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Abstract

Introduction: Provision for the emergence of an influenza pandemic is an urgent issue. The discovery of a novel

anti-influenza therapeutic approach would increase the effectiveness of traditional virus-based strategies. This study
was undertaken to evaluate the therapeutic effects of anti-high mobility group box-1 (HMGB1) monoclonal antibody
(mADb) treatment on influenza A virus (H1N1)-induced pneumonia in mice.

Methods: Nine-week-old male C57BL/6 mice were inoculated with HIN1, then anti-HMGB1 mAb or control mAb were
administered intravenously at 1, 24 and 48 hours after HIN1 inoculation and the survival rate was analyzed. Lung lavage
and histopathological analysis were performed on days 3, 5, 7 and 10 after inoculation.

Results: Anti-HMGB1 mAb significantly improved the survival rate of HIN1-inoculated mice (1 out of 15 versus 8 out
of 15 deaths in the anti-HMGB1 mAb-treated group versus the control mAb-treated group, p < 0.01), although

factor kB was attenuated by the treatment.

the treatment did not affect virus propagation in the lungs. The treatment also significantly attenuated histological
changes and neutrophil infiltration in the lungs of H1N1-inoculated mice. This was associated with inhibition of
HMGB1 and suppression of inflammatory cytokine/chemokine expression and oxidative stress enhancement, which
were observed in HIN1-inoculated mice. The expression of receptor for advanced glycation end products and nuclear

Conclusions: Anti-HMGB1 mAb may provide a novel and effective pharmacological strategy for severe influenza virus
infection in humans by reducing the inflammatory responses induced by HMGBT.

Introduction

The first influenza pandemic of this century, the 2009
HIN1 pandemic, has taught us many lessons [1]. The
2009 A (HINI) influenza virus was a relatively mild
pathogen for the majority of patients, although up to 20 %
of patients developed progressive, severe HIN1-induced
pneumonia requiring hospitalization [2—4]. The next
influenza pandemic is predicted to arise in the near future.
Tremendous advances have been made in the develop-
ment of anti-influenza drugs in the last few decades [5, 6];
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however, their therapeutic effects are not guaranteed
because of the need to administer these agents early
after onset, and the emergence of resistant virus
strains [7, 8]. Additionally, the protective effects and
the production and availability of influenza vaccines
are also limited [9]. This situation underlies the pressing
need to define novel therapeutic targets involved in disease
pathogenesis and progression.

Excessive cytokine production is considered to be a key
contributor to the pathophysiology of severe influenza
infection [10]. Shi et al. reported inhibition of tumor
necrosis factor-alpha (TNF-a) with etanercept, an agent
that provided protection against HIN1 infection in mice
[11]. The inhibition of an inflammatory cytokine, therefore,
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represented a promising novel strategy against influenza
infection. In this study, we focused on high mobility group
box-1 (HMGBI1), originally identified as a ubiquitous
DNA-binding protein [12], which is now also recognized
as a damage-associated molecular pattern molecule [13].
HMGBI1 has been proposed to be a crucial mediator
in the pathogenesis of many diseases, including sepsis
[14], autoimmunity [15], acute lung inflammation [16]
and several severe viral infections [17-19]. HMGBI1
can be released passively from necrotic cells and/or
actively secreted by macrophages or monocytes into the
extracellular milieu [20]. Extracellular HMGBI1 can elicit
the production of proinflammatory cytokines that induce
inflammatory responses through several immune recep-
tors, including the toll-like receptor 4 (TLR4) [21] and
the receptor for advanced glycation end product
(RAGE) [22, 23]. Moreover, intranuclear HMGB1 has
also been reported to play a significant role in the
replication of influenza viruses [24].

Recently, we found that anti-HMGB1 monoclonal
antibody (mAb) markedly inhibited fluid percussion-
induced brain edema in rats by inhibiting HMGBI trans-
location [25]. These results prompted us to evaluate the
therapeutic effects of anti-HMGB1 mAb administration in
severe pneumonia induced by influenza virus in anticipation
of development of the drug. Here we provide compelling
data demonstrating that anti-HMGB1 mAb may provide
a novel and effective pharmacological therapeutic strategy
for severe influenza virus infection by reducing the inflam-
matory responses induced by HMGB1.

