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Combining multiple ECG features does not
improve prediction of defibrillation
outcome compared to single features in a
large population of out-of-hospital cardiac
arrests
Mi He1, Yushun Gong1, Yongqin Li1*, Tommaso Mauri2, Francesca Fumagalli3, Marcella Bozzola4, Giancarlo Cesana5,
Roberto Latini3, Antonio Pesenti2,4 and Giuseppe Ristagno3

Abstract

Introduction: Quantitative electrocardiographic (ECG) waveform analysis provides a noninvasive reflection of the
metabolic milieu of the myocardium during resuscitation and is a potentially useful tool to optimize the defibrillation
strategy. However, whether combining multiple ECG features can improve the capability of defibrillation outcome
prediction in comparison to single feature analysis is still uncertain.

Methods: A total of 3828 defibrillations from 1617 patients who experienced out-of-hospital cardiac arrest were
analyzed. A 2.048-s ECG trace prior to each defibrillation without chest compressions was used for the analysis.
Sixteen predictive features were optimized through the training dataset that included 2447 shocks from 1050
patients. Logistic regression, neural network and support vector machine were used to combine multiple features
for the prediction of defibrillation outcome. Performance between single and combined predictive features were
compared by area under receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and prediction accuracy (PA) on a validation dataset that consisted of
1381 shocks from 567 patients.

Results: Among the single features, mean slope (MS) outperformed other methods with an AUC of 0.876. Combination
of complementary features using neural network resulted in the highest AUC of 0.874 among the multifeature-
based methods. Compared to MS, no statistical difference was observed in AUC, sensitivity, specificity, PPV, NPV
and PA when multiple features were considered.

Conclusions: In this large dataset, the amplitude-related features achieved better defibrillation outcome
prediction capability than other features. Combinations of multiple electrical features did not further improve
prediction performance.
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Introduction
Early cardiopulmonary resuscitation (CPR) and early de-
fibrillation are the key points in the chain of survival in
cardiac arrest patients with shockable rhythms [1, 2].
However, the priority of intervention, CPR or immediate
defibrillation and the duration of CPR intervals prior to
defibrillation are still debated, particularly in out-of-
hospital cardiac arrests (OHCA) with long response
times [3–5]. Animal studies demonstrated that high suc-
cess of restoration of spontaneous circulation (ROSC) is
achieved when the heart is recently perfused, while pro-
longed untreated ventricular fibrillation (VF) with de-
pleted energy phosphates leads to poor outcome [6].
Clinical studies also indicated that not all VF patients
benefit from being treated in the same manner with a
time-based CPR/defibrillation protocols [2, 7]. Optimiz-
ing timing of defibrillation might decrease the severity of
postresuscitation myocardial dysfunction by reducing
the numbers of failed shocks and by reducing the conse-
quent unnecessary interruptions in chest compression,
having therefore the potential to improve the final out-
come of cardiac arrest [8].
Quantitative electrocardiogram (ECG) waveform ana-

lysis provides a noninvasive reflection of the metabolic
status of the myocardium during resuscitation and is a
potential tool to guide and optimize CPR interventions,
i.e., chest compression or defibrillation [9]. During the
last two decades, numerous features have been developed
and used to predict the outcome of defibrillation, includ-
ing time domain [10–15], frequency domain [15–19] and
nonlinear measures [20, 22]. As combining multiple pre-
dictive features may offer complementary information to
improve the predictive accuracy [16], several studies
have been attempted to combine different VF features
to enhance the predictive performance using the ma-
chine learning theory, albeit in relatively small popula-
tions [25, 25]. Whether the combination of multiple
predictive features can improve prediction capability
for defibrillation outcome compared to the single fea-
tures is still uncertain.
The purpose of the present study was to investigate

whether combination of multiple VF features, by differ-
ent machine learning strategies, including logistical re-
gression (LR), artificial neural network and support
vector machine (SVM), could improve the prediction
capacity of defibrillation outcome using a large multi-
center database of OHCA patients.

