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Abstract

Introduction Interventional lung assist (ILA), based on the use
of a pumpless extracorporeal membrane oxygenator, facilitates
carbon dioxide (CO2) elimination in acute respiratory distress
syndrome (ARDS). It is unclear whether an ILA system should
be clamped during cardiopulmonary resuscitation (CPR) in
patients with ARDS or not. The aim of our study was to test the
effects of an ILA on haemodynamics and gas exchange during
CPR on animals with ARDS and to establish whether the ILA
should be kept open or clamped under these circumstances.

Methods The study was designed to be prospective and
experimental. The experiments were performed on 12
anaesthetised and mechanically ventilated pigs (weighing 41 to
58 kg). One femoral artery and one femoral vein were
cannulated and connected to an ILA. ARDS was induced by
repeated bronchoalveolar lavage. An indwelling pacemaker was
used to initiate ventricular fibrillation and chest compressions
were immediately started and continued for 30 minutes. In six
animals, the ILA was kept open and in the other six it was
clamped.

Results Systolic and mean arterial pressures did not differ
significantly between the groups. With the ILA open mean ±
standard deviation systolic blood pressures were 89 ± 26
mmHg at 5 minutes, 71 ± 28 mmHg at 10 minutes, 63 ± 33
mmHg at 20 minutes and 83 ± 23 mmHg at 30 minutes. The
clamped ILA system resulted in systolic pressures of 77 ± 30
mmHg, 90 ± 23 mmHg, 72 ± 11 mmHg and 72 ± 22 mmHg,
respectively. In the group with the ILA system open, arterial
partial pressure of CO2 was significantly lower after 10, 20 and
30 minutes of CPR and arterial partial pressure of oxygen was
higher 20 minutes after the onset of CPR (191 ± 140 mmHg
versus 57 ± 14 mmHg). End-tidal partial pressure of CO2
decreased from 46 ± 23 Torr (ILA open) and 37 ± 9 Torr (ILA
clamped) before intervention to 8 ± 5 Torr and 8 ± 10 Torr,
respectively, in both groups after 30 minutes of CPR.
Conclusions Our results indicate that in an animal model of
ARDS, blood pressures were not impaired by keeping the ILA
system open during CPR compared with the immediate
clamping of the ILA with the onset of CPR. The effect of ILA on
gas exchange implied a beneficial effect.

Introduction
Interventional Lung Assist (ILA) describes a technique, which
uses a pumpless arteriovenous extracorporeal membrane oxy-
genator to facilitate carbon dioxide (CO2) removal. Its ability to
remove CO2 has been well demonstrated [1-6]. The aim of the
extracorporeal CO2 elimination by the ILA system is to

decrease the minute ventilation and the peak inspiratory pres-
sure and thereby reduce the risk of barotrauma associated
with mechanical ventilation in patients with acute respiratory
distress syndrome (ARDS).
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ARDS: acute respiratory distress syndrome; CO2: carbon dioxide; CPR: cardiopulmonary resuscitation; CPP: coronary perfusion pressure; CVP: cen-
tral venous pressure; FiO2: inspired fraction of oxygen; ILA: interventional lung assist; O2: oxygen; PaCO2: arterial partial pressure of carbon dioxide; 
PaO2: arterial partial pressure of oxygen; PCO2: partial pressure of carbon dioxide; PEEP: positive end-expiratory pressure; PV: pressure volume.
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The effect of ILA on oxygenation remains unclear [7-11]. In
contrast to a veno-venous extracorporeal membrane oxygena-
tion the effect on oxygenation is limited because in the setting
of an arteriovenous shunt, oxygen (O2) provided by the ILA
system is added to the arterial blood where the saturation is
already relatively high. In a previous study in a non-arrest
model, we found a significant but only small effect of ILA on
arterial partial pressure of O2 (PaO2) [12].

