
Available online http://ccforum.com/content/8/4/R221
Open AccessAugust 2004  Vol 8 No 4Research
Effects of volume resuscitation on splanchnic perfusion in canine 
model of severe sepsis induced by live Escherichia coli infusion
Claudio Esteves Lagoa1, Luiz Francisco Poli de Figueiredo2, Ruy Jorge Cruz Jr3, Eliézer Silva4 and 
Maurício Rocha e Silva5

1DVM, Fellow, Division of Applied Physiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
2Associate Professor, Division of Applied Physiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
3Assistant Physician, Division of Applied Physiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
4Visiting Professor, Division of Applied Physiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
5Chairman, Division of Applied Physiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil

Corresponding author: Luiz Francisco Poli de Figueiredo, lpoli@uol.com.br

Abstract
Introduction We conducted the present study to investigate whether early large-volume crystalloid
infusion can restore gut mucosal blood flow and mesenteric oxygen metabolism in severe sepsis.
Methods Anesthetized and mechanically ventilated male mongrel dogs were challenged with
intravenous injection of live Escherichia coli (6 × 109 colony-forming units/ml per kg over 15 min). After
90 min they were randomly assigned to one of two groups – control (no fluids; n = 13) or lactated
Ringer's solution (32 ml/kg per hour; n = 14) – and followed for 60 min. Cardiac index, mesenteric
blood flow, mean arterial pressure, systemic and mesenteric oxygen-derived variables, blood lactate
and gastric carbon dioxide tension (PCO2; by gas tonometry) were assessed throughout the study.
Results E. coli infusion significantly decreased arterial pressure, cardiac index, mesenteric blood flow,
and systemic and mesenteric oxygen delivery, and increased arterial and portal lactate, intramucosal
PCO2, PCO2 gap (the difference between gastric mucosal and arterial PCO2), and systemic and
mesenteric oxygen extraction ratio in both groups. The Ringer's solution group had significantly higher
cardiac index and systemic oxygen delivery, and lower oxygen extraction ratio and PCO2 gap at 165
min as compared with control animals. However, infusion of lactated Ringer's solution was unable to
restore the PCO2 gap. There were no significant differences between groups in mesenteric oxygen
delivery, oxygen extraction ratio, or portal lactate at the end of study.
Conclusion Significant disturbances occur in the systemic and mesenteric beds during bacteremic
severe sepsis. Although large-volume infusion of lactated Ringer's solution restored systemic
hemodynamic parameters, it was unable to correct gut mucosal PCO2 gap.
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Introduction
Sepsis leads to endothelial damage, marked alterations in
blood flow distribution and altered tissue oxygen metabolism,
which are associated with high mortality rates among critically
ill patients [1-3]. Although volume replacement is among the
cornerstones of therapy for septic shock [4], studies con-
ducted to elucidate the actual impact of fluid infusion on both

experimental and clinical sepsis with respect to systemic end-
points of resuscitation and outcome are inconsistent [5-8].
This is largely because of the wide variety of experimental
designs and fluid regimens employed.

Substantial clinical and animal evidence indicates that the
mesenteric circulatory bed, particularly at the gut mucosa, is
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highly vulnerable to reductions in oxygen supply and is prone
to injury early in the course of shock [9-11]. Gut hypoxia or
ischemia is one factor that possibly contributes to dysfunction
of the gastrointestinal tract barrier, which may in turn contrib-
ute to the development of systemic inflammatory response and
multiple organ dysfunction syndromes [12-15].