Methods
Data sources
This study was approved by the ethics committee of the
coordinating center, San Gerardo University Hospital,
Monza, Italy. The institutional review board waived the
requirement of informed consent since the data were

already collected for administrative and statistical rea-
sons by the National Health System.
A total of 3828 defibrillation shocks from 1617 pa-

tients who experienced OHCA were analyzed. The de-
tailed descriptions of the multicenter database and
population characteristics have been previously reported
[18]. Data included a training set of 2447 defibrillations
from 1050 patients and a validation set of 1381 defibril-
lations from 567 patients. All ECG data were digitally
resampled at 250 Hz for compatibility with other studies.
A 2.048-s episode (512 samples) free from chest com-
pression was selected immediately prior to each defibril-
lation. Preprocessing of ECG data was executed by
bandpass filters with different frequency ranges for base-
line drifting removal and artifact attenuation.
Successful defibrillation was defined as the achieve-

ment of an organized rhythm with heart rate ≥ 40 beats/
min within 60 s postdefibrillation, while shocks resulting
in VF, ventricular tachycardia (VT), asystole or pulseless
electrical activity with pauses > 3 s were regarded as un-
successful defibrillations [18]. In the training set, 641 de-
fibrillations (26.2 %) were successful, while considering
only the 1050 first defibrillation attempts, 278 (26.5 %)
were successful. In the validation set, 445 defibrillations
(32.1 %) were successful and 175 (31.0 %) were success-
ful when only the first defibrillations were considered.

Predictive feature selection and optimization
Sixteen predictive features of ECG waveforms with good
prediction power in previous clinical studies [12, 26]
were selected and calculated in this study. Table 1 pre-
sents their definitions and equations.
Optimum frequency range of bandpass filters for each

feature was obtained with a criterion of maximum area
under the receiver operating characteristic (ROC) curve
(AUC) using the training data. The boundaries of the
lower and upper frequencies for calculating the optimum
frequency range were 2–5 Hz and 20–48 Hz, respectively.

Combination methods
Three different machine learning techniques, including
LR, neural network and SVM were used to combine dif-
ferent VF features for the prediction of defibrillation
outcome.

Logistic regression
In the LR model, optimal features (with p values all less
than 0.0001) were automatically selected from the 16
features employing the training data by forward stepwise
using the likelihood ratio test. The LR equation for pre-
diction was 1

1þ exp −β0−
X
n

βnyn

 ! , where β0 is the regression

constant and βn is the nth regression coefficient of the
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selected feature yn. The predictive values of validation
data were obtained according to the corresponding LR
equations by a threshold (for successful or unsuccessful
decisions) with equal sensitivity and specificity for the
training data.

Neural network
The back propagation (BP) neural network with a feed
forward structure was used in the training set to achieve
an optimal outcome. The training processing adopted

the Bayesian regularization training function, two hidden
layers, and sigmoid and linear transfer functions. All fea-
tures in the training and validation sets were normalized
by minus of mean and division of standard deviation
values. The AUC of direct outcomes of the BP neural
network was calculated as these outcomes were not bin-
ary decisions (0 or 1). For compatibility, a threshold with
equal sensitivity and specificity for training data was
used to result in a binary decision. Combination of all
features (BP-C1), combination of features with a high

Table 1 Predictive features and their calculations

Category Predictive feature Equation

Time domain Mean slope (MS) f s
N−1

XN
i¼2

xi−xi−1j j

Median slope (MdS) median(xi − xi − 1)fs

Amplitude range (AR) max(xi) −min(xi)

Signal integral (SignInt)
XN
i¼1

xij j

Average peak-to-peak amplitude (PPA) 1
L

XL
i¼1

max xi;L
� �

−min xi;L
� �� �

Root mean square (RMS)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

xi−�xð Þ2
s

Frequency domain Amplitude spectral area (AMSA)
XM
j¼1

Ajf j

Power spectrum analysis (PSA)
X
j

Px f j
� �

⋅f j

Max power (MP) maxj Px f j
� �� �

Peak frequency (PF) or dominant frequency argmaxj Px f j
� �� �

Centroid frequency (CF)

X
j

f j⋅Px f j
� �

X
j

Px f j
� �

Energy (EG)
X
j

Px f j
� �

Others Spectral flatness measure (SFM)

exp 1
M

X
j

ln Px f j
� �� � !

