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Many statistical methods require assumptions to be made about
the format of the data to be analysed. For example, the paired t-
test introduced in Statistics review 5 requires that the distribu-
tion of the differences be approximately Normal, while the
unpaired t-test requires an assumption of Normality to hold sep-
arately for both sets of observations. Fortunately, these assump-
tions are often valid in clinical data, and where they are not true
of the raw data it is often possible to apply a suitable transforma-
tion. There are situations in which even transformed data may
not satisfy the assumptions, however, and in these cases it may
be inappropriate to use traditional (parametric) methods of
analysis. (Methods such as the t-test are known as ‘parametric’
because they require estimation of the parameters that define
the underlying distribution of the data; in the case of the t-test,
for instance, these parameters are the mean and standard devi-
ation that define the Normal distribution.)

Nonparametric methods provide an alternative series of statis-
tical methods that require no or very limited assumptions to be
made about the data. There is a wide range of methods that
can be used in different circumstances, but some of the more
commonly used are the nonparametric alternatives to the t-
tests, and it is these that are covered in the present review.

The sign test
The sign test is probably the simplest of all the nonparametric
methods. It is used to compare a single sample with some
hypothesized value, and it is therefore of use in those situa-
tions in which the one-sample or paired t-test might tradition-

ally be applied. For example, Table 1 presents the relative risk
of mortality from 16 studies in which the outcome of septic
patients who developed acute renal failure as a complication
was compared with outcomes in those who did not. The rela-
tive risk calculated in each study compares the risk of dying
between patients with renal failure and those without. A rela-
tive risk of 1.0 is consistent with no effect, whereas relative
risks less than and greater than 1.0 are suggestive of a bene-
ficial or detrimental effect of developing acute renal failure in
sepsis, respectively. Does the combined evidence from all 16
studies suggest that developing acute renal failure as a com-
plication of sepsis impacts on mortality?

Fig. 1 shows a plot of the 16 relative risks. The distribution of
the relative risks is not Normal, and so the main assumption
required for the one-sample t-test is not valid in this case.
Rather than apply a transformation to these data, it is conve-
nient to use a nonparametric method known as the sign test.

The sign test is so called because it allocates a sign, either
positive (+) or negative (–), to each observation according to
whether it is greater or less than some hypothesized value,
and considers whether this is substantially different from what
we would expect by chance. If any observations are exactly
equal to the hypothesized value they are ignored and
dropped from the sample size. For example, if there were no
effect of developing acute renal failure on the outcome from
sepsis, around half of the 16 studies shown in Table 1 would
be expected to have a relative risk less than 1.0 (a ‘negative’
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The present review introduces nonparametric methods. Three of the more common nonparametric
methods are described in detail, and the advantages and disadvantages of nonparametric versus
parametric methods in general are discussed.
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sign) and the remainder would be expected to have a relative
risk greater than 1.0 (a ‘positive’ sign). In this case only three
studies had a relative risk of less than 1.0 whereas 13 had a
relative risk above this value. It is not unexpected that the
number of relative risks less than 1.0 is not exactly 8; the

more pertinent question is how unexpected is the value of 3?
The sign test gives a formal assessment of this.

Formally the sign test consists of the steps shown in Table 2.
In this example the null hypothesis is that there is no increase
in mortality when septic patients develop acute renal failure.

Exact P values for the sign test are based on the Binomial
distribution (see Kirkwood [1] for a description of how and
when the Binomial distribution is used), and many statistical
packages provide these directly. However, it is also possible
to use tables of critical values (for example [2]) to obtain
approximate P values.

The counts of positive and negative signs in the acute renal
failure in sepsis example were N+ = 13 and N– = 3, and S
(the test statistic) is equal to the smaller of these (i.e. N–). The
critical values for a sample size of 16 are shown in Table 3. 
S is less than or equal to the critical values for P = 0.10 and
P = 0.05. However, S is strictly greater than the critical value
for P = 0.01, so the best estimate of P from tabulated values
is 0.05. In fact, an exact P value based on the Binomial distri-
bution is 0.02. (Note that the P value from tabulated values is
more conservative [i.e. larger] than the exact value.) In other
words there is some limited evidence to support the notion
that developing acute renal failure in sepsis increases mortal-
ity beyond that expected by chance. 