Methods

Ethics

This study was approved by the Animal Use Committee
of Okayama University Graduate School of Medicine,
Dentistry and Pharmaceutical Sciences (No. OKU-2014502)
and was conducted in accordance with National Institutes
of Health Guidelines.

Experimental animals and establishment of an influenza
virus-induced pneumonia model

Eight-week-old male C57BL/6 mice (21-24 g body
weight) were purchased from Charles River Laboratories
(Yokohama, Japan). They were housed in a specific-
pathogen-free animal facility at 25 °C with a 12-hr light/
dark cycle and fed a standard pellet diet (Oriental MF;
Oriental Yeast Ltd., Tokyo, Japan).

Influenza virus A/Puerto Rico/8/34 (HIN1), a mouse-
adapted strain, was used throughout the study. The virus
was propagated in 10-day-old embryonated chicken eggs.
The virus titer was quantitated by a plaque assay using
Madin—Darby canine kidney cells and its 50 % mouse
lethal dose (MLDso) was 100 plaque-forming units (pfu).
Nine-week-old mice were anesthetized by intraperitoneal
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injection of ketamine (50 mg/kg) and pentobarbital
(30 mg/kg). They were then inoculated intranasally
with 100 pfu (1 MLDsg) of HIN1 suspended in 25 pL
of sterile phosphate-buffered saline. The animals were
allowed to recover and analyzed as described below.
The day of virus inoculation was defined as day 0.

Administration of anti-HMGB1 mAb to H1N1-inoculated
mice
The mice were randomly assigned to two groups after
virus inoculation, and an anti-HMGB1 mAb (#10-22,
immunoglobulin G,, subclass, 2 mg/kg) [26] or class-
matched control mAb (anti-Keyhole Limpet hemocyanin)
was administered intravenously via the caudal vein at 1,
24 and 48 hr after virus inoculation. These mAb were
produced by our group as described previously [26].
The dose of anti-HMGB1 mAb (2 mg/kg/mouse) was
considered sufficient, because a larger dose (4 mg/kg/
mouse) did not further reduce the levels of HMGBI1 and
cytokines in the lungs. We injected anti-HMGB1 mAb in
triplicate after virus inoculation, as the levels of HMGB1
remained elevated during the observation period (10 days).

Survival rate analysis
Survival was observed until day 28 (15 mice per group).
No other parameters were measured in the mice.

Pathological analysis

Pathological analyses were performed on days 3, 5, 7 and
10 after HIN1 inoculation (10 mice per group at each
time point). The mice were humanely euthanized and
their blood and bronchoalveolar lavage fluid (BALF) was
sampled for measurement of cytokines, chemokines and
hydroperoxides. The surgical procedures for pathological
analysis and lung histological examination were performed
as described previously [27]. Immunohistochemical analysis
was performed using an antibody against granulocyte-
differentiation antigen (BioLegend, San Diego, CA, USA)
[28] to detect neutrophil infiltration into the lung according
to the manufacturer’s instructions.

The lung injury score was calculated as previously de-
scribed [29]. Briefly, four readily identifiable pathological
processes were graded semiquantitatively on a scale of
0 to 4: alveolar and interstitial edema, hemorrhage,
margination and infiltration of inflammatory cells, and
formation of bronchiolitis. A score of 0 represented
normal lung, 1 represented mild, 2 was moderate, 3 was
severe, and 4 denoted very severe changes. For each
mouse, the lung injury score was calculated by adding the
individual grades (the mean value of five sections) for each
category. The histology was reviewed by two pathologists
in a blinded manner (NN and SF).

Bronchoalveolar lavage was performed as previously
described [27]. Briefly, the right lung was lavaged with
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1 mL of cold phosphate-buffered saline. The recovered
BALF was collected and centrifuged, and the super-
natant was stored at —80 °C prior to cytokine analysis.
The total cell number in the BALF was calculated from
the cell number in 200 pL of sediment. The percentage
of neutrophils was determined and the total neutrophil
number in the BALF was calculated and expressed
per animal.

