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Abstract
Acute kidney injury (AKI) develops mostly in the context of critical
illness and multiple organ failure, characterized by alterations in
substrate use, insulin resistance, and hypercatabolism. Optimal
nutritional support of intensive care unit patients remains a matter
of debate, mainly because of a lack of adequately designed clinical
trials. Most guidelines are based on expert opinion rather than on
solid evidence and are not fundamentally different for critically ill
patients with or without AKI. In patients with a functional gastro-
intestinal tract, enteral nutrition is preferred over parenteral
nutrition. The optimal timing of parenteral nutrition in those patients
who cannot be fed enterally remains controversial. All nutritional
regimens should include tight glycemic control. The recommended
energy intake is 20 to 30 kcal/kg per day with a protein intake of
1.2 to 1.5 g/kg per day. Higher protein intakes have been
suggested in patients with AKI on continuous renal replacement
therapy (CRRT). However, the inadequate design of the trials does
not allow firm conclusions. Nutritional support during CRRT should
take into account the extracorporeal losses of glucose, amino
acids, and micronutrients. Immunonutrients are the subject of
intensive investigation but have not been evaluated specifically in
patients with AKI. We suggest a protocolized nutritional strategy
delivering enteral nutrition whenever possible and providing at least
the daily requirements of trace elements and vitamins.

Introduction
Patients with acute kidney injury (AKI) have a high prevalence
of malnutrition, a condition that is associated with morbidity
and mortality [1]. AKI develops mostly in the context of critical
illness and multiple organ failure, which are associated with
major changes in substrate metabolism and body compo-
sition, overwhelming the alterations induced by AKI itself. Key
effectors of these changes are inflammatory mediators and
neuroendocrine alterations. The development of AKI further
adds fluid overload, azotemia, acidosis, and electrolyte
disturbances. In addition, AKI is associated with increased
inflammation and oxidative stress [2]. The most severe cases
of AKI require renal replacement therapy (RRT), with con-
tinuous treatments (continuous renal replacement therapy,
CRRT) being the modality of choice in most intensive care

units (ICUs) [3]. These extracorporeal treatments facilitate
nutritional support but may, on the other hand, induce
derangements of nutrient balances. The rationale for nutrition
during critical illness is mainly to attenuate the catabolism and
the loss of lean body mass in the hypermetabolic critically ill
patient. However, the concept of improving clinical outcome
by improving energy and nitrogen balance is still being
challenged [4]. The purposes of this paper were to review the
metabolic alterations underlying critical illness and AKI, to
discuss nutritional and metabolic support in these patients,
and to address the nutritional implications of CRRT. The
reader is also referred to several other reviews on this subject
[5-10].

Metabolic alterations in critical illness and
acute kidney injury
Critical illness is generally recognized as a hypermetabolic
state, with energy expenditure (EE) being proportional to the
amount of stress [11,12]. Although active solute transport in
a functioning kidney is an energy-consuming process, the
presence of AKI by itself (in the absence of critical illness)
does not seem to affect resting EE (REE) [13]. EE in AKI
patients is therefore determined mainly by the underlying
condition. Studies in chronic kidney disease yield conflicting
results varying between increased [14,15], normal [16], or
even decreased REE [17].

A characteristic of critical illness is the so-called ‘diabetes of
stress’ with hyperglycemia and insulin resistance. Hepatic
gluconeogenesis (from amino acids and lactate) increases
mainly due to the action of catabolic hormones such as
glucagon, epinephrine, and cortisol. In addition, the normal
suppressive action of exogenous glucose and insulin on
hepatic gluconeogenesis is decreased. Peripheral glucose
utilization in insulin-dependent tissues (muscle and fat) is also
decreased [18,19]. Since most patients with AKI also have
an underlying critical illness, it is not surprising that the same
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picture is seen in AKI patients [20]. In normal conditions, the
kidney plays an important role in glucose homeostasis, contri-
buting to 15% to 25% of glucose release in the postabsorptive
state (mainly gluconeogenesis from lactate and glutamine) and
10% to 20% of glucose uptake [21,22]. Whether the loss of
kidney function by itself contributes to the altered carbohydrate
metabolism in AKI is not clear. Endotoxin injection in mice
provoked a downregulation of the GLUT-2 and SGLT-2 trans-
porters responsible for glucose reabsorption in the convoluted
segment of the proximal renal tubule. These pathophysiological
changes—if applicable to humans—may further complicate
glucose homeostasis during AKI [23].