Note that the sign test merely explores the role of chance in
explaining the relationship; it gives no direct estimate of the
size of any effect. Although it is often possible to obtain non-
parametric estimates of effect and associated confidence
intervals in principal, the methods involved tend to be
complex in practice and are not widely available in standard
statistical software. This lack of a straightforward effect esti-
mate is an important drawback of nonparametric methods.

Figure 1

Relative risk of mortality associated with developing acute renal failure
as a complication of sepsis.
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Table 2

Steps required in performing the sign test

Step Details

1 State the null hypothesis and, in particular, the 
hypothesized value for comparison

2 Allocate a sign (+ or –) to each observation according to 
whether it is greater or less than the hypothesized 
value. (Observations exactly equal to the hypothesized 
value are dropped from the analysis)

3 Determine:
N+ = the number of observations greater than the 

hypothesized value
N– = the number of observations less than the 

hypothesized value
S = the smaller of N+ and N–

4 Calculate an appropriate P value

Table 1

Relative risk of mortality associated with developing acute
renal failure as a complication of sepsis

Study Relative risk Sign

1 0.75 –

2 2.03 +

3 2.29 +

4 2.11 +

5 0.80 –

6 1.50 +

7 0.79 –

8 1.01 +

9 1.23 +

10 1.48 +

11 2.45 +

12 1.02 +

13 1.03 +

14 1.30 +

15 1.54 +

16 1.27 +
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The sign test can also be used to explore paired data. Con-
sider the example introduced in Statistics review 5 of central
venous oxygen saturation (SvO2) data from 10 consecutive
patients on admission and 6 hours after admission to the
intensive care unit (ICU). The paired differences are shown in
Table 4. In this example, the null hypothesis is that there is no
effect of 6 hours of ICU treatment on SvO2. In other words,
under the null hypothesis, the mean of the differences
between SvO2 at admission and that at 6 hours after admis-
sion would be zero. In terms of the sign test, this means that
approximately half of the differences would be expected to be
below zero (negative), whereas the other half would be above
zero (positive).

In practice only 2 differences were less than zero, but the
probability of this occurring by chance if the null hypothesis is
true is 0.11 (using the Binomial distribution). In other words, it
is reasonably likely that this apparent discrepancy has arisen
just by chance. Note that the paired t-test carried out in Sta-
tistics review 5 resulted in a corresponding P value of 0.02,
which appears at a first glance to contradict the results of the
sign test. It is not necessarily surprising that two tests on the
same data produce different results. The apparent discrep-
ancy may be a result of the different assumptions required; in
particular, the paired t-test requires that the differences be

Normally distributed, whereas the sign test only requires that
they are independent of one another. Alternatively, the dis-
crepancy may be a result of the difference in power provided
by the two tests. As a rule, nonparametric methods, particu-
larly when used in small samples, have rather less power (i.e.
less chance of detecting a true effect where one exists) than
their parametric equivalents, and this is particularly true of the
sign test (see Siegel and Castellan [3] for further details).

The Wilcoxon signed rank test
The sign test is intuitive and extremely simple to perform.
However, one immediately obvious disadvantage is that it
simply allocates a sign to each observation, according to
whether it lies above or below some hypothesized value, and
does not take the magnitude of the observation into account.
Omitting information on the magnitude of the observations is
rather inefficient and may reduce the statistical power of the
test. An alternative that does account for the magnitude of the
observations is the Wilcoxon signed rank test. The Wilcoxon
signed rank test consists of five basic steps (Table 5).

To illustrate, consider the SvO2 example described above.
The sign test simply calculated the number of differences
above and below zero and compared this with the expected
number. In the Wilcoxon rank sum test, the sizes of the differ-
ences are also accounted for.

