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Abstract

Introduction Increasing evidence links advanced glycation end
products (AGE) including Nε-(carboxymethyl)lysine (CML) to the
development of heart failure. Accumulation of AGE leads to
myocardial inflammation, which is considered as one of the
possible mechanisms underlying sepsis-induced cardiac
dysfunction. We hypothesized that mechanical ventilation (MV)
augmented sepsis-induced myocardial CML deposition and
inflammation.

Methods Sepsis was induced using a modified cecal ligation
and perforation (CLP) technique in 36 male adult Sprague
Dawley rats. Rats were randomized to four hours of MV with low
tidal volume (LTV: 6 ml/kg, PEEP 5 cmH2O, n = 10) or high tidal
volume (HTV: 15 ml/kg, PEEP 3 cmH2O, n = 10) 24 hours after
the induction of sepsis. Eight rats served as septic, non-
ventilated controls and eight as non-septic, non-ventilated
controls. After 28 hours all rats were killed. The number of
extravascular polymorphonuclear (PMN) leucocytes,
macrophages, and lymphocytes was measured as the number of
positive cells/mm2. The number of CML positive endothelial
cells were semi-quantified based upon an intensity score. The
CML intensity score was correlated with the number of

inflammatory cells to study the association between CML
depositions and inflammation.

Results Gas exchange was comparable between the ventilated
groups. Sepsis induced a significant increase in CML
deposition in both ventricles that was significantly augmented by
MV compared with non-ventilated septic controls (left ventricle
1.1 ± 1.0 vs 0.7 ± 0.1, P = 0.030; right ventricle 2.5 ± 0.5 vs
0.6 ± 0.1, P = 0.037), irrespective of ventilatory strategy. In the
right ventricle there was a non-significant tendency towards
increased CML deposition in the HTV group compared with
septic, non-ventilated controls (1.0 ± 0.1 vs 0.7 ± 0.09, P =
0.07). Sepsis induced a significant increase in the number of
macrophages and PMNs compared with non-ventilated septic
controls that was augmented by MV, irrespective of ventilatory
strategy. CML deposition was significantly correlated with the
number of macrophages and PMNs in the heart.

Conclusions Sepsis induces CML deposition in the heart with
a predominant right ventricular inflammation that is significantly
augmented by MV, irrespective of the ventilatory strategy.
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AGE: advanced glycation end product; BSA: bovine serum albumin; CLP: cecal ligation and perforation; CML: N -(carboxymethyl)lysine; HTV: high 
tidal volume; LTV: low tidal volume; LV: light ventricle; MPO: myeloperoxidase; MV: mechanical ventilation; PaCO2: partial pressure of arterial carbon 
dioxide; PaO2: partial pressure of arterial oxygen; PBS: phosphate-buffered saline; PEEP: positive end-expiratory pressure; PMN: polymorphonuclear 
leucocytes; RAGE: receptor for advanced glycation end product; RV: right ventricle; sRAGE: soluble receptor for advanced glycation end product; 
VCAM-1: vascular cell adhesion molecule-1.
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Introduction
Sepsis-induced cardiac dysfunction occurs in approximately
40 to 50% of patients with prolonged septic shock and is
associated with increased mortality. Various possible underly-
ing mechanisms have been reviewed extensively [1-6]. Myo-
cardial inflammation is one of these mechanisms as sepsis-
induced cellular infiltration of the myocardium has been found
in experimental studies and in humans dying from sepsis [7-9].

Advanced glycation end products (AGE) such as Nε-(car-
boxymethyl)lysine (CML) may play an important role in this
inflammation [10]. AGE are formed during oxidative stress,
acting as ligands for AGE receptors (RAGE) [11]. These
receptors trigger a cascade of signaling mechanisms with
subsequent expression of vascular cell adhesion molecule-1
(VCAM-1), induction of vascular leakage, and increased
chemotaxis of mononuclear phagocytes and release of pro-
inflammatory mediators resulting in cellular dysfunction [12-
15]. The soluble form of the receptor (sRAGE) was found to
be elevated in septic patients and associated with worsened
outcome [16].

The detrimental effect of AGE may be enhanced by mechani-
cal ventilation (MV) (double-hit principle). MV induces inflam-
mation of healthy lungs or aggravates pre-existing lung injury
(ventilator-induced lung injury); various mediators produced
during this inflammation including AGE formed during MV-
induced oxidative stress may contribute to distant organ fail-
ure, including the heart [17-21].