The most striking metabolic feature of critical illness is protein
catabolism and net negative nitrogen balance. The increased
protein synthesis is unable to compensate for the higher
proteolysis. Major mediators are the previously mentioned
catabolic hormones and cytokines and the reduced anabolic
influence of growth hormone, insulin, and testosterone
[18,19]. In the acute phase, this catabolic response may be
beneficial, providing amino acids for hepatic gluconeogenesis
(supplying substrate for vital tissues such as the brain and
immune cells) and for synthesis of proteins involved in
immune function and in the acute-phase response. However,
the sustained hypercatabolism in the chronic phase of critical
illness results in a substantial loss of lean body mass and in
muscle weakness and decreased immune function. In
patients with advanced chronic renal failure, acidosis
promotes proteolysis by activating the ubiquitin-proteasome
pathway and branched-chain keto acid dehydrogenase [24].
Whether this contributes significantly to the catabolism of AKI
patients has not been determined. In patients with AKI,
(normalized) protein catabolic rates between 1.3 and 1.8
g/kg per day have been noted [25-27]. Protein catabolism
will also accelerate the increases of serum potassium and
phosphorus that are seen in renal dysfunction.

Changes in lipid metabolism in critically ill patients are ill
characterized. The increased catecholamine, growth hormone,
and cortisol levels in stress states stimulate lipolysis in
peripheral adipose stores. The released free fatty acids are
incompletely oxidized (hyperglycemia/hyperinsulinemia exerting
an inhibitory effect on lipid oxidation), the remaining being re-
esterified and resulting in increased hepatic triglyceride
production and secretion in very-low-density lipoproteins [18].
Whether triglyceride levels are increased depends on the
efficacy of lipoprotein lipase-mediated lipolysis and tissue
uptake of remnant particles which is impaired in severe stress
situations [28]. Increased triglyceride levels, an impaired
lipoprotein-lipase activity, and reduced clearance of exogenous
lipids have also been described in AKI patient populations [29].

Nutritional and metabolic support in critical
illness and acute kidney injury
Although there are no large randomized controlled trials
(RCTs) investigating the effect of nutritional support versus

starvation in this setting, most ICU patients receive nutritional
support in an attempt to counteract the catabolic state. The
timing, route, and ideal composition of ICU nutritional support
remain a matter of discussion and even official guidelines and
consensus statements are not always consistent [30-35]. This
is also the case for meta-analyses and systematic reviews [36-
39] and is due mainly to the absence of adequately powered
randomized trials, the inadequate design of available clinical
studies, and the heterogeneity of the patients.

The traditional ICU doctrine is that enteral nutrition (EN) is
always better than parenteral nutrition (PN) because ‘it keeps
the intestinal mucosa active and reduces bacterial trans-
location’ [33-35]. Compared with standard care, EN indeed
may reduce mortality [38]. However, meta-analyses com-
paring EN with PN did not establish a difference in mortality
and the lower incidence of infectious complications with EN
may be explained largely by the higher incidence of
hyperglycemia in patients receiving PN [36,39]. On the other
hand, enteral feeding is likely to be cheaper [40-43] and
critically ill patients therefore should be fed according to the
functional status of their gastrointestinal tractus.