Although bolus injection of live bacteria has potential down-
sides [16], it may mimic the very early hemodynamic phase of
severe sepsis, and serve to illustrate how systemic and
regional blood flows react to aggressive and prompt fluid
replacement. Interesting results have recently been reported in
patients with sepsis resuscitated in the emergency room [17]
based on central venous oxygen saturation. However, the dis-
parity between systemic and regional variables has been well
demonstrated, particularly in such a complex disease as sep-
sis, with a wide variety of clinical presentations and resuscita-
tion protocols employed in clinical and experimental studies of
shock. In the majority of experimental studies, fluid infusion did
not restore intestinal mucosal perfusion, even though systemic
and mesenteric parameters were improved [18,19]. In a
recent clinical study conducted in patients with sepsis [20], a
wide interindividual variability in carbon dioxide tension
(PCO2) gap in response to fluid loading was observed.

Our hypothesis is that, despite restoring systemic hemody-
namic and oxygen derived variables, large-volume crystalloid
infusion fails to restore gut mucosal blood flow and PCO2 gap
in animals challenged with infusion of live bacteria. Hence, we
evaluated the impact of this early volume resuscitation on the
systemic and splanchnic circulations in a model of severe
sepsis.

Methods
The present study was approved by the Animal Care and Use
Committee of the University of São Paulo Medical School, and
was conducted in compliance with the guidelines of the
National Regulations for the Care and Use of Laboratory
Animals.

Animal preparation
Twenty-seven healthy male mongrel dogs (weight 17.2 ± 1.2
kg) were fasted for 12 hours before the start of the study and
were given free access to water. Anesthesia was induced with
an intravenous injection of 0.06 mg/kg morphine sulfate, fol-
lowed by 25 mg/kg sodium pentobarbital. A cuffed endotra-
cheal tube was placed into the trachea to allow mechanical
ventilation with 100% oxygen, at a tidal volume of 20 ml/kg
(Takaoka 2600, Takaoka Ltda, São Paulo, SP, Brazil). Respi-
ratory rate was adjusted to maintain arterial PCO2 at 35 ± 5
mmHg. A heating pad was used to maintain the core body
temperature at 38.5 ± 1.0°C. Additional doses of pentobarbi-
tal (2 mg/kg) were administered whenever required. A urinary
catheter was placed for urine drainage. Each dog received an
intravenous injection of 300 mg cimetidine.

The right common femoral artery was dissected and cannu-
lated with a polyethylene catheter to measure mean arterial
pressure at the abdominal aorta and to collect arterial blood
samples for blood gas and lactate analysis. A catheter was
introduced through the right common femoral vein for fluid
infusion. Each animal received an infusion of lactated Ringer's
solution (13 ml/kg) during the preparation period.

A 7.5-Fr flow-directed thermodilution fiberoptic pulmonary
artery catheter (Edwards Swan–Ganz CCOmbo 744H7.5F;
Baxter Edwards Critical Care, Irvine, CA, USA) was intro-
duced through the right external jugular vein. The tip was
placed in the pulmonary artery, guided by radioscopy and
wave tracings, to measure pulmonary arterial pressures, con-
tinuous mixed venous oxygen saturation (SVO2), and for mixed
venous sampling for blood gas analysis. This catheter was
connected to a cardiac computer (Vigilance™; Baxter
Edwards Critical Care) to measure cardiac output using 3-ml
bolus injections of isotonic saline at 20°C every 10 min. All
catheters were connected to disposable pressure transducers
(P23XL; Viggo-Spectramed, Stathan, CA, USA) and to a com-
puterized multichannel system for acquisition of biologic data
(Acknowledge; Biopac Systems Inc., Goleta, CA, USA).

A left subcostal celiotomy was performed and an ultrasonic
flow probe (Transonic Systems Inc., Ithaca, NY, USA) was
placed around the origin of the superior mesenteric artery for
measurement of transit time flow in this vessel (model T206;
Transonic Systems Inc.). A P240 catheter was threaded into
the portal system via the splenic vein for portal blood sampling.
A large gastric polyethylene tube was introduced through the
mouth and placed in the stomach, and a gastric lavage was
performed with warm isotonic saline solution until a clear fluid
was obtained at drainage. Then, a 16-Fr TRIP® tonometry
catheter (TRIP® NGS, Tonometrics Division, Instrumentarium
Copr., Helsinki, Finland.) was introduced orally and positioned
at the large curvature of the stomach. The tonometry catheter
was connected to a calibrated gas capnometer (Tonocap,
model TC-200; Tonometrics, Datex-Engstrom, Finland) for
gastric PCO2 measurement.

