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Abstract

Introduction: To establish a plasma metabolomics fingerprint spectrum for severe burn patients and to use it to
identify a set of biomarkers that could be used for clinical monitoring.

Methods: Twenty-one severe burn patients and three healthy control individuals were enrolled in this study, and
the plasma samples from patients and healthy individuals were collected for nuclear magnetic resonance (NMR)
measurements. The NMR spectra were analyzed using principal component analysis (PCA) and partial least squares
(PLS) in order to establish the metabolomics fingerprint representing the changes in metabolism and to select the
major biomarkers.

Results: NMR spectra of the plasma samples showed significant differences between burn patients and healthy
individuals. Using metabolomics techniques, we found an Eigen-metabolome that consists of 12 metabolites, which
are regulated by 103 enzymes in a global metabolic network. Among these metabolites, α-ketoisovaleric acid,
3-methylhistidine, and β-hydroxybutyric acid were the most important biomarkers that were significantly increased
during the early stage of burn injury. These results suggest that the mitochondrial damage and carbohydrate,
protein and fatty acid metabolism disturbances occur after burn injury. Our analysis also show that histone
deacetylases, which are protein transcription suppressors, were remarkably increased and indicate that protein
transcription was inhibited and anabolism was restrained during the early stage of burn injury.

Conclusions: Metabolomics techniques based on NMR can be used to monitor metabolism in severe burn
patients. Our study demonstrates that integrated 1H-NMR metabolome and global metabolic network analysis is
useful for visualizing complex metabolic disturbances after severe burn injury and may provide a new quantitative
injury severity evaluation for future clinical use.
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Introduction
Burn is a common injury with an incidence of about 0.2%
in the normal population. Every year, approximately 3 mil-
lion people in China and 0.8 million in the United States
suffer from burns, with 200,000 and 40,000 requiring
hospitalization, respectively [1,2]. In addition, more than
one-third of burn patients are children under 14 years of
age [1,3]. Therefore, the treatment course for burns is not
only a public healthcare issue, but also a relevant matter
in the growth and future of children.
Mild burn is easy to treat, and the cure rate is 95% or

greater worldwide. However, severe burn, which covers
more than 50% of the total body surface area (TBSA), is
very difficult to treat, and the mortality rate is usually
more than 30%. Among the extremely severe burn pa-
tients for whom more than 80% of the TBSA is burned,
the death rate can reach 70% or higher [1]. Although
much research has been done and numerous advances
have been made through the hard work of a generation
of burn surgeons and scientists, the mortality of severe
burn patients has not changed in the past decade [4-6].
Determining how to reduce the mortality and improve the
care of severe burn patients is a core issue in burn re-
search. After severe burn injury, along with massive dam-
age to the skin and subcutaneous tissue, multiple organs
are also damaged. Pathophysiological conditions are com-
plicated and are highly related to metabolic regulation
[7-9]. Therefore, understanding the complicated changes
in metabolic networks is essential for developing the next
generation of prognosis prediction tools and new treat-
ment methods. However, metabolic regulatory networks
involve large numbers of molecules and pathways. Con-
ventional laboratory testing only includes a few of
metabolic parameters and cannot measure global changes
in metabolic networks in real-time. A metabolomics test
based on 1H-nuclear magnetic resonance (NMR) provides
a unique high-throughput solution to resolve this chal-
lenge. It can be used to detect most small metabolic mo-
lecules in a single-use test [10-12]. By using advanced
mathematical modeling, researchers can visualize the glo-
bal changes in metabolic networks (metabolic profile or
metabolome) and extract a set of biomarkers. These bio-
markers offer a new approach to quantitative, real-time
monitoring for severe burn patients and would give clin-
ical practitioners new opportunities to make better in-
formed decisions.
One of the major challenges in analyzing NMR data