Feeding of critically ill patients should be started early
[33-35]. Early nutrition is defined as the initiation of nutritional
therapy within 48 hours of either hospital admission or
surgery [34,44]. A meta-analysis of early versus late EN
showed reduced infectious complications and length of
hospital stay with early EN, but no effect on noninfectious
complications or mortality [45]. However, enterally fed
critically ill patients often do not meet their nutritional targets,
especially in the first days of ICU stay [46,47]. Adequate early
nutrition is easier with the parenteral route and most of the
mortality benefits of PN were indeed established in
comparison with late EN [37,48], suggesting that PN should
be given to patients in whom EN cannot be initiated within
24 hours of ICU admission [49]. The optimal timing for PN to
be initiated is still debated [44,50]. The clinical impact of
early versus late PN in addition to EN in critically ill patients is
actually being studied in our center (EPaNIC [Impact of Early
Parenteral Nutrition Completing Enteral Nutrition in Adult
Critically Ill Patients] trial [51]).

The optimal amount of calories to provide to critically ill
patients is unclear. Overfeeding should be avoided in order to
prevent hyperglycemia, excess lipid deposition, azotemia,
excess carbon dioxide (CO2) production with difficult
weaning from the respirator, and infectious complications
[52-54]. Although not based on solid evidence, recent
recommendations suggest a nonprotein energy supply of 25
to 30 kcal/kg per day in men and 20 to 25 kcal/kg per day in
women, with the lowest values being used in the early phase
and in patients older than 60 years [31,34].The proposed
proportions of nonprotein energy supply are 60% to 70% of
carbohydrate and 30% to 40% of fat. Whether caloric intake,
adjusted to measured EE, improves outcome remains to be
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proven. The gold standard for measuring EE in critically ill
patients is indirect calorimetry. It appears to perform better
than predictive equations with added stress factors [55,56].
However, the use of indirect calorimetry in critically ill patients
also has theoretical and practical limitations. Results may
become unreliable due to variations in ventilator settings, air
leaks, high FiO2 (fraction of inspired oxygen), acid-base distur-
bances, intermittent feeding, diet-induced thermogenesis,
absence of a quiet thermoneutral environment, pain, agitation,
and so on [57-59]. Its use during CRRT is discussed below.

The results from two recent trials incited renewed interest in
hypocaloric feeding, combining normal protein with reduced
caloric supply. An RCT showed fewer infectious complica-
tions and reduced ICU stay with less aggressive (and
markedly hypocaloric) early EN, suggesting that the clinician
should weigh the complications of full-target early EN against
its benefits [60]. An observational trial, evaluating the
consistency of current feeding regimens with existing guide-
lines, found that caloric intake of between 33% and 66% of
the target was associated with better survival [61]. The
rationale for hypocaloric feeding is to provide nutrition without
exacerbating the stress response. It is, however, evident that
this needs to be validated in an adequately powered RCT
[62]. The rationale against hypocaloric feeding is that patients
receiving less than their REE will inevitably develop negative
energy balances [63]. Two observational trials observed an
association between a worse clinical outcome and a negative
cumulative energy balance [64] or a caloric intake of below
25% of American College of Chest Physicians recommended
targets [65].

Nutritional support often results in an aggravation of hyper-
glycemia, an effect that is more pronounced with PN than
with EN [66]. Multiple observational trials in different types of
critically ill patients have shown an association between
hyperglycemia and morbidity and/or mortality. A cause-and-
effect relationship was confirmed in two large prospective
randomized clinical trials that have shown an improved
morbidity and mortality with tight glycemic control with insulin
infusion in fed critically ill patients [67,68]. This treatment
strategy also reduced the incidence of AKI [69]. Prevention of
glucose toxicity in tissues not depending on insulin for
glucose uptake is the proposed underlying mechanism
[70,71]. Other metabolic effects were an improved lipid
profile [72] and reduced insulin resistance [73]. The
beneficial effect of intensive insulin therapy was not
confirmed by a recent prospective randomized trial in patients
with severe sepsis. However, this study was stopped
prematurely because of a high rate of hypoglycemia and
therefore was tenfold underpowered [74]. Any nutritional
protocol in ICU patients with or without AKI should therefore
include tight glycemic control.

Proteins are administered in an attempt to improve protein
synthesis and nitrogen balance. Although negative nitrogen

balances are associated with worse outcome, there are no
randomized studies comparing different protein or nitrogen
intakes with regard to clinical outcomes in ICU patients.
Although the ideal amount is still debated [4], a protein intake
of between 1.2 and 1.5 g/kg per day (0.16 to 0.24 g
nitrogen/kg per day) is usually recommended [19,30,75].
Because many nonessential amino acids are not readily
synthesized or increasingly used in critically ill patients, the
combination of essential and nonessential amino acids is
supposed to be superior.