Real-time polymerase chain reaction (PCR)

Total RNA was extracted from the middle portion of the
left lung using RNeasy Plus Mini (Qiagen, Hilden,
Germany). Total RNA was reverse-transcribed to cDNA
using RETROscript (Applied Biosystems, Foster City,
CA, USA) according to the manufacturer’s instructions.
Briefly, 1 pg total RNA was combined with random
decamers and heated to 75 °C for 3 minutes. The
RNA-random decamer mixture was combined with
reverse transcriptase buffer, ANTP mix, RNase inhibitor
and Moloney murine leukemia virus reverse transcriptase.
The RNA was reverse-transcribed at 43 °C for 60 minutes,
and the enzyme was inactivated at 92 °C for 10 minutes.
The cDNA was used as a template for PCR using the 7500
Real-Time PCR System (Applied Biosystems).

The probe and primers for the analysis of the expression
of influenza virus type A (M gene) mRNA were as follows:
TagMan probe, 5-6CCCTCAAAGCCGAGATCGCACA
GAGAC-3’; forward primer, 5'-CGTTCTCTCTATCATC
CCGTCAG-3’; reverse primer, 5'-GGTCTTGTCTTTAG
CCATTCCATG-3" [GenBank NC_002016]. For analysis of
signaling pathways, we performed real-time PCR with the
SYBR Premix Ex Taq (Takara Biomedicals, Shiga, Japan)
according to the manufacturer’s protocol. The sense and
antisense primers used for analysis of the expression of
mRNA were as follows: glyceralaldehyde-3-phosphate
dehydrogenase (GAPDH), 5'-TGACGTGCCGCCTGGAG
AAA-3" and 5'-AGTGTAGCCCAAGATGCCCTTCAG-3’
[GenBank NM_008084]; RAGE, 5'-CTAGAGCCTGGGT
GCTGGTTC-3" and 5 -GTTTCCATTCTAGCTGCTGG
GGC-3' [GenBank NM_007425]; NF-«B (p65), 5'-ATGTG
CATCGGCAAGTGG-3" and 5-CAGAAGTTGAGTTT
CGGGTAG-3" [GenBank NM_009045]. The expression of
GAPDH was used to normalize ¢cDNA levels. The PCR
products were also analyzed by melting curve analysis
to ascertain the specificity of amplification.

Measurement of HMGB1, RAGE, cytokines and
hydroperoxides

The levels of HMGB1 and RAGE were measured
using commercially available enzyme-linked immuno-
sorbent assay kits (HMGBI1: Shino-test, Kanagawa,
Japan; RAGE: R&D Systems, Minneapolis, MN, USA).
Interleukin 6 (IL-6), TNF-a and chemokine (C-X-C
motif) ligand 1 (CXCL-1) were measured with a Mouse
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Cytokine/Chemokine-Magnetic Bead Panel (Millipore,
Billerica, MA, USA) in a Luminex 100 system (Millipore).
The serum concentration of hydroperoxides (whole oxi-
dant capacity of serum against N,N-diethylparaphenylene-
diamine in acidic buffer) was measured as described
previously [27]. The measurement unit was CARR U. It has
been previously established that 1 CARR U corresponds to
0.08 mg hydrogen peroxide/dL [30].

Statistical analysis

Data are expressed as the mean + SEM. Comparisons
were performed with the Mann—Whitney U test using
Prism 6.0 software (GraphPad Software, San Diego, CA,
USA). The p value of the difference in survival was
determined by the log-rank (Mantel-Cox) test. P <0.05
was considered statistically significant.

Results

Anti-HMGB1 mADb significantly improves survival of
H1N1-infected mice but does not affect propagation of
influenza virus in the lung

Of the mice inoculated with 100 pfu (1 MLDs) influenza
HINT1 virus and treated with anti-HMGB1 mAb (2 mg/kg,
intravenously), 93.3 % were protected from influenza-
induced death, whereas 53.3 % of infected mice adminis-
tered control mAb died (Fig. 1a).