An effective operation of the ILA system relies on an arteriov-
enous shunt and for that reason a patient is required to have
stable circulation because the blood pressure of the patient is
the driving force of the device. If cardiopulmonary resuscitation
(CPR) is performed in a patient treated with ILA for ARDS not
only does the cardiac arrest have to be dealt with but also the
severely impaired gas exchange and usually high levels of pos-
itive end-expiratory pressure (PEEP). In such a situation we
found it difficult to decide whether to leave the ILA system
open to take advantage of the beneficial effects described
above or to clamp it and avoid the shunt with its potentially
harmful effects on circulation. This has not yet been examined,
so we set up an experimental model as close to the clinical sit-
uation as possible to study this effect.

Our hypothesis was that in CPR the ILA system had no signif-
icant effect on gas exchange (PaO2 and arterial partial pres-
sure of CO2(PaCO2)) and a harmful effect on circulation
(coronary perfusion pressure (CPP), systolic arterial pressure
and mean arterial pressure).

The primary study end points were the CPP for haemodynamic
stability and PaO2 and PaCO2 for gas exchange. Secondary
study end points were systolic and mean arterial pressures,
end-tidal partial pressure of CO2(PCO2), flow through the ILA
system and return of spontaneous circulation.

Materials and methods
The study was approved by the Committee for Animal Care of
the Christian Albrechts University, Kiel, Germany, and adhered
to the guidelines on animal experimentation. The experiments
were performed on 12 domestic pigs (Deutsches Landsch-
wein; Institute of Animal Breeding and Husbandry, Christian
Albrechts University, Kiel, Germany) with a body weight of 41
to 58 kg. After premedication with azaperon (8 mg/kg (stres-
nil®; Janssen Cilag, Neuss, Germany)) and atropin (0.1 mg/kg
(atropinsulfat®; B. Braun, Melsungen, Germany)) anaesthesia
was induced with ketamine (5 mg/kg (ketanest® S; Pfizer, Ber-
lin, Germany)), sufentanil (0.2 μg/kg (sufenta®; Janssen Cilag,
Germany)) and propofol (1 mg/kg (propofol-®Lipuro 2%; B.
Braun, Melsungen, Germany)). Intubation and controlled ven-
tilation with an inspired fraction of oxygen (FiO2) of 100%
were performed (Siemens servo 900c ventilator, Siemens-
Elema, Solna, Sweden). Anaesthesia was continued with pro-
pofol (6 to 8 mg/kg per hour) and sufentanil (10 μg/kg per

hour). Lactated Ringer's solution was infused at a rate of 20
ml/kg per hour.

The carotid artery was cannulated and this line was used to
draw arterial blood samples. The samples were processed by
a blood gas analyser (ABL System 615, Radiometer Medical
Inc., Copenhagen, Denmark). The internal jugular vein was
cannulated and a catheter inserted for measurement of the
central venous pressure (CVP). The contralateral internal jug-
ular vein provided access for the placement of a pacemaker
electrode. A 7 Fr pulmonary artery catheter (Arrow Interna-
tional, Everett, MA, USA) was inserted through the iliac artery
into the thoracic descending aorta for measurement of blood
pressure. PCO2 in respired gas, airway pressures, arterial
venous pressure and CVP were monitored using the S/5
anaesthesia monitoring system (Datex Ohmeda, Helsinki, Fin-
land).

The iliac artery and vein were cannulated with ultrasound guid-
ance and a 13 Fr cannula was inserted into the artery and a 15
Fr cannula into the vein using Seldinger's technique. The ILA
device (Novalung, Hechingen, Germany) was filled with saline
solution and connected with these two cannulae, thereby gen-
erating the arteriovenous shunt required for the intended gas
exchange. Five thousand units of heparin were given after the
instrumentation was completely set up and the extracorporeal
flow was started without oxygen flow at that time.

Acute lung injury was then induced with repeated bronchoal-
veolar lavages with warm saline solution, 1.5 L each. They
were performed until PaO2 remained stable below 100 Torr
with an FiO2 of 100% and PEEP of 5 cmH2O for 30 minutes.