from plasma samples is the high-dimension disaster of
metadata. The only solution to address this challenge is to
use a pattern recognizing technique. Principal component
analysis (PCA) and partial least square (PLS) are two com-
mon algorithms that can be used for dimension reduction
in NMR data analysis. Compared to PCA, PLS considers
correlations between variables. Hence, both PCA and PLS
are used as conventional mathematical tools in NMR data
analysis. In our previous studies, we successfully used
PCA and PLS to fit data according to the severity of spinal
cord injury [13,14]. We have reasonable confidence that
these algorithms can be used to establish a metabolomic
profile for severe burn patients, who suffer much greater
metabolic disturbances. In addition, with the release of the
Human Metabolome Database (HMDB), matching peaks
to metabolites is now becoming much easier than before
[15]. In brief, after peaks are screened using PCA and
PLS, we can submit these peaks to HMDB and identify
related metabolites. In the present study, by using a
high-resolution NMR technique, we aimed to establish
a plasma metabolomics fingerprint spectrum of severe
burn patients and to use it to identify a set of biomarkers
that can be used for clinical monitoring and to better
understand metabolism disturbances after burns. With
this effort, we expect to lay a foundation for formulating
reasonable improvements to future treatment protocols.
Materials and methods
Subjects
Subjects were 21 adult severe burn patients admitted to
the Institute of Burn Research of the Southwest Hospital
of The Third Military Medical University between May
2012 and December 2012. Patients were recruited if they
met the inclusion criteria of being between 18 and 65
years of age and having a burn area covering more than
50% TBSA. The exclusion criteria were: (1) special burns
including chemical and electrical burns; (2) severe compli-
cations such as heart disease, hepatic disease, renal dis-
ease, and hematopoietic disease before burn; (3) oncologic
disease; (4) history of endocrine disease including diabetes
and hyperthyroidism; (5) obesity (body mass index >25
kg/m2); (6) pregnancy or lactation; (7) psychiatric disorder
or mental state leading to failure to cooperate, inability for
self-control, or trouble communicating; and (8) participa-
tion in other clinical trials.
Written informed consent was obtained from all

participants, and the Committee of Medical Ethics of
the Southwest Hospital of The Third Military Medical
University approved the study protocol (approval number:
KY201118).
Clinical course of severe burn patients
All patients were admitted 2 to 24 hours post burn. When
a patient was admitted, we applied the standardized fluid
resuscitation protocol according to the Chinese Medical
Association burn treatment guidelines to treat burn shock
immediately. Silver sulfadiazine was applied to the wound,
and systemic antibiotics were used to prevent infection.
Escharectomy and skin grafting were performed three days
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after burn and three to four times within one month to
help cover the wound surface.
Collection and preparation of blood samples
Healthy controls were kept off food and water before blood
collection at 8 a.m. Two milliliters of blood was collected
from the median cubital vein using a citrate vacuum tube.
The samples were centrifuged at 3,000 rpm for 10 minutes
immediately, after which 1 ml of supernatant plasma was
extracted. The supernatant was stored at −80°C until ana-
lysis. For severe burn patients, fasting blood samples were
collected at 8 a.m. on the first morning after admission (24
to 48 hours post burn) and then processed as described for
the controls.
Plasma samples were defrosted at room temperature

and centrifuged at 16,000 rpm for 10 minutes. Then 450
μl supernatant was extracted from each sample and fully
mixed with 50 μl deuterium oxide (D2O) for 120 sec-
onds. After standing for 10 minutes, samples were ana-
lyzed using 600-MHz NMR spectrometry.

NMR measurements and data analysis
NMR measurements
We employed NMR measurements according to a protocol
that was established and reported previously [13]. All one-
dimensional spectra were acquired at 600.13 MHz using a
Bruker Avance DRx 600 600-MHz spectrometer (Bruker
BioSpin GmbH, Rheinstetten, Germany) equipped with a
proton observation probe (Bruker BBI inverse-broadband
probe). Spectra were recorded at a room temperature of
300 K. Standard one-dimensional pulse sequences and
Carr-Purcell-Meiboom-Gill (CPMG) sequences were used.
A spin-spin relaxation delay of 64 ms was used for all sam-
ples, and water suppression irradiation was applied during
the relaxation delay (2 s). Typically, in the standard one-
dimensional and CPMG experiments, the spectral width
was 20 ppm and 256 transients were collected into 32 k
data points. CPMG experiments filter broad resonances
from proteins and lipids, permitting latent biomarkers of
smaller molecular weight to be visualized.