Subsequently, the viral load was determined in lung
homogenates. Because the mice began to die on day 10,
time points of days 3, 5, 7 and 10 after inoculation were
selected for the following measurements. There was
no difference in the number of viral M RNA copies
in the lung at any of the time points examined between
anti-HMGB1 mAb-treated mice and control mAb-treated
mice upon HIN1 infection (Fig. 1b). After HINI infec-
tion, anti-HMGB1 mAb-treated mice had significantly
lower levels of HMGB1 both in serum and BALF at all
of the time points examined compared with the control
mice (Fig. 1c, d).

Anti-HMGB1 mADb significantly reduces pulmonary injury
with suppression of neutrophil infiltration in the lung
after HIN1 inoculation

HINIl-inoculated control mice presented with diffuse
edema, inflammatory cellular infiltration of the alveoli
and interstitium of the lung, hemorrhage, and thickened
airways. Treatment with anti-HMGB1 mAb attenuated
the histopathological changes evident in the lung
(Fig. 2a). Additionally, anti-HMGB1 mAb significantly
reduced the lung injury score compared with control
mice at days 3 and 7 after HIN1 inoculation (Fig. 2b).
Histologically, influenza virus inoculation increased neu-
trophil infiltration in the lung, although anti-HMGB1
mAb treatment attenuated this effect (Fig. 2c). The
neutrophil number in the BALF increased in both the
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Fig. 1 Effects of anti-high mobility group box 1 (anti-HMGBT) monoclonal antibody (mAb) treatment on survival, viral load and HMGB1 level after
HTN1 inoculation. a Survival rate: 8 mice (53.3 %) in the control group (n =15 mice, broken line) died between days 10 and 15. In the anti-HMGB1
mAb group (n=15 mice, solid line), one (6.7 %) died on day 15; **p <0.01 vs control group by log-rank (Mantel-Cox) test. b. Viral load in the lung.
Data represent the mean (£ SEM) of 5 to 10 mice. There were no significant differences in viral load at any time point examined. HMGB1 levels in
serum (c) and bronchoalveolar lavage fluid (BALF) (d). Dotted line indicates the normal basal level. Data represent the mean (+ SEM) of 5 to 10
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anti-HMGB1 mAb and control groups; however, the
neutrophil number remained significantly lower in
mice treated with anti-HMGB1 mAb compared with the
control mAb at days 5, 7 and 10 after HIN1 inoculation
(Fig. 2d). These results indicated that anti-HMGB1 mAb
treatment significantly suppressed neutrophil infiltration
in the lungs of HIN1-inoculated mice.

Anti-HMGB1 mAb inhibits the release of IL-6, TNF-a and
CXCL-1, and attenuates RAGE expression in the lung after
H1NT1 inoculation
Investigation of the BALF demonstrated that anti-HMGB1
mAb-treated mice had significantly lower production of
IL-6, TNF-a and CXCL-1 on day 3 after HIN1 inoculation
compared with control mice (Fig. 3a).
Reverse-transcription PCR in the lung homogenates
showed that anti-HMGB1 mAb-treated mice had signifi-
cantly attenuated RAGE and NF-«xB (p65) expression on
day 3 after virus inoculation compared with control mice
(Fig. 3b). In addition to mRNA analysis, we measured
RAGE protein levels in BALF from anti-HMGB1
mAb-treated mice and control mice after inoculation
of HIN1 by an enzyme-linked immunosorbent assay.

Anti-HMGB1 mAb-treated mice had significantly lower
production of RAGE at days 5, 7 and 10 after HIN1
inoculation (Fig. 3c).

Anti-HMGB1 mAb attenuates oxidative stress after HIN1
inoculation

The serum concentration of hydroperoxides was also
significantly lower in anti-HMGB1 mAb-treated mice
compared with control mice at all of the time points
examined (Fig. 4). This result indicated that anti-HMGB1
mAD treatment attenuates the oxidative stress that is
observed in HI1N1-inoculated mice.

