-
erated can be used to give information regarding
chemical structure. Resonances are reported in rela-
tion to a reference signal, such as 3-(trimethyl-silyl)
propionic acid (TSP) or tetramethylsilane (TMS), and
in order to account for magnetic fields of different
strengths these values are given as chemical shifts in
parts per million (ppm).

Chemical shifts are predictable based on the local elec-
tron shielding and give information about the structure
of the molecule. The magnitude or intensity of NMR
resonance signals is displayed along the vertical axis of a
spectrum, and is proportional to the concentration of
the sample.

Typically, "H NMR spectra of urine contain thousands
of narrow, low molecular weight metabolites, whereas
those from serum and plasma contain a mixture of low
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Fig. 1 Schematic diagram detailing the main components of a
nuclear magnetic resonance (NMR) spectrometer

and high molecular weight compounds (Fig. 2). Experi-
mental pulse sequences can be chosen to selectively
suppress particular spectral features; for example, the
Carr-Purcell-Meiboom-Gill (CPMG) sequence will sup-
press large molecular weight metabolites revealing those
of a smaller weight. Common to all experiments is the
need to suppress the large water peak and this is
achieved with a solvent suppression pulse sequence.

For the purposes of metabonomics, "H NMR has sev-
eral strengths. Little sample preparation is required, and
the technique is relatively non-destructive, quantitative,
and non-invasive. Data obtained from NMR experiments
are reproducible [14] and robust. Concentrations of
metabolites are detectable down to micromole/l concen-
trations and analysis is relatively quick, taking as little as
3—4 min per sample.

Mass spectrometry

Mass spectrometryis a technique that aims to identify
metabolites within a sample based on the detection of
the mass-charge ratio (m/z) of ions produced by the
ionization of chemical compounds. Molecules in a sam-
ple are vaporized before being ionized by bombardment
with either electrons or other ions. The molecule is thus
broken into charged fragments which can be sorted
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based on their m/z ratio and detected by a device cap-
able of detecting charged particles. Several techniques
exist to separate and detect molecular fragments; an ex-
ample is separation by accelerating ions and subjecting
them to an electric or magnetic field (Fig. 3). The re-
corded data can be displayed as a spectrum of the rela-
tive abundances of the various ions with the same m/z
ratios.

In order to improve mass separation, mass spectrom-
etry is often coupled to chromatographic techniques.
Such techniques include gas chromatography-mass spec-
trometry (GC-MS), where a gas chromatogram is used
to separate molecules in gaseous phase before they are
fed into the ion source. Liquid chromatography-mass
spectrometry (LC-MS) and high performance liquid
chromatography-mass spectrometry (HPLC-MS) simi-
larly separate molecules in a sample in a liquid mobile
phase using a liquid chromatogram with a combination
of organic solvents prior to ionization.

Mass spectrometry-based platforms have the advan-
tage of greater sensitivity compared to NMR; however,
some substances, such as sugars and amino acids, are
difficult to analyze with this method due to their polarity
and lack of volatility [15]. Mass spectrometry requires
reasonably extensive sample preparation and, with long
chromatographic times, can take longer to process than
NMR. Also, because of the need to vaporize and ionize
the sample, mass spectrometry is a more destructive
analytical technique than NMR.

Data analysis

Analytical techniques used in metabonomics generate
data sets that are unlike those produced in many
other scientific fields. Whereas there would often be
many more subjects than variables, metabonomics
generally produces thousands of variables, several of
which may correlate, and many may not be normally
distributed. These features pose problems for regular
statistical methods so analysis is generally performed
using multivariate statistics. Broadly speaking multi-
variate methods can be split into unsupervised tests,
where no class information is supplied to the model,
and supervised tests, designed to look for group sep-
aration based on class information. Unsupervised tests
are good at finding natural clustering within the data
sets and at identifying outliers. Supervised tests, on
the other hand, look for variation between predefined
groups or classes and are able to build predictive
models.

Principal component analysis

Principal component analysis (PCA) is a common
method of unsupervised multivariate analysis used in
metabonomics. It is used to elucidate the covariance
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Fig. 2 Example of a 'H nuclear magnetic resonance Carr-Purcell-Meiboom-Gill (NMR CPMG) spectrum of human serum. TSP: 3-(trimethyl-silyl)

structure of the data set by representing the data along
new axes based on the direction of the maximum vari-
ation, the principal components. The first principal com-
ponent is the direction of greatest variation and the
second principal component is that with the second

largest value that is orthogonal to the first (Fig. 4). This
method of analysis allows data reduction. Some compo-
nents will contain very little variation and those with
low magnitudes, which contain little information, are
discarded. The data can then be re-displayed using the
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principal components as a new set of axes, giving a PCA
scores plot (Fig. 4).