Role of specific components
Glutamine
Glutamine is the most abundant amino acid in the body and is
an important fuel for cells of the immune system. In stress
situations, its serum and intracellular concentrations decrease
and it becomes a ‘conditionally’ essential amino acid.
Although not all clinical trials show a beneficial effect [76],
the available guidelines recommend enteral glutamine
supplementation in trauma and burn patients and high-dose
parenteral supplementation in general ICU patients receiving
total PN [33-35].

Antioxidant micronutrients
Micronutrients (vitamins and trace elements) play a key role in
metabolism, immune function, and antioxidant processes.
They are deficient in critically ill patients and should be
supplemented, although the precise requirements have not
been determined. In particular, the antioxidants selenium,
zinc, vitamin E, and vitamin C have shown promising effects
on infectious complications and/or mortality in ICU patients
[77-80]. With the exception of vitamin C, levels of antioxidant
vitamins and trace elements are not different in the presence
of AKI [81]. Recommended vitamin C intake in AKI varies
between 30 to 50 mg/day [82] and 100 mg [6]. Theoretically,
the presence of AKI might even increase the potential role of
antioxidants. When compared with a group of matched
critically ill patients, AKI patients have increased oxidative
stress, reflected by lower plasma protein thiol content and
higher plasma carbonyl content [2]. A smaller study also
confirmed that multiple organ dysfunction (MOD) with AKI
resulted in more oxidative stress and a stronger depletion of
the antioxidative system than MOD alone [81].

Immunonutrients
Nutrients with an immune-modulating effect, including gluta-
mine, arginine, nucleotides, and omega-3 fatty acids, have
been the subject of intensive investigation [83]. Data on
immunonutrition in AKI are scarce and the number of patients
suffering from AKI on inclusion is not reported in most
studies. Arginine is a precursor of nitric oxide synthesis and
may be detrimental in critically ill patients with an ongoing
inflammatory response [84,85]. Meta-analysis aggregating
the results of three RCTs of enteral supplementation of
omega-3 fatty acids (fish oil) in patients with acute respiratory
distress syndrome demonstrated that enteral formula
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enriched with fish oils significantly reduces mortality and
ventilator days and tended to reduce ICU length of stay [85].
A role for exogenous omega-3 fatty acids in human renal
protection is, at this moment, purely speculative [86].

Others have evaluated cocktails of several immunonutients. A
large RCT (n = 597 patients) comparing enteral immuno-
nutrition (containing glutamine, arginine, nucleotides, and
omega-3 fatty acids) with standard EN in critically ill patients
showed no difference in clinical outcome [87], which was
confirmed by a recent meta-analysis [85]. Another clinical trial
evaluated an enteral pharmaconutrient cocktail in 55 septic
patients, the majority of whom were on CRRT. The primary
outcome parameter, the change in sequential organ failure
score, improved with the pharmaconutrient, whereas mortality
and ICU and hospital lengths of stay were not affected [88].

Recommendations for nutrition during acute
kidney injury in the intensive care unit
In ICU patients with AKI, the recommendations for nutritional
support are largely the same as for other ICU patients
[6,9,82]. We provide an overview of the nutritional strategy
during AKI with references to the available evidence
(Table 1). Introduction of a nutritional management protocol
improved nutrition delivery and clinical outcome in two
nonrandomised trials [89,90]. Standardization of PN is
suggested by recent guidelines of the American Society for
Parenteral and Enteral Nutrition [91]. The European Society
for Enteral and Parenteral Nutrition (ESPEN) recommends
0.6 to 0.8 g protein/kg per day in case of conservative
therapy, 1 to 1.5 g/kg per day with extracorporeal treatment,
and a maximum of 1.7 g/kg per day in ‘hypercatabolism’ [82].
Possible restrictions to adequate nutrition in AKI are fluid
overload (requiring more concentrated solutions), electrolyte
disturbances (requiring electrolyte-free solutions), and the
increased urea generation associated with a large amount of
protein intake. Older and largely underpowered studies
showed controversial effects of the addition of amino acids to
glucose on mortality and renal recovery [92-94]. Most recent
studies on nutritional support in AKI patients have been
performed during CRRT and will be discussed in the next
section. EN in AKI is, in general, safe, although increased
gastric residual volumes have been described in comparison
with non-AKI ICU patients [95]. The ability to provide EN is
associated with improved outcome [96]. No clinical trials
have specifically addressed the effect of immunonutrition in
AKI patients.