Having achieved stable lung injury, oxygen flow through the
ILA device was commenced with 10 L/minute. A low flow
pressure volume (PV) manoeuvre using a slow inflation up to
30 cmH2O was then performed. It showed lower inflection
points of more than 20 cmH2O indicating that PEEP values at
or slightly above that level were required. Because no data
exist on the best PEEP level in patients with ARDS during
CPR, we chose to avoid PEEP in that high range and set PEEP
arbitrarily to 12 cmH2O as a compromise. Ventilation was per-
formed in the volume-controlled mode with a tidal volume of 10
ml/kg and the rate set to achieve normal arterial CO2 tension.

A fibrillator (Fibrillator Fi 10 M, Stöckert Instrumente,
München, Germany) was then connected with the indwelling
pacemaker and ventricular fibrillation was induced with the
application of 10 V. Manual chest compressions were started
without delay and continued for 30 minutes. In six animals, the
ILA system was clamped immediately; in the other group of six
animals it remained open. Adrenaline was administered as a
continuous infusion at a rate of 1 μg/kg/minute with additional
boluses of 1 or 3 mg if the mean blood pressure fell below 50
mmHg to ensure sufficient blood pressure and, therefore,
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CPP. Blood samples were drawn before fibrillation and at 5,
10, 20 and 30 minutes after onset of resuscitation. Arterial
blood pressures and CVP were continuously recorded with a
sampling rate of 300 Hz (ICUpilot, version 2.0, CMA/Microdi-
alysis, Solna, Sweden). End-tidal PCO2 and flow through the
ILA system were registered at 5, 10, 20 and 30 minutes. The
chest compressions were stopped after 30 minutes and defi-
brillation was performed with 300 Joule (Lifepak 12, Physio-
control, Medtronic, Redmond, WA, USA). Restoration of
spontaneous circulation was intended. In cases where it was
not successful after three attempts, no further resuscitation
was performed.

Statistical analysis
The results are presented as mean values ± standard devia-
tions. Statistical analysis was performed using GraphPad
Prism version 4.03 for Windows (GraphPad Software, San
Diego, CA, USA). Two-way analysis of variance followed by
the Bonferroni multiple comparison test was applied to test
the significance of differences between the measurements.
Statistical significance was accepted at p < 0.05. The
reported P values are two-tailed.

Results
Before initiation of resuscitation all animals had a severe lung
injury and a stable haemodynamic situation with a systolic arte-
rial blood pressure of 113 ± 13 mmHg in the group in which
ILA would be kept open and 117 ± 11 mmHg in the group that
would have ILA clamped. The corresponding mean arterial
pressures were 89 ± 7 mmHg and 77 ± 8 mmHg, respec-
tively. These blood pressures generated a flow through ILA of
1.7 ± 0.3 L/minute. After lung injury, PaO2 in the open group
stabilised at a level of 123 ± 25 Torr and 124 ± 37 Torr in the
other group.

Performing the PV manoeuvre after the induction of ARDS and
before CPR showed lower inflection points of 19 ± 5 cmH2O.
Setting the PEEP 2 cmH2O above the respective lower inflec-
tion point resulted in an increase of PaO2 to 430 ± 106 Torr
and 407 ± 132 Torr in the two groups. After reduction of
PEEP to 12 mmHg before initiating circulatory arrest and
CPR, PaO2 fell to 132 ± 26 Torr and 133 ± 31 Torr (Figure 1).

When we tried to determine the CVP and hence the CPP dur-
ing offline analysis, we found that the interpretation could not
be performed reliably because of artefacts in the CVP read-
ings caused by the chest compression during CPR.

PaCO2 was significantly lower in the group with the ILA sys-
tem open (Figure 2). PaO2 was higher in this group, however,
the difference was only significant at 20 minutes (Figure 1).