Bacterial preparation
A strain of Escherichia coli O55B, provided by the Adolfo Lutz
Institute of Infectious Diseases, originating from the stool of a
patient with gastrointestinal sepsis, was used in the study. The
bacteria were stored in gelose at room temperature, activated
in trypticase soy broth, plated in trypticase soy agar and incu-
bated at 36°C for 24 hours. Aliquots were then suspended in
sterile saline. The bacterial suspension was estimated turbidi-
metrically by comparing the newly grown bacterial suspension
with known standards through spectophotometry at a wave-
length of 625 nm, in order to obtain a culture of the desired
bacterial density. The same suspension was subsequently
quantified by plating successive 10-fold dilutions onto trypti-
case soy agar plates and scoring visible colonies after 24
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hours of incubation at 36°C. Our target dose, as calculated
using the methods outlined above, was 3 × 109 cells/ml or 6
× 109 colony-forming units/ml per kg body weight.

Data collection and analysis
Mean arterial pressure, pulmonary artery and central venous
pressures, heart rate and mesenteric blood flow were contin-
uously recorded. Pulmonary artery occluded pressure was
measured at every time point. Cardiac output was determined
using thermodilution technique and expressed as cardiac
index according to the dog's body surface area. Each determi-
nation was the arithmetic mean of three consecutive measure-
ments when their differences did not exceed 10%.

Arterial, portal and mixed venous base deficit, pH, PCO2, oxy-
gen tension, oxygen saturation, hemoglobin, hematocrit, bicar-
bonate, and lactate levels were measured at baseline, and
then at 15, 45, 75, 105, 135 and 165 min during the experi-
mental protocol. All arterial, venous, and portal blood samples
were analyzed by a Stat Profile Ultra Analyzer (Nova Biomedi-
cal, Waltham, MA, USA). Systemic and mesenteric oxygen
delivery (DO2) and systemic and mesenteric oxygen extraction
ratio (O2ER) were calculated using standard formulae.

Systemic venous–arterial PCO2 gradient was calculated as
the difference between mixed venous PCO2 and arterial
PCO2. Portal–arterial PCO2 gradient was calculated as the
difference between portal vein PCO2 and arterial PCO2. Gas-
tric mucosal PCO2 was evaluated every 10 min. PCO2 gap
was calculated as the difference between gastric mucosal and
arterial PCO2.

Experimental protocol
After surgical preparation, animals were allowed to stabilize for
30 min. After baseline measurements (0 min), an infusion of E.
coli at a dose of 6 × 109 colony-forming units/ml per kg was
started and maintained for 15 min. At 90 min after bacterial
infusion (S105), the animals were randomly assigned to two
groups. Control animals (n = 13) received no fluids and were
followed for 60 min with no additional intervention. Treated
animals (n = 14) received lactated Ringer's solution (32 ml/kg
per hour) and were also followed for 60 min. All animals were
killed at the end of the experimental protocol (R165) by an
overdose of anesthetic followed by injection of hypertonic
potassium chloride.

Statistical analysis
Results are expressed as mean ± standard error of the mean.
Statistical analysis was performed using the Statistical Pack-
age for Social Sciences for Windows (version 6.0; SPSS Inc.,
Chicago, IL, USA). Two-way analysis of variance for repeated
measures and post hoc Tukey's test were used to analyze dif-
ferences between groups. Comparisons of values at different
time points within groups were performed using analysis of

variance for repeated measures. P < 0.05 was considered sta-
tistically significant.