We hypothesized that sepsis led to myocardial CML deposi-
tion resulting in inflammation. In addition, we hypothesized that
this effect was augmented following four hours of MV. To test
this hypothesis we therefore designed a study in which rats
were subjected to two different ventilatory strategies in a
model of sepsis induced by cecal ligation and puncture (CLP).

Materials and methods
Animal preparation and experimental protocol
All animals were treated according to the Canadian national
guidelines and with approval of the Institutional Animal Care
and Use Committee of St Michael's Hospital. Sepsis was
induced in Sprague Dawley rats (weight ± 300 g; Charles Riv-
ers, St Constan, QC, Canada) using a modification of the
cecal ligation and perforation technique [22,23]. Twenty-four
hours later, rats were randomized to one of two strategies and
ventilated for four hours: low tidal volume (LTV) of 6 ml/kg and
positive end-expiratory pressure (PEEP) 5 cm H2O (n = 10);
or high tidal volume (HTV) of 15 ml/kg and PEEP 3 cm H2O (n
= 10). Normocapnia (partial pressure of arterial carbon dioxide
(PaCO2) 35 to 45 mmHg) was maintained by adjusting respi-
ratory rate. Inspiratory to expiration time was set to 1:2. The
fraction of inspired oxygen was 0.4 in both ventilated groups.
Anesthesia was maintained with intravenous xylazine 1 mg/kg/
hr and ketamine 20 mg/kg/hr; muscle relaxation was achieved

by continuous intravenous administration of pancuronium bro-
mide (Sabex Inc, QC, Canada) 0.6 mg/kg/hr. For blood sam-
pling and arterial blood pressure measurements, a catheter
was inserted into the right carotid artery. All rats received a
continuous infusion of normal saline at a rate of 10 ml/kg/hr to
keep mean arterial pressure above 60 mmHg. At the end of the
experiment animals were sacrificed with an overdose of
anesthesia. Part of the lung was weighed and heated over-
night to determine lung wet-to-dry ratio.

Eight rats that underwent the CLP procedure were not sub-
jected to MV. Another eight rats were not subjected to CLP or
MV. All of these animals were sacrificed after 28 hours; the
first group served as non-ventilated septic controls, and the
second group as non-ventilated, non-septic controls. The
reported investigations were performed as part of experimen-
tal studies investigating the effects of MV during sepsis on
renal function.

Immunohistochemistry
Antibodies used were monoclonal mouse anti-rat CD68
(Serotec, Kidlington, UK), monoclonal mouse anti-rat CD45
(BD Pharmingen, Breda, The Netherlands), polyclonal rabbit
anti-human myeloperoxidase (MPO) (Dako, Heverlee, Bel-
gium) and anti-rat CML.

Hearts were fixed in 4% formaldehyde, imbedded in paraffin,
and 4 μm sections were mounted on SuperFrost Plus glass
slides (Menzel-Gläser, Baunschweig, Germany). The slides
were deparaffinised, hydrated, and endogenous peroxidase
activity was blocked by 0.03% hydrogen peroxide in methanol
for 30 minutes. Enzymatic CD68 and CML antigen retrieval
was performed by incubating the tissue samples with 0.1%
pepsin (activated with hydrochloric acid 37%, 1:600) for 30
minutes at 37°C. MPO and CD45 heat antigen retrieval was
performed by heating the slides for 15 minutes in citrate
(MPO; pH 6.0) and in Tris/EDTA (CD45; pH 9.0) at 100°C.
After washing the sections in demineralised water and in PBS
(pH 7.4), the slides were incubated with specific antibody
solutions (diluted in PBS-BSA) for 60 minutes (anti CD68
1:100, anti MPO 1:500, anti CD45 1:50, anti CML 1:500).
Thereafter, the slides were again washed in PBS, followed by
30 minute incubation with anti-rabbit and anti-mouse EnVi-
sion-HRP (DakoCytomation, Heverlee, Belgium). The slides
were then washed in PBS, and visualisation was performed
with EnVision-diaminobenzidin (DakoCytomation, Heverlee,
Belgium) for 10 minutes. Slides were counterstained with
hematoxylin and mounted with Depex (Serva, Heidelberg, Ger-
many).