Nutritional support during continuous renal
replacement therapy
CRRT allows unrestricted nutritional support, reaching
nutritional targets without the risk of fluid overload and
excessive urea levels. The effect of CRRT on EE and protein
catabolic rate is probably small and not clinically relevant. A
small observational study found no change in REE before and
after the start of CRRT [97]. CRRT frequently induces hypo-

thermia, the degree of which correlates with the ultrafiltration
rate [98]. This hypothermia represents thermal energy loss
[99] but also reduces REE, especially if not associated with
shivering [98,100]. Studies by Gutierrez and colleagues in
the early 1990s suggested that blood-membrane contact
during RRT may induce a protein catabolic effect, an effect
that was seen only with cuprophane membrane and not with
synthetic membranes [101] and was not reduced by the
addition of glucose to the dialysate [102]. Compared with
intermittent hemodialysis, the use of CRRT simplifies the
calculation of protein catabolic rate [27].

Several studies have evaluated nutritional support during
CRRT in AKI patients. Unfortunately, neither of these used
clinically relevant outcomes. Fiaccadori and colleagues [103]
used a crossover design to compare the combination of 1.5 g
protein/kg per day with 30 or 40 kcal/kg per day. The higher
energy provision did not improve nitrogen balance, protein
catabolism, and urea generation rate but resulted in
increased metabolic complications, including hypertriglyceri-
demia and hyperglycemia [103]. In an observational study
using regression techniques, Macias and colleagues [26]
showed that high-protein intakes, required to achieve
nitrogen balance, may increase protein catabolism, especially
if combined with high caloric intake. The authors therefore
suggest an energy intake of 25 to 35 kcal/kg per day with a
protein intake of 1.5 to 1.8 g/kg per day. Other authors have
suggested higher protein intake. An early observational study
showed that higher protein input (up to 2.5 g/kg per day)
results in a less negative nitrogen balance, but at the expense
of higher azotemia and CRRT requirement [104]. The same
authors showed positive nitrogen balances in 35% of the
patients with protein intakes of 2.5 g/kg per day [105].
Scheinkestel and colleagues [106] randomly assigned CRRT
patients to 2 g protein/kg per day or escalating doses (1.5,
2.0, and 2.5 g/kg per day), energy intake being isocaloric in
both groups. Protein intake correlated with nitrogen balance,
and nitrogen balance correlated with survival, but,
surprisingly, protein intake did not correlate with survival. In
addition, in contrast to what the title suggests, this is not a
randomized trial comparing high- versus low-protein intake
[106]. More research, using adequate design and endpoints,
is therefore needed before larger protein loads can be
recommended in AKI patients on CRRT. The problem is that
we do not know the metabolic fate of the administered amino
acids that may be used for synthesis of ‘beneficial’ proteins
but that may also be burnt or even join the inflammatory
mediator pool.