Results
Systemic effects of live Escherichia coli infusion and 
fluid replacement
The infusion of live E. coli promoted significant reductions in
mean arterial pressure, cardiac index, DO2, and SVO2. In par-
allel, increases in oxygen extraction rate, venous–arterial
PCO2 gradient and arterial lactate were detected (Figs 1 and
2; Table 1).

In untreated control animals hemoglobin levels exhibited a sus-
tained increase. Mean arterial pressure exhibited a spontane-
ous, partial, and progressive increase. No other systemic
variable showed such a trend toward recovery within 150 min
after the end of bacterial infusion (Figs 1 and 2; Table 1).

Fluid replacement was associated with an increase in mean
arterial pressure, similar to that observed in untreated control
animals. Other systemic variables (i.e. cardiac index, DO2, and
SVO2) were restored to baseline values, and were significantly
greater than those in control animals. Arterial lactate remained
elevated after fluid infusion, at levels similar to those in control
animals (Figs 1 and 2; Table 1).

Regional effects of live Escherichia coli infusion and 
fluid replacement
Live E. coli infusion resulted in marked reductions in
mesenteric blood flow, mesenteric DO2 and portal SVO2,
whereas significant increases in mesenteric O2ER, portal lac-
tate and portal–arterial PCO2 gradients were observed (Fig. 2;
Table 2). Control animals exhibited a spontaneous increase in
mesenteric blood flow and mesenteric DO2, whereas portal
lactate and portal oxygen saturation showed no significant
changes. Treated animals exhibited only a partial increase in
mesenteric blood flow. Fluid infusion was unable to restore the
other regional variables. PCO2 gap began to increase progres-
sively after bacterial infusion. At 105 min the PCO2 gap had
increased by approximately 150% (P < 0.0001) in both
groups (Fig. 2) and showed a sustained increase in control
animals. Fluid replacement prevented further increases in the
PCO2 gap but was unable to reverse the increase, which
remained significantly greater than at baseline but was lower
than that in control animals.

Discussion
This model of severe sepsis satisfactorily matched the hemo-
dynamic changes that are characteristic of a nonresuscitated,
hypodynamic septic patient. Live E. coli injection promoted
reductions in cardiac output, mean arterial pressure, and
mesenteric blood flow. These alterations were paralleled by
increases in systemic venous–arterial, portal–arterial and gas-
tric mucosal–arterial PCO2 gradients, thus reflecting the blood
flow disturbances induced by the challenge with live bacteria.
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The main finding in the study is that large-volume crystalloid
resuscitation failed to correct the oxygen debt established in
the mesenteric circulation, particularly gut mucosal blood flow,
even though systemic hemodynamic and oxygen-derived
parameters were restored.

Although several studies have shown that endotoxin infusion is
associated with marked decreases in cardiac output and
mesenteric blood flow, and with an increase in gastric mucosal
PCO2 [21-23], data from experiments involving infusion of live
bacteria are scarce. In our model infusions of viable bacteria
reproduced many of the features of early severe sepsis in
humans, including hypotension, hyperlactatemia, and oliguria.
The inflammatory response to infusion of viable bacteria can

be more pronounced than that produced by endotoxin infu-
sions [16]. This model is less expensive than endotoxin infu-
sion in large animals, and it induces a more severe
hemodynamic compromise with a low early mortality rate, mim-
icking severe sepsis after bacteremia. Hence, it is a very useful
tool for improving our understanding of the earliest stages in
bacteremic sepsis. Models that allow more prolonged obser-
vation of infection, such as intraperitoneal clot or cecum punc-
ture and ligation, could better represent most clinical
conditions. However, we aimed for a model that induces rapid
and profound changes, such as those that are seen in blood-
stream infections, thus allowing us to address the effects of

Figure 1

(a) Mean arterial pressure and (b) cardiac index(a) Mean arterial pressure and (b) cardiac index. Data are expressed as 
mean ± standard error of the mean. B0, baseline; IF15, 15 min after 
bacterial infusion; S45–S105, shock, 45–105 min after B0; R135–
R165, resuscitation period. *P < 0.05 control (CT) versus baseline; †P 
< 0.05 lactated Ringer's solution (LR) versus baseline; ‡P < 0.05 CT 
versus LR.