Data processing
Clinical data were described as mean ± standard devi-
ation (SD) or as median and interquartile range (IQR) in
the case of a skewed distribution. Differences between
groups were assessed with the Student’s t test for data
presented as means. Differences in counts or percent-
ages were evaluated with the Fisher’s exact probability
test. Differences were considered significant if a two-
tailed P value was <0.05.
All plasma 1H-NMR spectra were phased and baseline

corrected within mestReC (version 4.9.9.9, Mestrelab Re-
search SL, Rheinstetten, Germany), and the chemical shifts
were referenced to a creatinine peak at Δ3.05. These data
were introduced into a Matlab (R2012b, The MathWorks,
Inc, Natick, MA, USA) data structure, where each row
comprised the integral descriptors for an NMR spectrum.
To reduce the interference of huge water peaks, all spectra
were analyzed to non-normalized data after removal of the
spectral region containing the suppressed water resonance.

Pattern recognition
All multivariate statistics and pattern recognition
were performed using the Eigen victor toolbox
(ver6.2.1) with two techniques: PCA and PLS on the
Matlab. Before analyzing, scaling was applied to
minimize the variation of the 1H-NMR peak to en-
sure that the large peak did not overshadow the
contribution of the small one. PCA score plots were
constructed to visualize the inherent clustering of
the samples based on burning. The toolbox can ex-
port the Q2 value, which indicates how well the
model predicts new data. A large Q2 (>0.5) indicates
good predictive capability.
For further analysis, PLS-discriminant analysis (PLS-

DA) was used in the data processing. PLS is used to find
the fundamental relationship between two matrices (X
and Y), that is, a latent variable approach to modeling the
covariance structures in these two spaces. Here the X is a
200 × 24 matrix, in which each row represents the integral
value of the NMR spectrum of each patient, and Y repre-
sents the patient's condition where 1 indicates burn and 0
indicates health. A PLS model will try to find the multidi-
mensional direction in the X space that explains the max-
imum multidimensional variance direction in the Y space;
that is, it will try to find the spectrum variables in X that
can explain the result of burn or health in Y. PLS is par-
ticularly suited when the matrix of predictors has more
variables than observations.
In order to avoid excessive classification, we further

adopted cross-validation (CV) to evaluate the stability of
the model. We addressed the validation by cutting a single
observation from the original sample as the validation data
and the remaining observations as the training data. Each
observation in the sample is used once as the validation
data in turn. The Q2 value represents the percentage of
the variation in the dataset predicted by the model accord-
ing to CV, that is, the Q2 value represents the discriminat-
ing ability of the PPM of a particular segment. The
formula for Q2 is as follows:

Q2 ¼ PRESS
SSY

¼ 1−

X
y
ypred−yobserved

� �2

X
y
yobserved−ymeanð Þ2

Here PRESS is the predictive residual sum of squares,
and SSY is the sum of squares of the Y matrix. These



Table 1 Comparison of clinical data between severe burn
patients and controls/

Variables Control (n = 3) Case (n = 21) P value

Age (yr) 45.1 ± 7.4 43.2 ± 10.7 >0.05

Sex, male (female) 2 (1) 16 (5) >0.05

Weight (kg) 61 ± 4 64 ± 13 >0.05

TBSA burn (%) 0 77 ± 12

Second-degree burn (%) 0 37 ± 23

Third-degree burn (%) 0 45 ± 24

Breathing rate (times/min) 18.3 ± 2.2 22.2 ± 2.1 <0.05

BP (mmHg) 108 ± 14/75 ± 9 123 ± 18/82 ± 11 <0.01

Pulse (times/min) 78 ± 12 113 ± 18 <0.01

T (°C) 36 ± 0.3 36.8 ± 0.9 <0.05

Data are expressed as n (%) or mean ± standard deviation. TBSA, total body
surface area; BP, blood pressure; T, temperature.
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measures can be equivalently expressed as standard
error of prediction (SDEP or SEP), or standard error of
CV (SECV).
Here, we get R2 = 0.87, Q2 = 0.76, and SECV = 0.201

with SD = 0.225
SECV is closed to the SD of the X matrix. It can be

interpreted as the SEVC is closed to the NMR spectrum
noise, so the stability of our model is acceptable.
Supporting vector machines (SVMs) have been success-

fully applied to various scientific problems, particularly in
high-dimensional data, and a SVM generally achieves clas-
sification performance superior to that of many older
methods. We employed a kernel function from quadratic,
polynomial kernel, Gaussian Radial Basis, and multilayer
perceptron to classify PLS scores.

