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Abstract

Rhabdomyolysis, a clinical syndrome caused by
damage to skeletal muscle and release of its
breakdown products into the circulation, can be
followed by acute kidney injury (AKI) as a severe
complication. The belief that the AKl is triggered by
myoglobin as the toxin responsible appears to be
oversimplified. Better knowledge of the
pathophysiology of rhabdomyolysis and following AKI
could widen treatment options, leading to
preservation of the kidney: the decision to initiate
renal replacement therapy in clinical practice should
not be made on the basis of the myoglobin or

creatine phosphokinase serum concentrations.

Introduction

Rhabdomyolysis (RM) is a clinical syndrome character-
ized by injury to skeletal muscle fibers with disruption
and release of their contents into the circulation.
Myoglobin, creatine phosphokinase (CK) and lactate
dehydrogenase are the most important substances for
indicating muscle damage [1].

Brief history

The history of RM goes back to the Second World War
in 1941 when the condition was described for the first
time. The London Blitz was the sustained strategic
bombing of many cities in the United Kingdom and the
ensuing crush injuries led to typical symptoms of RM
[2]. Today, we know the causes of RM are legion and
include trauma, drugs such as statins, infections, toxins,
extreme physical exertion, temperature extremes, heredi-
tary and acquired metabolic myopathies [3].
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Clinical symptoms

The clinical symptoms of RM are well known: myalgia,
weakness and swelling involving injured muscles, usually
associated with myoglobinuria. The clinical symptoms
might include nonspecific symptoms such as fever,
nausea, dyspepsia and/or vomiting. Mild and subclinical
cases of RM, called in clinical practice myopathies, are
typically characterized by elevated serum CK and
myalgias [4].

The severity of RM escalates from myoglobinuria,
which can result in acute kidney injury (AKI), to
other severe systemic complications such as dissemi-
nated intravascular coagulopathy and acute compart-
ment syndrome from swelling muscle, and reduced
macrocirculation and microcirculation of injured limbs.
Extracted fluid from the circulation into the swollen
muscle groups leads to hypotension and shock.
Typical metabolic alterations accompanying RM are
hyperkalemia, metabolic acidosis, hypocalcemia or hy-
percalcemia, hyperuricemia, hyponatremia and hyper-
phosphatemia with possible cardiac dysrhythmias
[5,6]. AKI due to rhabdomyolysis occurs in 13 to 50%
of all cases [7].

Etiology

As already mentioned, the development of RM is associ-
ated with a large number of conditions and pathological
disorders. Medical research, reviews, studies and case
reports describe different possible causes of RM (Table 1)
[3,8,9].

Pathophysiology of rhabdomyolysis and following acute
kidney injury

Under physiological conditions, skeletal muscle cell con-
traction requires a nervous impulse originating in a vol-
untary process. The nervous impulse is then transferred
to a thin muscle cell membrane called the sarcolemma.
The sarcolemma is a physical barrier and mediator be-
tween cell and external signals. In healthy myocytes, the
sarcolemma contains different pumps for regulating the
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Table 1 Etiology of rhabdomyolysis and myopathies

Acquired Hereditary

Extreme physical activity Metabolic myopathies caused by

disorders of:

Influence of extreme
temperatures

Metabolic disorders of water
and salts

Trauma and crush syndrome
Vascular ischemia

Influence of drugs

Fatty acid oxidation

Mitochondrial metabolism

Glycolysis/glycogenolysis
Purine nucleotide cycle

Pentose phosphate pathway

Infections, sepsis

Toxins

Malignant hyperthermia
Endocrine disorders

Electrical current

process of cellular electrochemical gradients [10]. The
most important is Na-K-ATP-ase for sodium and potas-
sium exchange. Under normal conditions, sodium ions
are actively excluded from the muscle cell and potassium
ions are allowed passage. This process is energy
dependent and builds on calcium removal in Na/Ca by
changing the intracellular electrical gradient during
active removal of sodium. Both processes depend on
ATP as a source of energy [11,12].