1
M

X
j

Px f j
� �

Wavelet energy (WE)
X
j

Wx cj
� ��� ��

Spectrum entropy (SPE) ‐
XL
i¼1

X
f j;L

Px f j;L
� �

X
j

Px f j
� �

0
BB@

1
CCA⋅ log2

X
f j;L

Px f j;L
� �

X
j

Px f j
� �

0
BB@

1
CCA

2
664

3
775

Hurst index (Hu) log R ið Þ=S ið Þ½ �
log ið Þ

xi (i = 1,2,…, N) represented samples of ECG segment x(t) in time domain with sampling rate fs, and mean value �x . Aj indicated the amplitude of Fourier transform
of x(t) at frequency fj (j = 1,2,…, M). Px(fj) specified samples power spectral density of x(t) at frequency fj. Wx(cj) represented samples of high-band coefficients of
wavelet transform of x(t). L in PPA indicated L subintervals; L in SPE indicated L frequency bands. Function R(·) was taken as the difference between the maximum
and minimum deviation from time period "i". Function S(·) calculated the standard deviation for time period "i"
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predictive power (with AUC > 0.8) (BP-C2) and combin-
ation of complementary features (correlation coefficient
r < 0.3) (BP-C3) were tested by the BP neural network,
respectively.

Support vector machine
In the SVM model, a Gaussian radial basis function
was selected as the kernel function with an error pen-
alty factor (C = 1) and a scaling factor (σ = 0.01).
Choosing small values for the error penalty factor and
the scaling factor was intended to make the risk
function of SVM have solutions for large training
data. Combinations of all features (SVM-C1), high
predictive power features (SVM-C2) and complemen-
tary features (SVM-C3) were also adopted in the
training and validation processes of SVM.

Statistical analysis
The prediction power was assessed by ROC curves,
AUC, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV) and prediction
accuracy (PA) [18, 26]. For compatibility with the ma-
chine learning techniques, sensitivity, specificity, PPV,
NPV and PA of single features for the validation data
were calculated with a threshold in which sensitivity
equaled to specificity for the training data.
Pearson's correlation coefficients were calculated among

single features for correlation analysis. AUCs were com-
pared using Z-test. Chi-squared test was employed to
distinguish differences among sensitivity, specificity,
PPV, NPV and PA of the different predictive features. A
final two-tailed p value < 0.05 was considered statisti-
cally significant.

Results
Performance of single features
ROC curves and AUCs of the candidate features for all
and the first defibrillations in training and validation
datasets are reported in Fig. 1. All the 16 candidate VF
features, except for peak frequency (PF), centroid fre-
quency (CF), spectral flatness measure (SFM), and Hurst
index (Hu), showed a high AUC, i.e., > 0.8. More specif-
ically, mean slope (MS) and amplitude spectral area
(AMSA) had the highest AUC values (0.876) for all defi-
brillations, while MS had the highest AUC value (0.873)
for the first defibrillations in the validation set. Median
slope (MdS), power spectrum analysis (PSA), average
peak-to-peak amplitude (PPA), signal integral (SignInt),
root mean square (RMS), amplitude range (AR), wavelet
energy (WE) and energy (EG) also had an AUC value
greater than 0.845 (p was not significant vs. MS for all
and/or for the first defibrillations). Considering all the
defibrillation attempts, AUCs for spectrum entropy
(0.848, p = 0.024 vs. MS) and max power (0.847, p =

0.020 vs. MS) were relatively lower when compared with
MS, but no significant differences were observed when
the first defibrillations were considered. Additionally,
AUCs for PF (0.619/0.607), CF (0.565/0.547), SFM
(0.489/0.401) and Hu (0.478/0.445) were significantly
lower compared with MS (p < 0.001), both for all and
first defibrillations.
Correlation analysis demonstrated that most of the

features were significantly correlated with each other
(Table 2). Amplitude-related features, such as MS,
AMSA, MdS, SignInt, PSA, PPA, WE, AR and RMS
were strongly correlated with each other (r > 0.807, p <
0.001). For frequency-related methods, CF was highly
correlated with PF (r = 0.770, p < 0.001) and SFM (r =
0.829, p < 0.001). Poor correlations were observed among
the other measures.

Performance of combined features
The performance of combined features in the validation
set for all and first defibrillations are listed in Tables 3
and 4, respectively.
Combining MS and SFM with BP neural network (BP-

C3) resulted in the highest AUC (0.875/0.873) and ac-
curacy (80.9 %/80.0 %) for all and first defibrillations,
but no statistical differences were observed when com-
pared with the combined LR, BP-C1 and BP-C2, for all
and first defibrillations. Compared with SVM-C3, BP-C3
predicted outcome of all defibrillations with higher sen-
sitivity (80.9 % vs. 71.3 %, p < 0.001), specificity (80.9 %
vs. 80.1 %, p < 0.001) and NPV (66.8 % vs. 53.0 %, p <
0.001). It also showed higher sensitivity (80.0 % vs.
67.0 %, p = 0.015), PPV (64.2 % vs. 36.0 %, p < 0.001) and
PA (80.0 % vs. 74.6 %, p = 0.033) compared to SVM-C3
when the first defibrillations were considered.