As a control, the same staining procedures were used, but
instead of the primary monoclonal or polyclonal antibody, PBS
or an irrelevant antibody was used; these heart tissue slides
were found to be negative.
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Morphometrical analyses
In each tissue slide the number of extravascular polymorpho-
nuclear (PMN) leucocytes (MPO positive), macrophages
(CD68 positive), and lymphocytes (CD45 positive) were
measured as the number of positive cells/mm2 myocardium
using Q-PRODIT (Leica, Cambridge, UK).

The number of CML-positive endothelial cells were semi-quan-
tified based on an intensity score for each positive vessel as
follows: 1 = weak positivity; 2 = moderate positivity; 3 =
strong positivity [24]. Each intensity score was multiplied by
the number of vessels positive for this score. The multiplication
scores were then added and the sum was divided by the area
of the slide, resulting in a immunohistochemical score per
mm2.

All morphometrical analyses were performed by two inde-
pendent investigators (RPG and HWMN) who were blinded to
the experimental groups. The interobserver variation was 10%.

Statistical analysis
Data are expressed as mean ± standard error of the mean
unless stated otherwise. One-way analysis of variance with
Sidak post-hoc testing was used to analyze differences
between groups. Pearson correlation coefficient was calcu-
lated to analyze correlations between continuous variables. A
P < 0.05 was accepted as statistically significant. All statisti-
cal analyses were performed with SPSS version 17 for Macin-
tosh (Chicago, IL, USA).

Results
Gas exchange and hemodynamic parameters
Gas exchange and hemodynamics were similar between the
ventilated groups throughout the experiment except for a
lower PaCO2 in the HTV group. Mean arterial blood pressure
and heart rate, as well as the total amount of fluid administered
during the study was no different between the LTV and HTV
group. Lung wet-to-dry ratio was significantly higher in the
HTV group (5.5 ± 0.1) compared with non-ventilated sepsis
(4.8 ± 0.1; P < 0.001), but not significantly different from the
non-septic group (5.0 ± 0.1).

CML depositions
CML depositions were found in small intra-myocardial arteries
(Figure 1). Sepsis induced a significant increase of CML inten-
sity score in both left ventricle (LV) and right ventricle (RV),
compared with non-septic controls (Figure 2). The CML inten-
sity score in the RV was significantly higher compared with the
LV (0.7 ± 0.1 vs 1.7 ± 0.2; P < 0.001). The combination of
sepsis and MV significantly increased the CML intensity score
in both the LV and RV compared with non-septic controls (LV
0.3 ± 0.1 vs 1.0 ± 0.1, P < 0.01; RV 0.6 ± 0.1 vs 2.5 ± 0.5,
P = 0.03). There were no differences between the LTV and
HTV groups in both ventricles, although in the RV there was a
trend towards a higher intensity score in the HTV group com-

pared with non-ventilated sepsis (1.0 ± 0.1 vs 0.7 ± 0.09, P =
0.07; Figure 2).

Myocardial inflammation
The CML intensity score was significantly increased by sepsis
following four hours of MV, so we examined whether this was
associated with increased myocardial inflammation. Sepsis
did induce a significant increase of the number of macro-
phages in the RV (5.5 ± 1.5 vs 1.5 ± 0.4 cells/mm2, P =
0.031) but not the LV (Figure 3). MV then caused a significant
increase in the number of macrophages in both the left (LTV
6.4 ± 1.8 cells/mm2, HTV 6.1 ± 0.9 cells/mm2, non-ventilated
sepsis 2.1 ± 0.6 cells/mm2, P < 0.05) and RV (LTV 11.3 ± 1.9
cells/mm2, HTV 12.2 ± 2.1 cells/mm2; non-ventilated sepsis
5.5 ± 1.5 cells/mm2, P < 0.001; Figure 3). In general, the
number of macrophages was significantly higher in the RV
compared with the LV, except in the HTV group.

In contrast, sepsis induced a significant increase of PMNs in
both left (1.5 ± 0.1 cells/mm2 vs 0.6 ± 0.2 cells/mm2, P =
0.004) and RV (3.5 ± 0.6 cells/mm2 vs 0.9 ± 0.2 cells/mm2, P
= 0.003) compared with non-septic controls (Figure 3). How-
ever, ventilation only caused a significant increase of PMNs in
the RV in the HTV group only compared with non-ventilated
sepsis (9.5 ± 2.4 vs 3.5 ± 0.6 cells/mm2, P = 0.034). The
number of PMNs was significantly higher in the RV compared
with the LV, except in the LTV group.