The sarcoplasm is the specialized cytoplasm of the
muscle cell that contains the usual subcellular elements
along with Golgi apparatus, myofibrils, a modified endo-
plasmic reticulum known as the sarcoplasmic reticulum,
myoglobin and mitochondria. The primary function of
the sarcoplasmic reticulum is to store calcium, which is
released by muscular contraction. The most serious
consequence of RM is ATP depletion, resulting in mem-
brane cell pump dysfunction. The extrusion of sodium
is impaired and the efflux of calcium from the cell is im-
paired [13]. If a high concentration of calcium persists
in the sarcoplasm this activates cytolytic enzymes such
as hydroxylases, proteases, nucleases and many others.
The following impairment of cell organelles, especially
of mitochondria, leads to progressive decrease in ATP,
the production of free oxygen radicals and cell damage
[12]. The result of cell impairment is release of potassium,
phosphates, myoglobin, CK, lactate dehydrogenase and
aldolase into the blood circulation with typical clinical
presentation of RM.

Acute kidney injury is one of the most severe
complications of rhabdomyolysis

The pathophysiology of RM-induced AKI is believed to
be triggered by myoglobin as the toxin causing renal
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dysfunction [14]. This claim is given substance from
studies in animal models of glycerol-induced AKI. Intra-
muscular injection of glycerol in the rabbit induces a
model of AKI at a dose of 10 mg/kg that resembles the
AKI caused by massive release of myoglobin in crush
syndrome in humans [15]. Glycerol-induced AKI is char-
acterized by myoglobinuria, tubular necrosis and renal
vasoconstriction [16]. The most important role in
glycerol-induced nephrotoxicity has been attributed to
reactive oxygen metabolites (reactive oxygen species), in
particular the hydroxyl radical (OH'), the same cause as
for myoglobin-induced AKI [17].

Myoglobin is an oxygen and iron binding protein with
a molecular weight of 17,500 Da. Myoglobin is found in
the muscle tissue of vertebrates, has a higher affinity for
oxygen than hemoglobin and assists myocytes to acquire
energy. Myoglobin can be detected in urine in small
concentrations <5 pg/l, but meets the diagnostic criteria
for myoglobinuria at concentrations >20 pg/1 [9].

Myoglobin — which may undergo reabsorption from
the glomerular filtrate, is catabolized within proximal
tubule cells and is easily filtered through the glomerular
basement membrane — has been recognized as playing a
part in the development of AKI in the setting of myoglo-
binuria. The clinical study by Gburek and colleagues
demonstrated that renal uptake of myoglobin is mediated
by the endocytic receptors, megalin and cubilin [18]. The
same membrane cell receptors play an important role in
nephrotoxicity; for example, those of antibiotics.

The three different mechanisms of renal toxicity by
myoglobin are usually reported as renal vasoconstriction,
formation of intratubular casts and the direct toxicity of
myoglobin to kidney tubular cells [19-27] (Figure 1).

Renal vasoconstriction is caused by reduced renal
blood flow due to excessive leakage of extracellular fluid
into the damaged muscle cells and by secondary activation
of the renin—angiotensin—aldosterone system. However, a
second theory favors the effect of the nitric oxide scaven-
ging characteristics of myoglobin and release of cytokines
[25,26]. The formation of intratubular casts explains the
urine concentration and the following reaction of myoglo-
bin with Tamm-Horsfall tubular protein. Further, renal
vasoconstriction, the decrease in renal blood flow due to
volume depletion and the low pH of urine promote this
pathological process by formation of stronger and more
rapid bonds between Tamm-—Horsfall protein and myo-
globin [12,20].

Heme released from myoglobin is, under normal
conditions, degraded by the enzyme heme oxygenase-1
with marked vasodilatating effect. Heme oxygenase-1 is
upregulated in proximal tubular cells in response to
oxidant stress and exerts cytoprotective and anti-
inflammatory effects [14,21,22]. Zager and colleagues
[19] studied intrarenal heme oxygenase-1 induction in
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response to four different experimental AKI models:
glycerol, cisplatin, ischemic—reperfusion and a bilateral
ureteral obstruction model. In the glycerol AKI model
that best reflects kidney damage during myoglobinuric
AKI, heme oxygenase-1 was detectable in plasma and
the renal cortex, and these changes were associated
with an approximately 10-fold increase in renal heme
oxygenase-1 mRNA. With the urinary heme oxygenase-1
concentration increase in the glycerol AKI model, further
increases were observed 4 and 24 hours after glycerol
injection. Finally, the authors tested whether the above
findings might have clinical relevance in 20 critically ill