With chest compressions and with ILA open, systolic blood
pressures of 89 ± 26 mmHg at 5 minutes, 71 ± 28 mmHg at
10 minutes, 63 ± 33 mmHg at 20 minutes and 83 ± 23 mmHg

at 30 minutes could be achieved (Figure 3). With ILA clamped,
the following pressures were determined: 77 ± 30 mmHg, 90
± 23 mmHg, 72 ± 11 mmHg and 72 ± 22 mmHg, respec-
tively. Mean blood pressures were 30 ± 7 mmHg in the group
with ILA open and 30 ± 6 mmHg in the group with ILA
clamped at five minutes, decreasing continuously to 20 ± 9
mmHg with ILA open and 19 ± 9 mmHg with ILA clamped at
30 minutes (Figure 4).

An adrenaline dose of 3.3 ± 2.7 mg in the group with ILA open
and 3.2 ± 0.8 mg in the group with ILA clamped was given at
five minutes, at 10 minutes the cumulative dose was 6.5 ± 3.3
mg and 7.5 ± 1.8 mg, and at 20 minutes 13.7 ± 7.0 mg and
13.2 ± 4.3 mg, respectively, was given. The total dose of
adrenaline after 30 minutes was about 19 mg in each group
(18.8 ± 8.6 mg with ILA open and 18.7 ± 6.2 mg with ILA
clamped). Flow through the ILA system decreased under con-

Figure 1

Arterial partial pressure of oxygen (PaO2) in the course of resuscitationArterial partial pressure of oxygen (PaO2) in the course of resuscitation. 
ILA = interventional lung assist. * p < 0.05.

Figure 2

Arterial partial pressure of carbon dioxide (PaCO2) in the course of resuscitationArterial partial pressure of carbon dioxide (PaCO2) in the course of 
resuscitation. ILA = interventional lung assist. * p < 0.05; ** p < 0.005.
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ditions of resuscitation (Figure 5). In three cases a flow
reversal was observed at the end of the observation time, seen
as a change in the blood colour at the inlet and outlet of the
ILA. At the same time, negative flow values in a range below
0.02 L/minute were detected.

Neither blood pressures nor the administered dose of adrena-
line were significantly different between the groups.

End-tidal PCO2 decreased from 46 ± 23 Torr with ILA open
and 37 ± 9 Torr with ILA clamped before resuscitation to 8 ±
5 Torr and 8 ± 10 Torr, respectively, at the end of 30 minutes
of CPR and was not different between the groups (Figure 6).

Return of spontaneous circulation did not occur in either
group after 30 minutes of CPR.

Discussion
The use of extracorporeal lung assist is an additional therapeu-
tic approach in patients with severe ARDS that facilitates a
lung protective ventilation strategy. This is achieved mainly by
an extracorporeal CO2 elimination and possibly sustained by a
small oxygenation effect generated by an arteriovenous shunt
through an artificial membrane.

In the case of CPR in a patient with severe ARDS and estab-
lished extracorporeal lung assist, the question arises whether

Figure 3

Systolic arterial pressure (SAP) in the course of resuscitationSystolic arterial pressure (SAP) in the course of resuscitation. ILA = 
interventional lung assist.

Figure 4

Mean arterial pressure (MAP) in the course of resuscitationMean arterial pressure (MAP) in the course of resuscitation. ILA = inter-
ventional lung assist.

Figure 5

Flow through the interventional lung assist (ILA) device in the course of resuscitationFlow through the interventional lung assist (ILA) device in the course of 
resuscitation.

Figure 6

End-tidal partial pressure of carbon dioxide (CO2) in the course of resuscitationEnd-tidal partial pressure of carbon dioxide (CO2) in the course of 
resuscitation. ILA = interventional lung assist.
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ILA should be kept open or clamped. In such a situation the
extracorporeal lung assist may still exert its beneficial effects
on gas exchange or it may be harmful because of the arteriov-
enous shunt it causes. We have tested the effects of CPR on
circulation and gas exchange with or without an ILA device
operating in animals with ARDS.

Before initiation of resuscitation all animals had a severe
ARDS and a stable haemodynamic situation. After induction of
ventricular fibrillation chest compressions were started with-
out delay. Our primary goal was not the survival after pro-
longed ischaemia, so we did not adhere to the Utstein
Guidelines with the recommended 'non-intervention interval'
[13]. Our model was designed to resemble an ARDS patient
in an ICU. CPR would be started without delay in that setting.