An approximation to the Student’s t-test, called the
Hotelling’s ellipse, can be projected onto the scores plot.
This gives an indication of a 95 % confidence interval
within which 95 % of observations should fall. Data
points lying outside of this ellipse can be considered as
outliers and can be examined in more detail.

Supervised analysis

Supervised multivariate analysis is aimed at finding the
variation in the data matrix that explains predefined
classifications. One of the underlying methods of super-
vised analysis is the partial least squares analysis (PLS).
PLS determines the underlying relationship between two
data matrices, one that contains the sample data and a
second containing class information. This method finds
the fewest variables that account for the differences in
the class matrix. Overall, the goal is to predict cases and
controls from metabolic data. Extensions of the PLS
occur with orthogonal partial least squares (OPLS),
which works in a similar fashion to PLS. However, in

this method the variation in the data is divided into that
which explains class separation and that which is or-
thogonal to it and does not explain class. For clinical
studies, supervised analysis allows large metabonomic
data sets to be reduced to variables that are important in
separating cases and controls without losing predictive
power.

To assess the predictive capacity of a model, cross val-
idation can be carried out. A number of methods exist
to do this but a commonly utilized approach is to leave
out every n™ row in the data matrix and build a model
based on the remaining data. The remaining data can
then be predicted by the model and the results com-
pared to the expected outcome. This process can then
be repeated until all of the data has been left out once.
After cross validation it is possible to derive two descrip-
tive metrics for the models. The first is known as the R*
and explains the amount of variation between the classi-
fication groups that is explained by the model. This
value ranges from 0 to 1.0 with values approaching 1.0
explaining almost all of the variation in the model and
lower values suggesting that much of the variation in the
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data is irrelevant or noise. The second value is the Q%
which represents the predictive capacity of the model,
again ranging from 0 to 1.0. The expected values of both
R? and Q? are dependent on the type of data being ana-
lyzed but in general should ideally be no more than 0.2
apart; for biological systems a Q® of 0.4 represents a
reasonable predictive accuracy. However, the ideal
way to test a model is to challenge it with a com-
pletely new set of data from a validation cohort of
samples that have not been used to generate the
model in the first instance.

Metabonomics and intensive care

Metabonomics work relevant to critical care has mainly
focused on sepsis and infection. A range of studies has
been carried out attempting to use metabonomic tech-
niques to explore infection. Cells, animals and human
subjects have been used, with both NMR and mass spec-
troscopy, allowing over 500 metabolites and pathways to
be implicated in infective processes.

Several animal models have been used, testing differ-
ent biofluids including blood [16—20], broncheoalveolar
(BAL) fluid [16] and lymph [18] as well as tissue,
such as lung [16, 17], liver [17, 21], kidney [22] and
spleen [17, 22]. Infections as diffuse as cerebral mal-
aria [22], influenza [23], tuberculosis [17], peritonitis
[16, 18, 24] and Escherichia coli sepsis [20] have been
investigated. Metabolites including amino acids, those
involved in energy and carbohydrate metabolism, fatty
acids and those associated with mitochondrial dys-
function have all been identified in these models.

In human subjects, several clinical infections have
been subject to metabonomic investigation. A number
of studies has been carried out examining urinary tract
infection using NMR of urine samples [25-29] with an
attempt to identify specific causative organisms, po-
tentially allowing for rapid diagnosis and targeted
treatment. Other specific infections investigated with
metabonomics have included cerebrospinal fluid analysis
to distinguish various forms of meningitis and ventriculitis
[30] and sepsis from various causes in both adults [31-34]
and children [35, 36].

Pneumonia remains a common cause for admission to
critical care units and a small amount of work has been
carried out investigating this condition using metabo-
nomics. Animal studies have found elevated lipoproteins,
triglycerides, unsaturated and polyunsaturated fatty acids,
-3 fatty acids, lactate, 3-hydroxybutyrate and creatinine
and reduced glucose, choline, phosphocholine and glycer-
ophosphocholine levels in the plasma of rats infected
with Klebsiella pneumoniae compared to controls [37].
Mice with pneumonia caused by Staphylococcus aureus
or Streptococcus pneumoniae have been separated from
control animals based on urine metabolic profiles [38].
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Human studies have focused on community-acquired
pneumonia (CAP). A study using mass spectroscopy
analysis of plasma from children in Gambia with pneu-
monia found elevated uric acid, hypoxanthine and glu-
tamic acid and reduced tryptophan and adenosine
diphosphate levels in infected individuals [39]. Another
study looking specifically at patients with S. pneumoniae
pneumonia found 33 urinary metabolites used to sep-
arate cases from controls including citrate, succinate,
1-methylnicotinamide, several amino acids, glucose,
lactate, acetone, carnitine, acetylcarnitine, hypoxanthine
and acetate, most of which were increased in those with
infection [40]. This study also aimed to address several po-
tential confounding factors associated with this type of
investigation by comparing cases to several control
groups, such as those with other types of lung disease,
those with other types of pneumonia and those with other
acute illnesses. In almost all cases, metabolic profiling was
able to distinguish cases of pneumonia from controls.