Table 6 shows the SvO2 at admission and 6 hours after
admission for the 10 patients, along with the associated
ranking and signs of the observations (allocated according to
whether the difference is above or below the hypothesized
value of zero). Note that if patient 3 had a difference in admis-
sion and 6 hour SvO2 of 5.5% rather than 5.8%, then that
patient and patient 10 would have been given an equal,
average rank of 4.5.
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Table 3

Critical values for the sign test with a sample size of 16

P value 0.10 0.05 0.01

Critical value 4 3 2

Table 4

Central venous oxygen saturation on admission and 6 hours
after admission

SvO2 (%)

Patient On admission 6 hours Difference Sign

1 39.7 52.9 13.2 +

2 59.1 56.7 –2.4 –

3 56.1 61.9 5.8 +

4 57.7 71.4 13.7 +

5 60.6 67.7 7.1 +

6 37.8 50.0 12.2 +

7 58.2 60.7 2.5 +

8 33.6 51.3 17.7 +

9 56.0 59.5 3.5 +

10 65.3 59.8 –5.5 –

SvO2 = central venous oxygen saturation.

Table 5

Steps required in performing the Wilcoxon signed rank test

Step Details

1 State the null hypothesis and, in particular, the 
hypothesized value for comparison

2 Rank all observations in increasing order of magnitude, 
ignoring their sign. Ignore any observations that are 
equal to the hypothesized value. If two observations 
have the same magnitude, regardless of sign, then 
they are given an average ranking

3 Allocate a sign (+ or –) to each observation according to 
whether it is greater or less than the hypothesized 
value (as in the sign test)

4 Calculate:
R+ = sum of all positive ranks
R– = sum of all negative ranks
R = smaller of R+ and R–

5 Calculate an appropriate P value
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The sums of the positive (R+) and the negative (R–) ranks are
as follows.

R+ = 2 + 3 + 5 + 6 + 7 + 8 + 9 + 10 = 50

R– = 1 + 4 = 5

Thus, the smaller of R+ and R– (R) is as follows.

R = R– = 5

As with the sign test, a P value for a small sample size such
as this can be obtained from tabulated values such as those
shown in Table 7. The calculated value of R (i.e. 5) is less
than or equal to the critical values for P = 0.10 and P = 0.05
but greater than that for P = 0.01, and so it can be concluded
that P is between 0.01 and 0.05. In other words, there is
some evidence to suggest that there is a difference between
admission and 6 hour SvO2 beyond that expected by chance.
Notice that this is consistent with the results from the paired
t-test described in Statistics review 5. P values for larger
sample sizes (greater than 20 or 30, say) can be calculated
based on a Normal distribution for the test statistic (see
Altman [4] for details). Again, the Wilcoxon signed rank test

gives a P value only and provides no straightforward estimate
of the magnitude of any effect.

The Wilcoxon rank sum or Mann–Whitney
test
The sign test and Wilcoxon signed rank test are useful non-
parametric alternatives to the one-sample and paired t-tests.
A nonparametric alternative to the unpaired t-test is given by
the Wilcoxon rank sum test, which is also known as the
Mann–Whitney test. This is used when comparison is made
between two independent groups. The approach is similar to
that of the Wilcoxon signed rank test and consists of three
steps (Table 8).

The data in Table 9 are taken from a pilot study that set out to
examine whether protocolizing sedative administration
reduced the total dose of propofol given. Patients were
divided into groups on the basis of their duration of stay. The
data presented here are taken from the group of patients who
stayed for 3–5 days in the ICU. The total dose of propofol
administered to each patient is ranked by increasing magni-
tude, regardless of whether the patient was in the protocol-
ized or nonprotocolized group. Note that two patients had
total doses of 21.6 g, and these are allocated an equal,
average ranking of 7.5. There were a total of 11 nonprotocol-
ized and nine protocolized patients, and the sum of the ranks
of the smaller, protocolized group (S) is 84.5.