Discussion

In the battle against severe influenza, clinicians are
beginning to recognize that it is the immune response
of their patient that should be modulated. That is,
the involvement of inflammatory mediators in the
pathogenesis of influenza has been recognized as a
major issue [31]. After HMGB1 was first shown to
have an additional function as a late mediator of
endotoxin lethality [14], it has since been revealed as
a protein with inflammatory cytokine activity in the
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Fig. 2 Effects of anti-high mobility group box 1 (anti-HMGBT) monoclonal antibody (mAb) treatment on lung histology after HIN1 inoculation.
a. Photomicrographs of lung tissue samples stained with hematoxylin and eosin on days 3, 5 and 7 after HIN1 inoculation. These are representative
of five independent experiments. Control mAb group lung tissue showed aggravating diffuse alveolar and interstitial edema, inflammatory cellular
infiltration, hemorrhage and bronchiolitis (upper row). In the anti-HMGB1 mAb group lung tissue, these features were less severe (lower row). Scale
bar =100 pm. b. Lung injury scores. Data represent the mean (+ SEM) of five independent experiments; *p <0.05 and **p <0.01 vs control by
Mann-Whitney U test. . Photomicrographs of lung tissue samples stained with granulocyte-differentiating antigen (Gr-1) on day 10 after HIN1
inoculation. These are representative of five independent experiments: (a) HIN1 inoculation, control group; and (b) HINT inoculation, anti-HMGB1
mAb group. Arrowheads indicate Gr-1 expressing, positively stained (brown) cells. Scale bar = 100 um. d. Neutrophil numbers in the bronchoalveolar
lavage fluid. Dotted line indicates the normal basal level. Data represent the mean (+ SEM) of 10 mice; *p <0.05 and **p <0.01 vs control

by Mann-Whitney U test

pathogenesis of influenza [32-34], as well as in many
other inflammatory diseases. Recently, HMGB1 has
attracted the attention of many researchers as a thera-
peutic target for the treatment of various diseases [35].
Several researchers have already investigated HMGB1
and influenza and suggested the anti-influenza effects
of different inhibitory agents of HMGBI, including
ethyl pyruvate [36] and some Chinese herbs [37].

In this study, we evaluated the therapeutic effects of
anti-HMGB1 mAb on severe HIN1-induced pneumonia
in mice. We initially established an influenza-induced
mouse model of pneumonia with 50 % lethality. Subse-
quently, 2 mg/kg of anti-HMGB1 mAb was administered
by intravenous injection in triplicate after virus inoculation.

The results demonstrated that systemic suppression of
HMGBI to its normal basal level by anti-HMGB1 mAb
could protect against severe H1NI-induced pneumonia
with almost complete survival. We also showed that
anti-HMGB1 mAb attenuated RAGE expression, sug-
gesting that RAGE plays an important role in the
pathophysiological mechanism of anti-HMGB1 mAb.
Hou et al. recently reported the effects of a rabbit
anti-HMGBL1 polyclonal antibody against H5N1 influ-
enza infection [32]. However, no report has identified
the protective mechanism of anti-HMGBI1 antibody
against HIN1 influenza infection. Our findings revealed
the effectiveness of anti-HMGB1 mAb against influenza
infection, with a lower dose administered intravenously
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Fig. 3 Effects of anti-high mobility group box 1 (anti-HMGBT) monoclonal antibody (mAb) on cytokines in the bronchoalveolar lavage fluid
(BALF) and the expression of receptor for advanced glycation end products (RAGE) and NF-kB in the lungs after HIN1 inoculation. a. Cytokine
concentration in the BALF. Data represent the mean (+ SEM) of 10 mice. Dotted line indicates the normal basal level. IL-6 and TNF-a were not
detected in the BALF from normal mice; *p <0.05 and **p <0.01 vs control by Mann-Whitney U test. b. RAGE and NF-kB (p65) mRNA expression
in the lungs of HI1NT-inoculated mice. The results were normalized to the expression of glyceralaldehyde-3-phosphate dehydrogenase (GAPDH)
mMRNA. The basal expression level of normal mice was calibrated as 1.0 (dotted line). Data represent the mean (+ SEM) of 5 to 10 mice; *p <0.05
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compared with the study by Hou et al. [32]. The antibody
used in our study was monoclonal and recognized the
c-terminal sequence of HMGBI. Using this anti- HMGB1
mAb, we have previously demonstrated its beneficial
effects on different types of inflammatory disease, such as
ischemic and traumatic brain injury [25, 26]. The primary
structure of HMGBI1 is conserved, with 99 % amino
acid sequence homology between rodent and human.
Therefore, the results in our study may be applicable
to influenza infection in humans. Moreover, we have
also developed a humanized anti-HMGB1 mAb (data
not shown). Consequently, this study is a significant step
forward in the clinical application of anti-HMGB1 mAbs
for a diverse range of inflammatory diseases in humans,
including tissue injury.