Establishing metabolome and gene function analysis
The HMDB was used to identify key metabolites re-
lated to enzymes and upstream genes. In order to
determine the common functions of these metabo-
lites, we used the Gene Ontology terminology (GO)
system to analyze the enrichment condition of above
selected enzymes (and the corresponding genes). All
GO analysis was conducted using the G: profiler
website [16]. According to the website, the core al-
gorithm in the program is the widely applied hyper-
geometric distribution for significance of the
estimation principle for functional genomics of en-
richment and analysis.

Computing platform and tools
All computation processes were conducted using a
high-performance computing platform (HPC, CPU
XEON E7-8870 2.4G 6.4GT/s30M10C *4, GPU TESLA
K20 5GB GENERIC, 512GB DDR3 1333MHz R-ECC;
Environment: Unbutu12.04) of the Metabolomics and
Multidisciplinary Laboratory of Sichuan Academy of
Medical Sciences with computing software Matlab
2012b.

Results
Patients
Of the 21 participants initially recruited, none withdrew
consent. The patients’ average age was 43.2 ± 10.7 years,
and they were admitted within 24 hours after injury to
the participating hospitals. The patients’ average percent-
age of TBSA was 77 ± 12% (IQR 55 to 97%) and percent-
age of full thickness surface area (FTSA) was 45 ± 24%
(IQR 5 to 95%). All patients were immediately given an-
tishock fluid resuscitation upon admission, and all inter-
ventions were in accordance with the burn treatment
guidelines issued by the Chinese Burns Medical Associ-
ation. Four patients with severe burns died of multiple
organ failure and sepsis. The overall mortality rate dur-
ing the study period was 19%.

Clinical assessments
All of the variables followed a normal distribution. Table 1
demonstrates that the two groups were comparable for
basic demographic data. The subjects were similar in age
and body weight. However, there were significant differ-
ences between the groups in the percentage of TBSA of
burns, breathing rate, blood pressure (BP), pulse, and
temperature.

Plasma metabolome after severe burn
Typical 600.13-MHz NMR spectra demonstrated reso-
nances arising from metabolites including glucose, histi-
dine, and creatine. The differences between spectra from
the severe burn patients and those from the controls
were obvious on visual inspection (Figure 1), which
demonstrates that there were significant alterations in
the plasma metabolite profiles.
The variable importance in the projection (VIP) repre-

sents the value of each predictor in fitting the PLS
model for both predictors and responses, and we used
the method that was developed by Chong and Jun [17]
to calculate VIP scores. The VIP indicator can describe
correlations between the variable (X) and response (Y).
We used the VIP to identify metabolites correlated with
severe burns and named these metabolites as the ‘Eigen-
metabolome’ of severe burns. We used a VIP score >1.5
as a threshold to obtain the determinant metabolites
[18]. Then we used the HMDB to identify 12 metabolites
that are catalyzed by 103 enzymes (Tables 2 and 3 and
Figures 2 and 3). These 12 metabolites represent the
major metabolic changes that occur after severe burn
and can be used as the Eigen-metabolome.



Figure 1 Comparison of nuclear magnetic resonance (NMR) spectra from healthy controls and burn patients. The blue line is the 1H-NMR
plasma spectrum of healthy controls, and the red line is the NMR plasma spectrum of burn patients.