Again, a P value for a small sample such as this can be
obtained from tabulated values. In this case the two individual
sample sizes are used to identify the appropriate critical
values, and these are expressed in terms of a range as shown
in Table 10. The range in each case represents the sum of
the ranks outside which the calculated statistic S must fall to
reach that level of significance. In other words, for a P value
below 0.05, S must either be less than or equal to 68 or
greater than or equal to 121. In this case S = 84.5, and so
P is greater than 0.05. In other words, this test provides no
evidence to support the notion that the group who received
protocolized sedation received lower total doses of propofol
beyond that expected through chance. Again, for larger
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Table 6

Central venous oxygen saturation on admission and 6 hours
after admission

SvO2 (%)

On At
Patient admission 6 hours Difference Rank Sign

2 59.1 56.7 –2.4 1 –

7 58.2 60.7 2.5 2 +

9 56.0 59.5 3.5 3 +

10 65.3 59.8 –5.5 4 –

3 56.1 61.9 5.8 5 +

5 60.6 67.7 7.1 6 +

6 37.8 50.0 12.2 7 +

1 39.7 52.9 13.2 8 +

4 57.7 71.4 13.7 9 +

8 33.6 51.3 17.7 10 +

Table 7

Critical values for the Wilcoxon signed rank test with a sample
size of 10

P value 0.10 0.05 0.01

Critical value 10 8 3

Table 8

Steps required in performing the Wilcoxon rank sum
(Mann–Whitney) test

Step Details

1 Rank all observations in increasing order of magnitude, 
ignoring which group they come from. If two 
observations have the same magnitude, regardless of 
group, then they are given an average ranking

2 Add up the ranks in the smaller of the two groups (S). If 
the two groups are of equal size then either one can 
be chosen

3 Calculate an appropriate P value



513

sample sizes (greater than 20 or 30) P values can be calcu-
lated using a Normal distribution for S [4].

Advantages and disadvantages of
nonparametric methods
Inevitably there are advantages and disadvantages to non-
parametric versus parametric methods, and the decision
regarding which method is most appropriate depends very
much on individual circumstances. As a general guide, the
following (not exhaustive) guidelines are provided.

Advantages of nonparametric methods

Nonparametric methods require no or very limited assump-
tions to be made about the format of the data, and they may
therefore be preferable when the assumptions required for
parametric methods are not valid.

Nonparametric methods can be useful for dealing with unex-
pected, outlying observations that might be problematic with
a parametric approach.

Nonparametric methods are intuitive and are simple to carry
out by hand, for small samples at least.

Nonparametric methods are often useful in the analysis of
ordered categorical data in which assignation of scores to
individual categories may be inappropriate. For example, non-
parametric methods can be used to analyse alcohol con-
sumption directly using the categories never, a few times per
year, monthly, weekly, a few times per week, daily and a few
times per day. In contrast, parametric methods require scores
(i.e. 1–7) to be assigned to each category, with the implicit
assumption that the effect of moving from one category to the
next is fixed.

Disadvantages of nonparametric methods

Nonparametric methods may lack power as compared with
more traditional approaches [3]. This is a particular concern if
the sample size is small or if the assumptions for the corre-
sponding parametric method (e.g. Normality of the data) hold.

Nonparametric methods are geared toward hypothesis
testing rather than estimation of effects. It is often possible to
obtain nonparametric estimates and associated confidence
intervals, but this is not generally straightforward.

Tied values can be problematic when these are common, and
adjustments to the test statistic may be necessary.

Appropriate computer software for nonparametric methods
can be limited, although the situation is improving. In addition,
how a software package deals with tied values or how it
obtains appropriate P values may not always be obvious.
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This article is the sixth in an ongoing, educational review
series on medical statistics in critical care. Previous
articles have covered ‘presenting and summarizing data’,
‘samples and populations’, ‘hypotheses testing and P
values’, ‘sample size calculations’ and ‘comparison of
means’. Future topics to be covered include simple
regression, comparison of proportions and analysis of
survival data, to name but a few. If there is a medical
statistics topic you would like explained, contact us on
editorial@ccforum.com.

Table 9

Total propofol doses in patients with a 3 to 5 day stay in the
intensive care unit

Nonprotocolized group Protocolized group

Dose (g) Rank Dose (g) Rank

7.2 2 5.6 1

15.7 4 14.6 3

19.1 6 18.2 5

21.6 7.5 21.6 7.5

26.8 10 23.1 9

27.4 11 28.3 12

28.5 13 31.7 14

32.8 16 32.4 15

36.3 17 36.8 18

43.2 19

44.7 20

S = 84.5

Table 10

Critical values for the Wilcoxon rank sum test with sample
sizes of 9 and 11 

P value 0.05 0.01 0.001

Critical value 68–121 61–128 53–136
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