Figure 2

(a) Superior mesenteric artery blood flow and (b) carbon dioxide ten-sion (PCO2) gap(a) Superior mesenteric artery blood flow and (b) carbon dioxide ten-
sion (PCO2) gap. Data are expressed as mean ± standard error of the 
mean. B0, baseline; IF15, 15 min after bacterial infusion; S45–S105, 
shock, 45–105 min after B0; R135–R165, resuscitation period. *P < 
0.05 control (CT) versus baseline; †P < 0.05 lactated Ringer's solution 
(LR) versus baseline; ‡P < 0.05 CT versus LR.
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early interventions (i.e. fluid infusion) in the absence of other
confounding factors.

The observed increase in venous–arterial PCO2 gradient
reflected the reduction in cardiac output, whereas the
increase in portal–arterial PCO2 gradient paralleled
mesenteric blood flow. However, the PCO2 gap did not paral-
lel systemic and regional blood flow trends. Hence, the distri-

bution of blood flow within the gut wall cannot be determined
by following regional flow distribution.

The PCO2 gap is often considered an index of splanchnic per-
fusion, but this has never been demonstrated conclusively.
Some experimental and clinical studies have failed to
demonstrate a linear correlation between gut mucosal PCO2
and hepatosplanchnic blood flow [24,25]. The PCO2 gap

Table 1

Central venous and pulmonary artery occluded pressures, systemic oxygen-derived variables, arterial lactate, pH and hemoglobin

Parameter Baseline Minutes after bacterial infusion

15 90 120 150

CVP (mmHg)

Control 3.7 ± 0.4 4.0 ± 0.4 2.7 ± 0.5 2.4 ± 0.5 2.7 ± 0.5

Lactated Ringer's 3.3 ± 0.5 2.8 ± 0.5 2.4 ± 0.5 4.2 ± 0.8 4.9 ± 0.8

PAOP (mmHg)

Control 6.1 ± 0.5 5.3 ± 0.8 4.0 ± 0.5 4.2 ± 0.6 4.3 ± 0.6

Lactated Ringer's 4.4 ± 0.5 4.1 ± 0.6 4.4 ± 0.6 5.0 ± 0.7 4.9 ± 0.5

pH

Control 7.416 ± 0.01 7.416 ± 0.01 7.416 ± 0.01 7.416 ± 0.01 7.416 ± 0.01

Lactated Ringer's 7.424 ± 0.01 7.406 ± 0.01 7.384 ± 0.01 7.384 ± 0.01 7.408 ± 0.01

Hemoglobin (g/dl)

Control 12.2 ± 0.5 12.5 ± 0.5 13.7 ± 0.3 14.0 ± 0.3*‡ 14.2 ± 0.4*‡

Lactated Ringer's 12.6 ± 0.4 12.8 ± 0.5 13.8 ± 0.5 12.1 ± 0.5 11.5 ± 0.6

DO2 (ml/min)

Control 402.6 ± 27.3 284.9 ± 25.1* 321.7 ± 36.7* 328.7 ± 37* 325.3 ± 28.4*

Lactated Ringer's 432.8 ± 30.7 322.3 ± 25.1† 320.9 ± 29.4† 404.5 ± 21.8 395.4 ± 28.3

O2ER (%)

Control 23.9 ± 2.1 30.5 ± 2.5* 33.1 ± 3.0* 28.8 ± 2.8* 32.5 ± 2.8*

Lactated Ringer's 23.8 ± 3.0 26.9 ± 3.7 33.1 ± 5.6† 26.7 ± 2.5 23.3 ± 2.3‡

SVO2 (%)