Table 2 Summary of Eigen-metabolome: metabolites related to severe burn

HMDB metabolite HMDB enzyme - gene symbol

3-Methylhistidine CNDP1 PRMT3

1,3-Diaminopropane AOC2 AMD1 AOC3 SMS DHPS ABP1 ODC1

2-Hydroxybutyric acid DLD LDHB LDHAL6B LDHC LDHAL6A TDH

2-Methoxyestrone UGT1A1 UGT2B11 UGT2A3 UGT2B10 UGT1A5 SHBG UGT1A8

UGT2B15 UGT1A7 UGT2B7 UGT2B4 UGT2B28 UGT1A3 UGT1A6

UGT2B17 COMT UGT1A4 UGT2A1 UGT1A9 UGT1A10

Deoxycorticosterone HSD3B1 P450-CYP21B CYP11B2 NR3C2

HSD3B2 CYP11B1 CYP21A2 NR3C1

Alpha ketoisovaleric acid -

Iodotyrosine TPO

Biotin PCCA SLC5A6 PC PCCB ACACA MCCC1

MCCC2 DKFZp686B20267 HLCS ACACB BTD

7-Dehydrocholesterol SC5DL HMGCS2 SCP2 DHCR24 CYP11A1 DHCR7

Aldosterone MLPH SGK1 NR3C2 NPPB CYP11B1

FN1 CTGF NR3C1 AKR1D1 ADM

CYP11B2 AGTR1 PTGER4 EGFR PRKD1

Dihydrobiopterin TYR TH NOS3 DHFR PCBD1

TPH1 QDPR SPR NOS1

Butyric acid HDAC1 TNF PPARG ACSM5 HDAC4 ACSM2A

HDAC5 HDAC2 ACSM4 ACSM1 SLC16A1 HDAC3

ACSM2B ACSM6 CASP3 ACSM3 HDAC9

Twelve characteristic metabolites found in nuclear magnetic resonance (NMR) metabolic spectra. They are closely related to substance metabolism, skeletal
muscle and fat catabolism, or viscus functional disorder after severe burn injury. HMDB, Human Metabolome Database.
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Table 3 Biological processes associated with the 12 characteristic metabolites

P value T Q Q&T Q&T/Q Q&T/T Term ID Main function Gene dosage Functional description

7.18E-05 42 89 6 0.067 0.143 GO:0006476 BP 7 Protein deacetylation

1.69E-02 1274 87 18 0.207 0.014 GO:0009611 BP 80 Response to wounding

1.67E-04 30 72 5 0.069 0.167 GO:0042312 BP 31 Regulation of vasodilation

3.43E-03 28 60 4 0.067 0.143 GO:0055078 BP 77 Sodium ion homeostasis

1.22E-02 2 45 2 0.044 1 GO:2001295 BP 41 Malonyl-coenzyme A biosynthetic process

1.80E-02 32 79 4 0.051 0.125 GO:0048662 BP 52 Negative regulation of smooth muscle cell proliferation

4.14E-02 89 72 5 0.069 0.056 GO:0046209 BP 45 Nitric oxide metabolic process

4.93E-33 944 88 45 0.511 0.048 GO:0019752 BP 2 Carboxylic acid metabolic process

3.23E-02 41 71 4 0.056 0.098 GO:0050999 BP 59 Regulation of nitric oxide synthase activity

2.75E-02 83 71 5 0.07 0.06 GO:0051341 BP 53 Regulation of oxidoreductase activity

3.31E-02 72 85 5 0.059 0.069 GO:0006096 BP 51 Glycolysis

4.64E-15 7548 88 73 0.83 0.01 GO:0044444 CC 33 Cytoplasmic part

1.14E-02 3100 89 31 0.348 0.01 GO:0031974 CC 74 Membrane-enclosed lumen

5.29E-05 40 89 6 0.067 0.15 GO:0000118 CC 4 Histone deacetylase complex

2.54E-29 33 31 14 0.452 0.424 GO:0015020 MF 21 Glucuronosyltransferase activity

7.80E-04 185 72 8 0.111 0.043 GO:0005506 MF 27 Iron ion binding

1.94E-02 3 33 2 0.061 0.667 GO:0004769 MF 81 Steroid delta-isomerase activity

1.05E-14 58 79 12 0.152 0.207 GO:0033293 MF 60 Monocarboxylic acid binding

7.06E-09 11 89 6 0.067 0.545 GO:0031078 MF 62 Histone deacetylase activity (H3-K14-specific)

3.84E-02 149 72 6 0.083 0.04 GO:0020037 MF 54 Heme binding

4.77E-04 1195 89 20 0.225 0.017 GO:0019899 MF 9 Enzyme binding

3.76E-06 614 68 15 0.221 0.024 GO:0042803 MF 38 Protein homodimerization activity

Biological processes associated with the 12 characteristic metabolites.
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We were interested to use the Eigen-metabolome to es-
tablish a quantitative burn evaluation model. We employed
a PLS regression model to establish a linear prediction
model.
Then we obtained the discriminant equations for the re-

lationship between plasma metabolites and injury severity:

a11 a12 a13⋯a1n
a21 a22 a23⋯a2n

� �
�

x1
x2
⋮
xn

2
664

3
775 ¼ PC1

PC2

� �

where x represents the ppm value from the NMR spec-
tra, and aij represents the loadings. Finally, we obtained
an injury severity discriminant model based on a SVM.
We found that SVM equations successfully distinguished
severe burn patients and healthy control individuals.