Cytokines and chemokines contribute to the overall
pathology of lung injury, and several have been well
documented in HIN1-induced pneumonia [33, 38—40]. We
found that in H1NI-inoculated mice, anti-HMGB1 mAb
significantly suppressed the local production of IL-6 and
TNE-q, key cytokines orchestrating the pathophysiology of

highly virulent influenza strains [11, 41]. IL-6 is rapidly
released during the acute phase of influenza infection and
its elevated levels are associated with disease severity
triggered by HINI infection [42]. TNF-a has been
shown to correlate with morbidity and mortality in
influenza-infected subjects [11, 43]. Moreover, the
CXCL-1 level was also significantly suppressed in mice
treated with anti-HMGB1 mAb. CXCL-1 is a chemokine
that directs the trafficking of circulating neutrophils to
sites of inflammation or injury [44]. These effects on
cytokines and chemokines help to explain our observations
of a decreased local inflammatory response, attenuated
infiltration of neutrophils and improved survival after
HINT1 inoculation in anti-HMGB1 mAb-treated mice.

Our key finding is that treatment with anti-HMGB1
mADb resulted in suppressed expression of RAGE. RAGE
is the primary binding receptor for HMGBI1, and the
interaction of RAGE and HMGBI induces an inflammatory
response via NF-«kB activation [13]. Van Zoelen et al. [23]
previously reported the importance of RAGE in the patho-
genesis of influenza-induced pneumonia. Pulmonary RAGE
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upregulation was associated with influenza-induced
pneumonia, and RAGE-deficient mice showed increased
resistance to influenza-induced pneumonia. Additionally,
HMGBI-induced signaling can result in the expression of
RAGE via a positive feedback loop [45]. Therefore, treat-
ment with anti-HMGB1 mAb itself could restrict RAGE
expression in HINI-induced pneumonia by blocking
HMGBI-induced signaling, resulting in suppression of the
inflammatory response.

Interestingly, however, the attenuation of RAGE expres-
sion was seen only in the early phase of infection (day 3)
in anti-HMGB1 mAb-treated mice, although HMGBI1
level was suppressed significantly in both serum and BALF
at all time points. Correspondingly, there was no signifi-
cant difference in the expression of NF-kB between the
two groups in the later phase of infection (days 7 and 10).
These findings help to explain the observation that
few cytokines differed significantly in expression between
the two groups in the later phase of infection. Soluble
RAGE (sRAGE) might provide a key to answer this
paradox. We found in this study that the RAGE level
in BALE, which should be sSRAGE, was significantly higher
in control mice than in anti-HMGB1 mAb-treated mice.
Without a transmembrane domain, sSRAGE is reported to
circulate out of the cell and act as a decoy by pre-
venting ligands, including HMGBI1, from binding to
RAGE, therefore functioning as a negative feedback
on RAGE interactions with its ligands [46, 47]. The
hyper-expression of sRAGE in BALF might result in
decreased cytokine levels. Further research on the
downstream signaling pathways of the HMGB1-RAGE
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axis in influenza-induced pneumonia is warranted to
clarify these speculations.