Comparison between single and combined features with
optimal performance
Since BP-C3 outperformed other combination strategies
and MS had optimal performance among single feature
methods, the prediction capacity between MS and BP-
C3 was then compared. There were no statistical differ-
ences in AUC (p = 0.471 and 0.444), sensitivity (p = 0.281
and 0.330), specificity (p = 0.254 and 0.790), PPV (p =
0.568 and 0.955), NPV (p = 0.453 and 0.422) and PA (p =
0.771 and 0.765) between BP-C3 and MS for all (Table 3)
and the first (Table 4) defibrillations.

Discussion
In the present study, we investigated whether combin-
ation of multiple VF features could improve the capabil-
ity of defibrillation outcome prediction using a large
multicenter database from OHCA patients by machine
learning strategies. The results indicated that the
amplitude-related features outperformed other single
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waveform measures, while combining multiple VF fea-
tures did not further improve the capability of defibrilla-
tion prediction.
Accuracy in predicting defibrillation outcome during

resuscitation of VF cardiac arrest patients provides the
potential to significantly enhance resuscitative strategies
and improve patient’s outcome. A considerable number

of defibrillation predictors have been proposed and
shown to be promising in estimating VF duration,
predicting defibrillation outcome, return to organized
rhythm, and prognosticating long-term survival [10–23].
Current best predictors achieve an AUC in predicting
defibrillation outcome of 0.87, with a balanced sensitivity
and specificity of approximately 80 %. The above

Fig. 1 Receiver operating characteristic (ROC) curves and area under ROC curves (AUC) of 16 the predictive features for training and validation
datasets. 1st first defibrillations, All all defibrillations, AMSA amplitude spectrum analysis, P-P amplitude average peak-peak amplitude, RMS root
mean square, SFM spectral flatness measure, T training set, V validation set
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approaches have already a high predictive power; never-
theless research identifying approaches that might fur-
ther improve the accuracy of defibrillation outcome
prediction for OHCA is still ongoing. A possible solution
is to use patient-specific information in the ECG-based
prediction model. In an earlier study, Monsieurs et al.
showed that adding age to the prediction formula
increased the correct classification of survivors and
nonsurvivors in 100 OHCA victims [27]. However, no
significant improvement was obtained by including age,

sex, presenting rhythm, presence of bystander CPR and
ambulance response time when six different single pre-
diction features were investigated in 530 shocks from 86
patients [28].
Another practical approach to improve the predictive

performance of current ECG analysis is to combine mul-
tiple VF features using machine learning strategies. In a
dataset of 883 defibrillations from 156 OHCA patients,
Eftestøl et al. demonstrated that the combination of two
decorrelated spectral features based on the principal

Table 2 Correlation coefficients among the 16 candidate features used for defibrillation outcome prediction