Work specifically within critical care has focused on
the outcomes of patients with CAP and sepsis [41]. Ana-
lysis of plasma found higher levels of bile acids, steroid
hormone metabolites, markers of oxidative stress and
nucleic acid metabolites in non-survivors; however, the
statistical models based on these differences had only
modest sensitivity with an area under the receiver oper-
ating curve of 0.67. Other work in ICU patients has
looked at predisposition to sepsis following trauma.
Using NMR of plasma samples from 21 trauma patients,
valine, citrate, aspartate, allantoin and hydroxybutyrate
were identified as associated with the future develop-
ment of sepsis [42]. Looking at adults with established
sepsis on the intensive care unit (ICU), glycerophospho-
lipids and acetylcarnitines were elevated in 33 septic pa-
tients when compared to 30 others with non-infective
systemic inflammation [34]. In other investigations,
metabonomic techniques have been used to try to pre-
dict mortality in 37 ICU patients with sepsis [33] and
have looked at sepsis in 137 children from different age
groups admitted to critical care [36]. In an attempt to
explore mortality in adult ICU patients [43], plasma was
analyzed with mass spectroscopy and the results showed
that 31 metabolites were associated with mortality, most
of which were elevated in those who died. As with the
other studies, these covered a range of metabolites in-
cluding lipids, carbohydrates and amino acids. Only six
metabolites were greater in those who survived and
these were all involved in the lipid metabolism pathway.
A metabonomic study in sepsis-induced lung injury [13]
compared 13 patients with ALI or acute respiratory dis-
tress syndrome (ARDS) to six healthy controls and
found differences in plasma levels of glutathione, adeno-
sine, phosphatidylserine and sphingomyelin. In another
study using LC-MS of BAL fluid, several lipid metabolites
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and amino acids were increased and a component of sur-
factant decreased in those with ARDS compared to
healthy controls [44].

The studies outlined above demonstrate that, although
only a small number of studies have been conducted in
intensive care patients to date, common to all are the
finding that a large number of metabolites and metabolic
pathways are deranged in critical illness. These range
from energy and lipid metabolism to amino acid and
steroid hormone synthesis, most of which are not cur-
rently routinely measured. Not only are a range of path-
ways involved in critical illness but specific elements of
these may be up- or down-regulated in different con-
texts, even within different individuals with similar
diseases. At present, it is still too early to draw firm
conclusions regarding the role of metabonomics in diag-
nosis, prognostication or monitoring of treatment effect
within ICU patients. However, from the limited work
done already, the ability of metabonomics to monitor
such a diverse range of markers makes it an attractive
approach for biomarker discovery and for understanding
the subgroups or phenotypes of patients admitted to
critical care. The ability of metabonomics to simultan-
eously measure several metabolites from a range of
metabolic processes allows some understanding to be
gained, not only about the impact of critical illness on
individual pathways, but the interaction of many meta-
bolic processes during illness. A further understanding
of these complex interactions may aid in the identifica-
tion of phenotypes of patients that are currently not
clinically apparent and that may respond to treatments
differently, previously termed stratified medicine but
now referred to as precision medicine. Further metabo-
nomic research within critical care should focus on
addressing current challenges, such as monitoring
treatment effect with the early identification of non-
responders, identifying phenotypes of sepsis and
ARDS that may respond differently to treatment or
ventilation strategies and assisting in making challen-
ging diagnoses such as early identification of ventila-
tor-associated pneumonia (VAP).

Conclusion

Metabonomics is a relatively new scientific discipline
that aims to explore the changes in global metabolic
profiles in response to exogenous influences such as dis-
ease states or treatments as well as host factors. Broadly
two analytical methods are employed, NMR and mass
spectroscopy, to measure a vast array of metabolites that
require specialist multivariate statistics for analysis. So
far only a limited amount of work has been carried out
in intensive care patients. However, from these studies,
perturbation in a number of metabolic pathways has
been implicated in critical illness. The ability to explore

Page 6 of 7

several metabolic processes simultaneously, and their in-
teractions, is an exciting prospect for intensive care medi-
cine. The complexity of this group of patients and the
growing understanding that subgroups of patients may re-
quire tailored treatments suggests that metabolic profiling
or phenotyping may help to improve diagnostics or target
treatment strategies in clinical trials and clinical practice.
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