TLR4 signaling is involved in influenza infection [48].
In addition to RAGE, TLR4 is one of the receptors for
HMGBI1. Therefore, it is possible that neutralization of
HMGBI1 may affect TLR4 expression, leading to an altered
cytokine response in the lungs. TLR4-mediated HMGB1
signaling may induce deleterious effects of HMGB1. We
therefore measured the levels of TLR4 expression in the
lungs after anti-HMGB1 mAb treatment. As a result,
neutralization of HMGB1 did not affect TLR4 expression
in the lungs compared with the control (Additional file 1).
Thus, it is likely that TLR4 signaling is not directly
involved in the altered cytokine response and lung path-
ology after anti-HMGB1 mAb treatment. We believe that
RAGE-mediated HMGB1 signaling is important in this
model. To test this hypothesis, a specific RAGE antibody
could be used or a small interfering RNA specific for
RAGE could be employed. It has been shown that mice
with a RAGE deficiency were protected against influenza
virus infection [23]. Further studies will be necessary to
address these points.

Another key finding of this study is that anti-HMGB1
mAD treatment attenuated the serum concentration of
hydroperoxides in H1N1-inoculated mice. This finding
indicates that treatment with anti-HMGB1 mAb might
contribute to a comprehensive suppression of not only
local cytokines and chemokines but also systemic oxidative
stress. Our group recently reported that administration
of the redox-active protein thioredoxin-1 ameliorated
HINI-induced pneumonia in mice via its antioxidative
properties, suggesting that an antioxidative strategy may
be a key therapeutic regimen for influenza-induced pneu-
monia [27]. Therefore, it is also important to assess the
oxidative stress response in influenza-induced pneumonia
[49]. However, our findings warrant further study as we
have not yet studied the antioxidative mechanism of the
anti-HMGBI1 mAb.

Although severe viral pneumonia tends to be rare during
outbreaks of seasonal influenza, many cases of primary
viral pneumonia were observed in the recent influenza
pandemic, especially in the young [50, 51]. Even after the
2009 HIN1 pandemic, the world faces the rising bur-
den of viral respiratory infections, including highly
pathogenic avian influenza, severe acute respiratory
syndrome-associated coronavirus and Middle East respira-
tory syndrome coronavirus [52]. Acute respiratory distress
syndrome caused by these new viruses is an immediate
challenge. HMGB1 was also reported to be associated
with the pathogenesis of acute respiratory distress syn-
drome [16]. Given the limited benefit of anti-viral drugs,
anti-HMGB1 mAb, which provides a protective effect
against the host immunological response, shines new light
on the treatment of emerging viral infections.
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Conclusions

Intravenous administration of anti-HMGB1 mAb signifi-
cantly improved the survival rate and attenuated lung histo-
pathological changes in a murine model of influenza-
induced pneumonia. The protective effects of anti-HMGB1
mADb might be explained by its blockade of the interaction
between HMGB1 and RAGE, a key mechanism in the
initiation of inflammatory and oxidative responses. These
results suggest that anti-HMGB1 mAb represents a
possible therapeutic pharmacological strategy for severe
influenza-induced pneumonia in humans.

Key messages

e Intravenous administration of anti-HMGB1
monoclonal antibody significantly improved the
survival rate and attenuated lung histopathological
changes in a murine model of influenza-induced
pneumonia.

e Intravenous anti-HMGB1 monoclonal antibody
inhibited systemic and local HMGBI levels and
suppressed inflammatory cytokine/chemokine
expression and oxidative stress, which were all o
bserved in HIN1-inoculated mice.

e The expression of receptor for advanced glycation
end products (RAGE) was attenuated by
anti-HMGB1 monoclonal antibody treatment.

Additional file

Additional file 1: Effects of anti-high mobility group box 1
(anti-HMGB1) monoclonal antibody (mAb) treatment on the
expression of toll-like receptor 4 (TLR4). The results were normalized

to the expression of glyceralaldehyde-3-phosphate dehydrogenase (GAPDH)
mMRNA. The basal expression level of normal mice was calibrated as 1.0
(dotted line). Data represent the mean (+ SEM) of 5 to 10 mice. The sense
and antisense primers used for the analysis of the expression of TLR4 were
as follows: 5-GCACTGTTCTTCTCCTGCC-3" and 5-GTTTCCTGTCAGTATCAAG-3'
[GenBank NM_021297]. There was no statistical difference between

groups as determined by the Mann-Whitney U test.
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