Control 80.1 ± 2.3 69.7 ± 2.5* 67.4 ± 3.4* 71.6 ± 3.2* 67.6 ± 3.0*

Lactated Ringer's 78.6 ± 3.2 73.6 ± 3.8† 66.8 ± 5.7† 76.7 ± 2.6† 77.2 ± 2.3‡

Arterial lactate (mmol/l)

Control 1.58 ± 0.49 1.62 ± 0.39 3.73 ± 0.34* 3.48 ± 0.29* 3.31 ± 0.25*

Lactated Ringer's 1.57 ± 0.24 1.85 ± 0.23 4.01 ± 0.65† 4.22 ± 0.59† 3.44 ± 0.51†

Veno-arterial PCO2 gradient (mmHg)

Control 4.9 ± 1.0 8.4 ± 1.2 12.6 ± 2.0* 9.3 ± 1.7* 9.8 ± 2.0*

Lactated Ringer's 6.9 ± 1.0 8.8 ± 1.5 9.7 ± 1.5 5.8 ± 1.2 6.2 ± 0.8

Measurements were taken in control animals (n = 13) and animals treated with lactated Ringer's solution (n = 14). Data are expressed as mean ± 
standard error of the mean. CVP, central venous pressure; DO2, systemic oxygen delivery; O2ER, systemic oxygen extraction ratio; PAOP, 
pulmonary artery occluded pressure; PCO2, carbon dioxide tension; SVO2, mixed venous oxygen saturation. *P < 0.05, control versus baseline; 
†P < 0.05 lactated Ringer's versus baseline; ‡P < 0.05 control versus lactated Ringer's.
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merely reflects perfusion and/or oxygenation conditions of the
gut mucosa. Therefore, we cannot extend gut mucosal carbon
dioxide measurements to the entire splanchnic area, because
blood flow distribution varies widely between and within
organs, especially in sepsis. The peculiar microcirculatory sys-
tem and its countercurrent exchange of oxygen and carbon
dioxide within the mucosal villus could explain these findings.
Because of these factors, techniques specially designed to
assess mucosal blood flow, such as laser Doppler flowmetry
[26], reflectance spectroscopy [27], and intravital microscopy
[28], are the methods of choice for studying flow derange-
ments associated with intramucosal acidosis. Also, gastric
mucosal acidosis may not reflect blood flow reduction, but
only oxygen impairment at the cellular level, which has been
termed cytopathic hypoxia [29]. This may explain the coex-
istance of high tissue PCO2 with adequate tissue oxygen ten-
sion and small intestine wall blood flow that has been
observed by some authors [30]. In fact, a high gastric–arterial
PCO2 gradient could be a marker of dysoxia, irrespective of
the causes of impaired oxygen utilization, although blood flow
is always the major determinant of this gradient.

Our fluid challenge regimen efficiently restored cardiac index,
systemic oxygen delivery, and SVO2 to prechallenge meas-
ures. In the study, mesenteric O2ER, portal lactate, and PCO2
gap remained significantly elevated throughout the experiment

in both groups. As in the report by Baum and coworkers [31],
our results also indicate that intravascular volume expansion
alone was incapable of correcting gut mucosal acidosis. Our
findings are in agreement with those from other clinical and
experimental studies [32,33] that have demonstrated that gut
hypoperfusion and acidosis occur rapidly after a septic chal-
lenge, despite normal mean arterial pressure, and elevated
cardiac output and blood flow. From the therapeutical stand-
point, though, it is surprising that large-volume crystalloid infu-
sions had no major impact on total gut blood flow, DO2, and
mucosal acidosis as compared with controls. In fact, Drazen-
ovic and coworkers [34] demonstrated that an endotoxin chal-
lenge can lead to a small but significant reduction in the
density of perfused capillaries in the intestinal mucosal villi and
crypts. This may explain the apparent loss of the relationship
between oxygen availability and gut perfused capillary density
found in that study. These data further demonstrate that varia-
bles of systemic cardiopulmonary function, and even the level
of mesenteric DO2, may be poor indicators of the intestinal
mucosal perfusion status.