We could not analyse the CVP reliably, which prevented the
intended analysis of the CPP. This was due to the fact that we
intended to analyse the CPP offline and only then recognised
the invalid CVP measurement after the experiments were com-
pleted. Therefore, we took the more robust arterial pressure
readings to assess the effects of ILA on circulation. The blood
pressure that could be generated with chest compressions
did not differ significantly between the two groups (Figures 3
and 4). End-tidal CO2 was also in the same range (Figure 6).
Therefore, we assume that the circulation did not differ signif-
icantly and that the shunt by the ILA did not deteriorate the cir-
culation.

Because of the low arterial pressure, flow through the ILA sys-
tem decreased and fell to almost zero in the course of the 30-
minute resuscitation period (Figure 5). This is consistent with
the differences in PaCO2 (Figure 2) and PaO2 (Figure 1) also
occurring in the early phase of CPR and a continuously
decreasing contribution of the ILA in the further course of
CPR.

Adrenaline was administered according to the arterial blood
pressure and our goal was to keep the mean pressure above
50 mmHg according to guidelines that would be applied in a
clinical situation [14] which recommend 1 mg of adrenaline
every three to five minutes. We adjusted the dose when the
arterial pressure did not respond according to our protocol.
The response to our adrenaline therapy might have additionally
been blunted by a systemic inflammatory response syndrome
caused by repeated lung lavages.

Behringer and colleagues found that high doses of adrenaline
were associated with unfavourable neurological outcome but
restoration of spontaneous circulation was possible with
increasing cumulative doses of adrenaline. In his conclusion
he suggested that further investigations should be attempted
to better define limits for adrenaline doses during CPR [15].

The resuscitation was continued for 30 minutes without any
attempt at defibrillation. First defibrillation was performed after
30 minutes. In neither group, return of spontaneous circulation
could be established. As our intention was to examine the
effect of ILA on haemodynamics and gas exchange over a suf-
ficient time interval, we may have missed the point where an
effect on the survival may have been discernible. The main rea-
sons for the lack of survival may therefore be the long duration
of CPR, the severity of the induced lung injury and relatively
low arterial blood pressure. All animals had severe ARDS,
which may have caused a systemic inflammatory response
syndrome with impaired responsiveness to adrenaline. Red-
berg and colleagues reported arterial blood and end-tidal CO2
pressures comparable with our data in 20 patients from whom
five were successfully resuscitated [16]. Other authors report
even lower arterial pressures and ensuing successful resusci-
tation; however, with much shorter resuscitation time and no
accompanying ARDS [17].

Another factor negatively affecting the response to attempted
defibrillation after 30 minutes of CPR was probably the rela-
tively high intrathoracic pressure. The interpretation of our low
flow PV recruitment manoeuvre would have indicated that high
PEEP levels of over 20 cmH2O would have been required. We
are not aware of any recommendation for PEEP setting in
patients or animals with ARDS during CPR. Therefore, we
chose to set PEEP at 12 cmH2O as a compromise between
derecruitment of aerated lung regions and impairment of circu-
lation. Many authors were able to demonstrate the harmful
effect of high intrathoracic pressures in CPR [18-22]. As a
consequence, Aufderheide and colleagues found increased
survival rates with reduced intrathoracic pressures in CPR
after cardiac arrest using an impedance threshold device [23].

The main limitations of our study are the missing data on the
CPP and other measures of tissue perfusion. Another limita-
tion of our study is the deliberate decision to set the PEEP
level at 12 cmH2O. However, no data are available at present
on how the optimal PEEP should be set in this situation.

Conclusions
The blood pressures were not impaired by keeping the ILA
system open during CPR compared with the immediate
clamping of the ILA with the onset of CPR and PaO2 and
PaCO2 showed a potential benefit from the open ILA system.
We therefore conclude that when in doubt the ILA system
should be kept open. We found no evidence suggesting that
ILA should be clamped. The optimal PEEP setting in CPR in
ARDS patients remains unclear and requires further studies.
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