Nutritional support during CRRT should take into account the
extracorporeal losses of nutrients. Most clinical studies on
glucose dynamics during CRRT were performed in the early
1990s, often with arteriovenous techniques and low effluent
rates in patients receiving PN [107-110]. The net loss or gain
of glucose induced by CRRT depends on the balance
between glucose losses in the ultrafiltrate and/or effluent
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dialysate and the glucose administered via the replacement
fluid or dialysate. Extracorporeal losses can be compensated
by the use of physiological levels of glucose in the replace-
ment fluid or dialysate, the ideal level probably being the
target level suggested by the randomized trials on tight
glycemic control [67,68]. Supraphysiological levels may
result in hyperglycemia and should be avoided. ‘Modern’
CRRT, using higher effluent rates, will accentuate extracor-
poreal glucose losses that, on the other hand, can be

reduced by tight glycemic control. Assuming a glucose-free
replacement fluid, a blood glucose level of 100 mg/dL with a
filtration or dialysate flow rate of 2.5 L/hour will result in a
daily extracorporeal glucose loss of 60 g or 240 kcal/day,
whereas a blood level of 150 mg/dL results in a loss of 90 g
or 360 kcal/day.

The metabolic effects of infusing lactate or citrate should also
be taken into account [111]. If entirely oxidized, 1 mmol of
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Table 1

Nutritional strategy in patients with acute kidney injury in the Department of Intensive Care Medicine, University Hospital Leuven

Reference(s)

Protocolized prescription for Caloric target: 24, 30, and 36 kcal/kg protein included, based on age, gender, [31,34,89,90]
artificial nutrition and corrected ideal body weight.

Target and energy provisions of previous day shown in Patient Data Management 
System. Energy from sources other than PN is included.

‘Early’ EN EN is initiated within 36 hours from admission unless (a) formal contraindication [32,34,45,96]
(for example, high gastrointestinal fistula, intestinal ischemia, and high-dose 
vasopressor) or (b) the patient is starting to eat.

Progressive increase of EN dose Day 2: 200 to 500 kcal [60]
during hospitalization Day 3: 700 to 900 kcal

Day 4: 1,100 to 1,300 kcal
Day 5: 1,500 to 1,700 kcal

PN: according to randomization in Early PN: within 48 hours of initiation of standard PN to complement EN up to [44,50]
ongoing EPaNIC trial 100% of caloric target, unless patient is starting to eat.

Late PN: no PN during the first week after admission on the ICU. [51]

Standardized formulations Commercially available ready-to-use EN and PN preparations. [91]

Composition of EN and PN 60% to 70% dextrose, 30% to 40% lipids. [4,10,19]
Lipids less than 1 g lipids/kg body weight per day.
Proteins: 0.8 to 1.2 g/kg body weight per day.
No adaptation for acute renal failure and/or CRRT.
Use of glucose-containing replacement fluid (physiological concentration) in CRRT.

Parenteral lipid restriction If plasma triglycerides are greater than 300 mg/dL. Lipid-free PN is administered [10,29]
and lipids are added once weekly.

Glucose administration in binary PN should not exceed 5 g/kg per day.

Volume and electrolyte restriction In case of fluid overload, renal replacement therapy will be started rather than [6]
PN or EN volume reduced.

Concentrated EN is used only during prolonged critical illness with intermittent 
hemodialysis.

Electrolyte-free standard formulations are used on indication.

Strict glycemic control All patients in the ICU receive insulin targeted at blood glucose levels of [67,68]
80 to 110 mg/dL.

Vitamins and trace elements All patients requiring nutritional support receive recommended daily allowances of [85,123,125]
parenteral trace elements and vitamins until they receive more than 1,600 kcal 
standard enteral formulation.

During severe hepatic failure, doses of manganese and copper are reduced to [127]
once weekly.

Immunonutrition No routine use of enteral or parenteral immunonutrients. [85]

Frequent monitoring of electrolytes Potassium, bicarbonate, and lactate every 4 hours. [82,115]
and lactate Sodium, chlorine, magnesium, and phosphorous every 24 hours.

CRRT, continuous renal replacement therapy; EN, enteral nutrition; ICU, intensive care unit; PN, parenteral nutrition.



lactate can provide 0.32 kcal [112]. Assuming a lactate level
of 30 mmol/L in the replacement fluid with a flow rate of
2 L/hour, this would result in a potential energy provision of
460 kcal. Continuous veno-venous hemofiltration, especially if
performed with bicarbonate in the replacement fluid, appears
to be a risk factor for hypoglycemia [113]. Whether this
reflects the higher illness severity of patients receiving
bicarbonate instead of lactate or the ability of lactate to serve
as a substrate for gluconeogenesis remains to be deter-
mined. Compared with bicarbonate, the use of lactate as a
buffer in continuous veno-venous hemodiafiltration has
indeed been shown to result in higher blood glucose levels
and higher glucose turnover [114]. Lactate- or bicarbonate-
buffered replacement fluids each induce specific changes in
sodium, chloride, magnesium, and phosphate mass balances
[115]. The significant extracorporeal phosphate losses may
aggravate refeeding hypophosphatemia. Frequent electrolyte
monitoring is therefore required [82].