Discussion
In this study, we found that the metabolomics fingerprint
of severe burn patients was altered significantly. Twelve
small molecular metabolites (Table 2) make up an Eigen-
metabolome that distinguishes severe burn patients from
healthy controls. Hence, this Eigen-metabolome comprises
a set of biomarkers that can be used to monitor the me-
tabolism disturbances after severe burn injury. To the best
of our knowledge, this is the first study on human metabo-
lomics fingerprinting after severe burn. In addition, we
identified several interesting findings regarding metabolic
pathway regulatory changes in metabolomics fingerprinting.
One very interesting metabolite included in the severe

burn Eigen-metabolome was α-ketoisovaleric acid, an
intermediate metabolite of valine, that is regarded as a
marker of mitochondrial damage [19,20]. Valine can be
converted to α-ketoisovaleric acid through a deamination
reaction by branched-chain amino acid aminotransferase,
and it is carried from the cytosol to mitochondria through
the mitochondrial membrane transporter, where it is fur-
ther converted to succinyl-coenzyme A by acyl-coenzyme
A dehydrogenase and participates in the tricarboxylic acid
cycle. Ketoisovaleric acid accumulates with disorder of the
mitochondrial membrane transport system [21,22]. In this
study, we found that the plasma ketoisovaleric acid level
significantly increased after burn injury, indicating cell
membrane damage and mitochondrial transport dysfunc-
tion in the early stage of burn injury. Although our and
others’ previous studies have demonstrated that mitochon-
drial dysfunction can be found one day post burn, those



Figure 2 A high-resolution 1H-nuclear magnetic resonance spectrum of plasma demonstrating spectral assignments. Only the major
metabolites are labeled.
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data were derived from animal tissues [23-26]. To date,
there is no clinically available tool to monitor mitochon-
drial function. The present study indicates that through
1H-NMR metabolic fingerprinting, α-ketoisovaleric acid
can be used clinically as a new biomarker of mitochondrial
dysfunction.
Researchers have found that the 3-methylhistidine (3-

MH) level reflects skeleton muscle degeneration after burn.
A clinical study indicated that urine 3-MH is significantly
increased in burned children [27]. It is seen as an import-
ant marker of catabolic metabolism. The traditional way to
examine skeleton muscle decomposition is to detect 3-MH
by high performance liquid chromatography (HPLC) and/
or mass spectrometry (MS), but these methods are expen-
sive and time-consuming. Because of the complexity of
plasma contents, previous studies all used urine samples.
The results from urine testing are not as accurate as those
from plasma testing, which limits the use of 3-MH as a
clinical marker. Our study found that as a high-throughput
method, the 1H-NMR metabolome accurately and timely
duplicated results that only could be examined in
complicated laboratory studies previously. Because of its
cost-effectiveness, 1H-NMR metabolome fingerprinting
could be used as a sensitive monitoring tool for skeleton
catabolism after severe burn.
After severe burn, the stress process is followed and rep-

resented by the release of a large amount of stress-related
hormones and cytokines. This stress process leads to mal-
metabolism of carbohydrates via insulin resistance and
hyperglycemia [28]. For a very long time, researchers and
clinical practitioners have considered hyperglycemia post
severe burn as a type of stress-related phenomena and
quite different from diabetes. They believe that this type of
hyperglycemia is not related to ketonemia during the early
stage of burn and that ketonemia only occurs when pa-
tients are suffering from sepsis [29]. Our study explored a
different scenario: β-hydroxybutyric acid was increased in
the metabolome of patients in the early stage post burn.
Considering that β-hydroxybutyric acid is the major com-
ponent of ketones (75% of ketones), the increasing level of
β-hydroxybutyric acid indicated that ketogenic metabol-
ism is enhanced by fatty acid decomposition in liver.