Changes in blood rheologic properties, derangement in the
number of perfused capillaries, and alterations in microcircula-
tory blood flow to the gut mucosa may explain why large-vol-
ume crystalloid infusion was ineffective in correcting
intramucosal PCO2 gap and oxygen metabolism to preshock

Table 2

Regional oxygen-derived variables and portal vein lactate

Parameter Baseline Minutes after bacterial infusion

15 90 120 150

Mesenteric DO2 (ml/min)

Control 71.6 ± 8.5 37.7 ± 3.9* 54.4 ± 9.6* 61.7 ± 10.6 66.6 ± 11.2

Lactated Ringer's 74.3 ± 9.1 53.5 ± 7.1† 37.9 ± 5.2† 47.8 ± 4.2† 48.2 ± 4.7†

Mesenteric O2ER (%)

Control 15.1 ± 1.8 23.6 ± 3.1* 32.7 ± 3.7* 29.7 ± 4.5* 28.3 ± 3.5*

Lactated Ringer's 15.6 ± 2.8 19.8 ± 2.6† 27.9 ± 2.8† 22.3 ± 2.1† 24.5 ± 2.3†

SpO2 (%)

Control 88.3 ± 1.6 75.9 ± 3.1* 67.5 ± 3.9* 71.9 ± 4.8* 71.7 ± 3.4*

Lactated Ringer's 87.9 ± 2.1 80.2 ± 1.9† 72.4 ± 3.3† 80.5 ± 2.1† 77.4 ± 2.2†

Portal vein lactate (mmol/l)

Control 1.56 ± 0.44 1.67 ± 0.37* 3.65 ± 0.32* 3.31 ± 0.35* 3.32 ± 0.28*

Lactated Ringer's 1.58 ± 0.21 1.88 ± 0.22† 3.97 ± 0.54† 4.01 ± 0.52† 3.55 ± 0.44†

Portal–arterial PCO2 gradient (mmHg)

Control 3.6 ± 1.0 7.9 ± 1.4* 11.1 ± 1.2* 9.3 ± 2.1* 9.6 ± 1.4*

Lactated Ringer's 4.9 ± 0.9 8.7 ± 1.4† 11.1 ± 1.6† 6.7 ± 1.7† 7.5 ± 1.2†

Measurements were taken in control animals (n = 13) and animals treated with lactated Ringer's solution (n = 14). Data are expressed as mean ± 
standard error of the mean. DO2, oxygen delivery; O2ER, oxygen extraction ratio; PCO2, carbon dioxide tension; SpO2, portal vein oxygen 
saturation. *P < 0.05, control versus baseline; †P < 0.05 lactated Ringer's versus baseline.
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values in the present study. Previously, Fink and coworkers
[35] showed that intravascular volume expansion and massive
doses of dobutamine ameliorate, but do not completely pre-
vent, the development of mucosal acidosis in endotoxemic
pigs.

Our data support the feasibility and usefulness of gastric
PCO2 monitoring for detecting gut mucosal malperfusion and
ischemia, even in 'normodynamic, resuscitated' severe septic
individuals. It also indicates that careful monitoring of
mesenteric perfusion is of paramount importance in critically ill
individuals. Failure to notice incomplete splanchnic resuscita-
tion in critically ill patients has been correlated with multiple
organ system dysfunction, prolonged length of stay in the
intensive care unit, and death [36].

Conclusion
Significant disturbances occur in the systemic and mesenteric
bed during bacteremic severe sepsis. Although large-volume
lactated Ringer's infusion restored systemic hemodynamic
parameters, it was unable to correct gut mucosal PCO2 gap.
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Key messages
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restored systemic and most regional hemodynamic 
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