MS AMSA SignInt PSA PPA Mds MP PF CF EG SFM WE AR SPE RMS

AMSA 0.86**

SignInt 0.81** 0.91**

PSA 0.93** 0.84** 0.90**

PPA 0.85** 0.94** 0.98** 0.91**

Mds 0.85** 0.91** 0.93** 0.86** 0.92**

MP 0.31** 0.14** 0.18** 0.36** 0.26** 0.16**

PF 0.20** 0.28** 0.34** 0.24** 0.34** 0.32** 0

CF 0.08** 0.17** 0.15** 0.09** 0.17** 0.10** -0.08** 0.77**

EG 0.14** -0.02 -0.01 0.17** 0.07** -0.01 0.98** -0.05** -0.10**

SFM -0.04 0 -0.12** -0.07** -0.06** -0.16** 0.03 0.43** 0.83** 0.07**

WE 0.86** 0.82** 0.92** 0.95** 0.90** 0.84** 0.21** 0.28** 0.14** 0.01 -0.06**

AR 0.81** 0.93** 0.91** 0.85** 0.94** 0.82** 0.21** 0.30** 0.19** 0.04* 0.02 0.86**

SPE 0.07** 0.13** 0.12** 0.07** 0.12** 0.12** 0.02 0.06** 0 0 -0.07** 0.07** 0.12**

RMS 0.83** 0.88** 0.95** 0.91** 0.97** 0.88** 0.46** 0.31** 0.12** 0.29** -0.07** 0.88** 0.92** 0.11**

Hu 0 0.05* -0.04 -0.01 0 -0.11** 0.04 -0.10** -0.02 0.04* 0.10** 0 0.15** 0 0.02

MS mean slope, AMSA amplitude spectral area, SignInt signal integral, PSA power spectrum analysis, PPA average peak-to-peak amplitude, Mds median slope, MP
max power, PF peak frequency, CF centroid frequency, EG energy, SFM spectral flatness measure, WE wavelet energy, AR amplitude range, SPE spectrum entropy,
RMS root mean square, Hu Hurst index
*p < 0.05, **p < 0.01

Table 3 Prediction power of combination methods and single features for all defibrillations in the validation dataset (445 successful
shocks/1381 shocks)

Methods AUC Sensitivity (%) Specificity (%) NPV (%) PPV (%) PA (%)

LR 0.872 79.6 79.6 89.1 65.0 79.6

BP-C1 0.873 80.5 80.5 89.7 66.2 80.5

BP-C2 0.873 80.0 80.4 89.4 65.6 80.3

BP-C3 0.875 80.9 80.9 89.9 66.8 80.9

SVM-C1 N/A N/A 67.8 100.0 0.0 67.8

SVM-C2 N/A N/A 67.8 100.0 0.0 67.8

SVM-C3 N/A 71.3 80.1 89.9 53.0 78.0

MS 0.876 78.0 82.9 88.8 68.4 81.3

AMSA 0.876 79.6 81.4 89.3 67.0 80.8

MdS 0.872 79.8 80.9 89.4 66.5 80.5

C1, C2 and C3 represented combination of all features, combination of features with a high predictive power (AUC > 0.8) and combination of complementary
features (MS and SFM) using BP neural network, respectively
AUC area under receiver operating characteristic curve, NPV negative predictive value, PPV positive predictive value, PA prediction accuracy, LR logistic regression
method, BP back propagation neural network method, SVM support vector machine method, MS mean slope, AMSA amplitude spectral area, Mds median slope,
N/A not existing
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component analysis of an original feature dataset with
information on CF and PF could reduce the number of
unsuccessful defibrillations [29]. In another database in-
cluding 203 defibrillations from 47 patients with OHCA,
Podbregar et al. reported that combining VF features in-
cluding maximal amplitude, total energy of power spectral
density and the Hurst exponent by genetic programming
could potentially reduce the incidence of unsuccessful de-
fibrillations [23]. On the contrary, Watson et al. showed
no improvement in defibrillation outcome prediction
performance when combined entropy with four other
features in comparison with the five wavelet-based fea-
tures alone [30]. In another clinical study, Neurauter et
al. compared the performance of ten single predictive
features and their combinations in 770 countershock
attempts from 197 patients, and verified that combin-
ation of these predictive features using neural networks
could not improve outcome prediction [25]. Recently,
Shandilya et al. predicted defibrillation success using a
parametrically optimized SVM model from a database
of 90 precountershock ECG signals. The PA (82.2 % vs.
64.6 %) and AUC (0.850 vs. 0.609) were considerably
improved by combining six to ten features compared
with single feature-based AMSA [22]. Howe et al. in-
vestigated an alternative SVM-optimized classification
approach, which combined multiple metrics with ac-
ceptable predictive attributes in a total of 115 defibrilla-
tions from 41 patients [24]. In contrast to the 86 %
sensitivity and 60 % specificity for single feature AMSA,
performance of the combined features was improved to
a sensitivity of 87.6 % and a specificity of 71.6 % for the
prediction of return of organized rhythm.
Besides the differences in machine learning methods

and feature selection [22–25], the relative smaller sample

size and not multicenter data might be responsible for
the controversial conclusions when multiple features
were applied to predict defibrillation outcome. In previ-
ous clinical studies, data were usually split into training
and validation sets to testify the performance of predictors
or designed parameters [17, 18, 22–25]. Switching the role
of two sets by a crossvalidation method was frequently
adopted to increase the degree of expected reliability in
studies with relative smaller sample size [22–25].
Nevertheless, the test performances were considered in
the design of the classifiers to optimize and generalize
parameters [17]. Thereby, the crossvalidation strategy
would influence the design process and bias the valid-
ation results.
Our results, obtained from the largest database of