Figure 3 Automatic separation of the sample score plot by support vector machine (SVM). The kernel function of the SVM is quadratic (A),
polynomial kernel (B), Gaussian Radial Basis (C), and multilayer perceptron (D). The black line is the separating line between the burn (+) and
healthy (*) samples.
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Through the above analysis of key metabolites from the
Eigen-metabolome, we conclude that mitochondrial func-
tion and carbohydrate, protein, and fatty acid metabolism
are significantly changed during the early stage of severe
burn. The core cause of these types of changes is the de-
composition of skeleton muscle and fat tissue to provide
substrates for gluconeogenesis and ketogenic metabolism.
The outcome of this metabolic adjustment is to fulfill the
energy needs of brain and myocardial cells under stress
conditions. All of this metabolic information could be ob-
tained from a 1H-NMR spectrum, which indicates that
1H-NMR-based metabolomics fingerprinting can be used
as a sensitive monitoring tool for severe burn patients.
This also offers a new approach to understanding the com-
plicated metabolic changes after severe illnesses and injur-
ies such as burns.
Upon analysis of the 12 metabolites of the metabolome

from severe burn patients, we found that they are catalyzed
by 103 enzymes that mainly participate in biological
processes including protein acetylation, wound healing,
and dilation of blood vessels. From the cellular perspective,
these enzymes are closely related to the deacetylation of
histones, which means remodeling of chromatin and af-
fects the dynamics of chromatin folding during gene tran-
scription [30]. Our results showed that levels of the histone
deaceylase (HDAC) components (HDAC1-HDAC5, and
HDAC9) were elevated significantly and the affinity be-
tween histones and DNA was increased, eventually leading
to gene transcription repression [30,31]. However, the his-
tone acetyltransferases (HATs), which reduce histone and
DNA affinity and promote transcription, were not obvi-
ously changed. These results indicate that protein tran-
scription and synthesis were inhibited and anabolism was
restrained during the early stage of burn injury [32,33].
The present study indicates that after burn injury, the

alterations of metabolism networks and patterns can
be detected by a metabolomics techniques based on
1H-NMR. On one hand, we found that 12 metabolites
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make up a set of biomarkers that can be used to monitor
the severity of burns. Although the clinical standards for
evaluating the severity of burns are well established and
it is not difficult to distinguish severe and moderate
burns, differences in the complex network of metabolism
are not so easily understood. Our work used the distur-
bances in the metabolic fingerprints of 1H-NMR spectra
to provide a quantitative method to describe the metabolic
network disturbances after severe sepsis. It provides a sys-
tems biological approach to understand the relationships
between metabolic network disturbances and the occur-
rence of morbidities (sepsis, multiple organ dysfunction
syndrome, and so on) after severe burn.
In addition to establishing the Eigen-metabolomeour

results demonstrate that α-ketoisovaleric acid can be used
as a novel biomarker of mitochondrial dysfunction in the
clinical setting. However, further analysis of the spectra of
metabolites can go deeper and wider along the route of
small molecular metabolite-enzyme-functional genomics,
which provides innovative ideas for exploring pathophysio-
logic conditions, enhancing research efforts, and improving
future treatment protocols. Finally, our study provides a
novel approach for a clinical monitoring system with high
sensitivity and accuracy in the future.

Conclusions
To summary, we demonstrate that 1H-NMR spectra can be
used to establish Eigen-metabolome of severe burn patients.
A set of biomarkers such as α-ketoisovaleric acid, 3-methyl-
histidine, and β-hydroxybutyric acid can characterize meta-
bolic disturbances after severe burn. Our work also provides
a systems approach to biomedicine that enable future re-
searchers to integrate information from clinical settings,
metabolomics and mathematical modeling to develop a
new diagnostic monitoring tool for severe burn patients.

Key messages

� NMR spectra of plasma samples showed significant
differences between burn patients and healthy
individuals.

� Using metabolomics techniques, we identified an
Eigen-metabolome that consists of 12 metabolites,
which are regulated by 103 enzymes in the global
metabolic network.

� α-ketoisovaleric acid, 3-methylhistidine, and β-
hydroxybutyric acid were the most important bio-
markers that were significantly increased during the
early stage of burn injury.

� Our results also show that the histone deacetylases,
which are protein transcription suppressors, were
remarkably increased and indicated that protein
transcription was inhibited and anabolism restrained
during the early stage of burn injury.
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