Theoretically, CRRT might also influence metabolic
monitoring by inducing extracorporeal loss or gain of CO2.
The net effect depends on the pH of the patient, the use of
bicarbonate versus nonbicarbonate buffers, and how fast
nonbicarbonate buffers are metabolized to bicarbonate and
CO2. Since the changes induced by CRRT are much smaller
and slower than with intermittent hemodialysis, the impact is
probably minimal. In addition, changes in VCO2 (rate of
elimination of CO2) result in much smaller errors in the
measurement of EE than changes in VO2 (oxygen uptake) of
the same magnitude [57].

An additional catabolic factor is the extracorporeal loss of
amino acids, which appears to correlate directly with the
serum amino acid concentration and the effluent rate
[116,117]. Sieving coefficients approach 1 except for
glutamine that is less efficiently eliminated [117,118]. In
trauma patients on continuous hemodiafiltration, daily amino
acid losses of between 10 and 15 g have been reported
[116]. Others found extracorporeal losses reaching 4.5% to
20% of the daily substitution [105,118-120]. In two studies,
glutamine represented 16% and 33% of the total losses,
respectively [116,119]. Despite the described losses, the
serum amino acid profile does not seem to be affected,
suggesting that the losses are small compared with the daily
turnover [116,117]. Again, these studies were performed
more than 10 years ago and used lower effluent rates than
are currently recommended.

Since most lipids circulate as lipoproteins or are bound to
albumin, extracorporeal losses are not to be expected.
Indeed, only trace quantities of cholesterol and triglycerides
have been found in the ultradiafiltrate [121].

Water-soluble vitamins and trace elements may be lost during
CRRT. Earlier studies are probably less reliable because of
the use of less sensitive assays. Markedly different losses of

selenium have been reported, varying from ‘much less than’ to
‘more than twice’ the recommended daily intake [122-125].
Losses of zinc are generally small [122,125,126] and even
positive zinc balances (due to the presence of zinc in the
replacement solution) have been described [123]. Losses of
thiamine may amount to 1.5 times the recommended intake
[123], whereas the clinical significance of vitamin C losses
remains unclear [122]. The ESPEN guideline states that
extracorporeal losses should be supplemented but excessive
supplementation may result in toxicity and therefore micro-
nutrient status should be monitored [82].

Conclusion
AKI and critical illness are characterized by a catabolic state,
insulin resistance, and altered carbohydrate and glucose
metabolism. These changes are provoked by counter-
regulatory hormones, acidosis, and cytokines. The contribu-
tion of AKI by itself remains difficult to establish. The losses
of macronutrients and micronutrients during CRRT further
complicate this picture. The optimal nutritional support
strategy for patients with AKI requiring CRRT remains a
matter of controversy. It should aim at attenuating tissue
wasting and reducing the risk for nutrition-related side
effects. The heterogeneity of the patients, the complexity of
the disease process, and the inadequate design of the
available trials preclude firm conclusions. The available
recommendations are based more on expert opinion than on
solid evidence. In general, the guidelines of general ICU
patients can be followed, with modifications for the extra-
corporeal nutrient losses. Nutrition probably should be
protocolized, aimed at EN whenever possible and providing
at least the daily requirements of trace elements and
vitamins. Augmented doses of energy, carbohydrates, lipids,
and proteins as well as pharmacological doses of immuno-
nutrients should be avoided except in the context of
adequately powered RCTs until evidence is available. Any
nutritional regimen and any future trial on nutrition in critical
illness or AKI should be combined with tight glycemic
control.
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