Figure 1

Immunohistochemical staining for Nε-(carboxymethyl)lysine (CML) in the left ventricular wall of a mechanically ventilated rat with sepsisImmunohistochemical staining for Nε-(carboxymethyl)lysine (CML) in 
the left ventricular wall of a mechanically ventilated rat with sepsis. 
Arrows indicate positive staining of blood vessels for CML (original 
magnification 200×).
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The number of lymphocytes was not significantly increased in
both ventricles, although for non-ventilated sepsis this was sig-
nificantly higher in the RV than in the LV (Figure 3).

Correlation of CML intensity score and myocardial 
inflammation
To study whether CML depositions were associated with myo-
cardial inflammation, we studied the correlation between CML
intensity score and number of inflammatory cells. CML inten-
sity score was significantly correlated with the number of mac-
rophages in the LV (R2 = 0.14, P = 0.029) and number of
PMNs in both ventricles (LV R2 = 0.11, P = 0.049 and RV R2

= 0.67, P < 0.001). There was no correlation with the number
of lymphocytes.

Discussion
The major finding of this study is that MV in combination with
sepsis was associated with increased CML depositions in
small intra-myocardial arteries and myocardial inflammation by
macrophages and PMNs with a predominance in the RV, irre-
spective of ventilatory strategy.

AGE and their receptor RAGE have been identified as a
pathophysiologic contributors to cellular inflammation in sep-
sis by amplifying the host innate immune response [10]. Our
findings on increased CML depositions in both LV and RV, as
well as a significant correlation between CML deposition and
the number of macrophages and PMNs is in line with these
observations. The low number of lymphocytes in the heart of
our study may be explained by the observation of increased
apoptosis of lymphocytes during sepsis [25]. Weber and col-
leagues have found that this apoptosis already occurs during
the early phase of sepsis [26].

Our group is the first to study the pathophysiologic role of
AGE formation in MV-induced myocardial inflammation during
sepsis. Importantly, the role of AGE in increasing inflammation
and subsequent detrimental effects on cardiovascular function
has recently been firmly underscored [27]. Increased CML
depositions were found in the LV and RV of ventilated animals,
although ventilatory strategy itself did not have a significant
effect on CML deposition as well as myocardial inflammation.
This may be explained by the fact that our model only caused
mild lung injury. Although the wet-to-dry ratio was significantly
different between LTV and HTV, gas exchange (including par-
tial pressure of arterial oxygen (PaO2) and PaCO2) was com-
parable and the wet-to-dry ratio in the HTV group was only 5.5
[28].

We can only speculate on a possible causal link between CML
deposition, myocardial inflammation and MV. Non-injurious MV
is associated with oxidative stress that is characterised by pul-
monary production of AGE and increased oxidant released as
measured by serum isoprostane [18,20,21]. Increased levels
of the RAGE has been found in broncho-alveolar lavage fluids
and serum of rats with endotoxin-induced lung injury and
patients with acute lung injury [29]. Treatment with sRAGE
significantly attenuated the increase in neutrophil infiltration,
lung permeability, production of inflammatory cytokines,
nuclear factor (NF)-κB activation, and apoptotic cells in the
lungs [21]. The question is how local pulmonary inflammation
with oxidative stress leads to accumulation of CML in distant
organs. AGE such as CML can be formed by different proc-
esses including glycation followed by oxidative cleavage of
Amadori-adducts, auto-oxidative glycosylation, reaction of pro-
teins with non-glucose carbohydrates, lipoxidation, and by
reaction of proteins with products of MPO derived from neu-