ECG traces on OHCA patients to date, showed that
amplitude-related measures, such as MS, AMSA, MdS,
PSA, PPA outperformed frequency and nonlinear-based
methods when ranked by AUC and exhibited similar
shock success prediction performance, consistent with
the study of Wu and Firoozabadi et al [14, 26]. However,
combining multiple VF features did not further improve
the capability of defibrillation prediction in comparison
to single features. This result was consistent with Neur-
auter et al. [25] when neural network was used but was
controversial to the study of Howe et al. [24] when SVM
was applied to combine multiple features. Notably, lim-
ited clinical data (115 defibrillations from 41 patients)
were used in a crossvalidation SVM approach by Howe
et al. [24], which might have caused biased validation re-
sults. Moreover, SVM usually keeps a desirable predict-
ive performance for a small number of samples, but a
large number of samples with noise may cause overfit-
ting and overspecialization during the training process

Table 4 Prediction power of combination methods and single features for the first defibrillations in the validation data (175
successful shocks/567 shocks)

Methods AUC Sensitivity (%) Specificity (%) NPV (%) PPV (%) PA (%)

LR 0.870 79.6 79.6 89.1 65.0 79.6

BP-C1 0.864 78.9 78.9 89.2 62.4 78.7

BP-C2 0.868 80.0 79.9 89.9 64.2 80.0

BP-C3 0.873 80.0 80.0 89.9 64.2 80.0

SVM-C1 N/A N/A 69.0 100.0 0.0 69.0

SVM-C2 N/A N/A 69.0 100.0 0.0 69.0

SVM-C3 N/A 67.0 76.2 92.0 36.0 74.6

MS 0.873 84.0 79.2 91.7 64.5 80.7

AMSA 0.870 73.1 82.8 87.3 65.6 79.8

MdS 0.872 76.0 82.0 88.4 65.5 80.1

C1, C2 and C3 represented combination of all features, combination of features with a high predictive power (AUC > 0.8) and combination of complementary
features (MS and SFM) using BP neural network, respectively
AUC area under receiver operating characteristic curve, NPV negative predictive value, PPV positive predictive value, PA prediction accuracy, LR logistic regression
method, BP back propagation neural network method, SVM support vector machine method, MS mean slope, AMSA amplitude spectral area, Mds median slope,
N/A not existing
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of SVM and create a negative bias in accuracies when
the validation data are passed through the model [31].
Though overfitting happened when using the neural
network with multiple hidden layers as well, neural
network seemed more robust than SVM for a large
number of training samples, which was caused by the
different optimization functions and output variable forms
employed in these two machine learning methods [31].
The unimproved prediction power of multiple VF fea-

tures may be due to the limited information obtained
from ECG signals and indicates that various single VF fea-
tures, such as MS and AMSA, already reached the max-
imum prediction power extractable from VF ECGs.
Besides ECG waveform characteristics, outcome of defib-
rillation is related to other factors of patients, such as drug
treatments, comorbidities, and Emergency Medical
Systems (EMS) arrival time. Additional clinically rele-
vant attributes, independent from ECG waveform
metrics, such as end-tidal carbon dioxide, blood pres-
sure, blood oxygen saturation and compression
depths, might be considered to further improve pre-
diction power [22]. From another point of view, the
longitudinal ECG data often has repeated defibrilla-
tions on each patient. The treatment effects and rela-
tive changes of a certain predictive feature may
enhance the prediction performance in some degree.
We recognized that several limitations need to be

considered in the study. First, this was a retrospective
study on prospectively collected data. Sixteen predict-
ive features were calculated only during the predefi-
brillation hands-off time and not in real time during
chest compression. Second, the successful defibrilla-
tion was defined as sustained ROSC, but long-term
survival was not considered. Peri-arrest factors such
as age, sex, presenting rhythm, EMS arrival time, drug
treatments, comorbidities, were not analyzed in this
study. Third, further studies including independent
ECG waveform metrics should to be tested in future
prospective evaluations.

Conclusions
In this large population of OHCA patients, amplitude-
related features such as MS, AMSA and MdS, achieved
better prediction power of defibrillation outcome than
other features. Combining multiple electrical features
did not further improve prediction performance in com-
parison to the single features.

Key messages

� The electrical features obtained from ECG waveform
are promising in prediction of defibrillation outcome.
However, most of these features are highly correlated
with each other.

� The amplitude related features achieve better
defibrillation outcome prediction capability than
other features.

� Combinations of multiple electrical features using
machine learning strategies does not further
improve prediction performance.
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