Figure 2

Nε-(carboxymethyl)lysine (CML) deposition intensity score (CML-IHS per mm2)Nε-(carboxymethyl)lysine (CML) deposition intensity score (CML-IHS per mm2). Results are shown in the left ventricle (left figure) and right ventricle 
(right figure) of non-septic non-ventilated rats (no sepsis; n = 8), non-ventilated sepsis rats (sepsis; n = 8), rats ventilated with low tidal volume (sep-
sis + LTV; n = 10), and rats ventilated with high tidal volume (sepsis + HTV; n = 10). HTV = high tidal volume; LV = left ventricle; LTV = low tidal vol-
ume; MV = mechanical ventilation; RV = right ventricle. * P < 0.05.
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trophils [30-33]. MPO rapidly uses hydrogen peroxide to form
hypochlorous acid which reacts with the amino group of free
amino acids to form glycoaldehydes [30]. It may be hypothe-
sized that the accumulation of AGE in our study may at least
in part be mediated by neutrophils as these inflammatory cells
play a dominant role in both sepsis and ventilator-induced lung
injury [34,35]. Importantly, to ascertain a causative role for
AGE on myocardial inflammation future studies should be per-
formed investigating the effect of sRAGE or AGE formation
blockers.

Although we did not study the functional correlation of sepsis-
induced CML depositions and myocardial inflammation aug-
mented by MV, it seems logical to hypothesize that this could
contribute to sepsis-induced myocardial dysfunction. Accu-
mulation of AGE are increasingly linked to the development of
heart failure [36]. RAGE induces VCAM-1, used by PMNs to
adhere to and infiltrate the myocardium during endotoxemia
with subsequent oxidative and nitrosative stress leading to
myocardial dysfunction in an experimental study [37]. In addi-
tion, Granton and colleagues studied myocardial contractility
perfusing hearts from endotoxemic animals in a Langendorff

Figure 3

Interstitial inflammation in the myocardiumInterstitial inflammation in the myocardium. Results are shown in non-septic non-ventilated rats (no sepsis; n = 8), non-ventilated sepsis rats (sepsis; 
n = 8), rats ventilated with low tidal volume (sepsis + LTV; n = 10), and rats ventilated with high tidal volume (sepsis + HTV; n = 10). Upper panel 
depicts the number of macrophages, middle panel represents the number of polymorphonuclear leukocytes, and the lower panel represents the 
number of lymphocytes. HTV = high tidal volume; LV = left ventricle; LTV = low tidal volume; MV = mechanical ventilation; RV = right ventricle. * P < 
0.05.
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set-up [38]. They found improved myocardial contractility in
hearts perfused with leukocyte-depleted blood animals com-
pared with untreated blood. Therefore, our findings require fol-
low-up by an in vivo study of the effects of increased interstitial
inflammation on myocardial contractility.

Interestingly, mainly the RV was involved. For instance, the cor-
relation between RV CML depositions and number of PMNs
was highly significant. This may be explained by the fact that
during sepsis, and during MV of non-injured lungs the pulmo-
nary vascular resistance is increased that may lead to
increased strain with inflammation on the RV with subsequent
right ventricular dysfunction [39]. This assumption is sup-
ported by both animal and human studies on pulmonary embo-
lism with pulmonary hypertension, in which a massive
accumulation of neutrophils and monocytes/macrophages has
been observed [40,41]. Begieneman and colleagues found
increased inflammation by macrophages and PMNs in the RV
of patients dying from pulmonary embolism [40]. On the other
hand, the low level of PEEP in the HTV group causing atelecta-
sis may have confounded our results as this has been demon-
strated to be associated with right ventricular failure in rats
[42].

There are some methodological aspects of our study that
deserve comment. For our sepsis model we used the CLP
technique, which is comparable to sepsis in humans [43].
Because patients with sepsis often need to be mechanically
ventilated, we constructed a double-hit model combining CLP-
induced sepsis followed by MV. Tidal volumes were chosen
based on clinical practice: a tidal volume of 6 ml/kg is recom-
mended as lung-protective ventilation, and HTV is still used for
MV in patients [44,45]. Mean airway pressure and PaO2 were
similar between the LTV and HTV group, eliminating oxygena-
tion as a possible confounding factor between these two
groups. Lastly, theoretically the anesthetics used in this study
could interfere with myocardial function [46]. Nevertheless, in
our study hemodynamic parameters were comparable
between all groups.

Conclusions
MV during experimental sepsis was associated with increased
CML depositions in intra-myocardial small arteries and myo-
cardial inflammation, irrespective of ventilatory strategy.
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Key messages

• CML depositions in the heart were significantly 
increased during experimental sepsis.

• MV in combination with sepsis was associated with 
increased CML depositions in intra-myocardial small 
arteries and myocardial inflammation, irrespective of 
ventilatory strategy.

• The RV was predominantly affected.
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