patients: one-half of the patients had AKI and one-half
had no AKI. Only the AKI group had significantly elevated
plasma and urinary heme oxygenase-1 concentrations,
and these investigations led to the conclusion that AKI
can evoke heme oxygenase-1 elevation in plasma and
urine [19]. However, the whole molecular pathophysiology
of myoglobin-induced AKI is based on the deleterious
effects of reactive oxygen species directly on the tubular
cells and their organelles.

Reactive oxygen species also play an important and
protective role in the living organism against pathogens
and cancer during phagocytosis and other, especially
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metabolic, reactions. But overproduction of reactive
oxygen species may lead to damage to living cells via
lipid peroxidation of fatty acids and to the production of
malondialdehyde, which can cause the polymerization of
protein and DNA [23]. The hydroxyl radical is the most
reactive of the reactive oxygen species group and is
produced by the reaction between superoxide and
hydrogen peroxide catalyzed by iron in Fenton’s reaction
(Figure 1).

In previous years, iron-mediated hydroxyl radical pro-
duction with resultant oxidant stress was hypothesized
to be the dominant pathway for heme protein nephrotox-
icity [17]. However, it was later shown that Fe-mediated
proximal tubular system lipid peroxidation was more
hydrogen peroxide dependent than hydroxyl anion (OH")
dependent and that blockage of myoglobin cytotoxicity
via only decreasing hydroxyl anion generation may be
inadequate [24]. For myoglobin to catalyze lipid peroxi-
dation, ferrous (Fe*) myoglobin must be oxidized to
the ferric (Fe**) form, which leads to induced lipid
peroxidation by redox cycling with ferryl (Fe*=0)
myoglobin. This is a highly reactive form of myoglobin,
which can potently induce lipid peroxidation [27].
Redox cycling between ferric and ferryl myoglobin
yields radical species that cause severe oxidative damage
to the kidney [28].

This process has been shown to be pH dependent and
alkaline conditions prevent myoglobin-induced lipid per-
oxidation by stabilizing the reactive ferryl-myoglobin
complex [29,30]. Alkaline conditions stabilize the ferryl
species, making myoglobin considerably less reactive
towards lipids and lipid hydroperoxides [31]. The fact
that RM can be considered an oxidative stress-mediated
pathology also with mitochondria as the primary target,
and possibly the source of reactive oxygen and nitrogen
species, has been reported in a study by Plotnikov and
colleagues [32]. However, the authors speculate that
RM-induced kidney damage involves direct interaction
of myoglobin with mitochondria possibly resulting in
iron ion release from myoglobin’s heme, and this pro-
motes the peroxidation of mitochondrial membranes [32].
This problem, however, appears to be more complicated.

In summary, better knowledge of the pathophysiology
can optimize prevention and treatment measures in
cases of RM kidney injury.

Diagnosis

In typical clinical conditions, patients with RM experi-
ence muscular weakness, myalgia, swelling, tenderness
or stiffness and dark brown urine [1]. Correct diagnosis
is the most important step to initiating proper treat-
ment. The clinical and laboratory diagnostics summa-
rized in Table 2 are the basic approach in differential
diagnosis.
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Table 2 Diagnosis of rhabdomyolysis and following acute
kidney injury

Clinical presentation

Muscular weakness, myalgia, swelling, tenderness, stiffness
Fever, feelings of nausea, vomiting, tachycardia

Oligoanuria or anuria in connection with renal damage or in the
presence of volume depletion

Signs of the underlying disease
Laboratory findings

Serum: creatinine, urea nitrogen, creatine phosphokinase, myoglobin,
ions (potassium, phosphorus, calcium), lactate dehydrogenase,
transaminases, acid—base balance

Urine: myoglobin or positive dipstick test without any erythrocytes

Serum myoglobin is normally bound to plasma globu-
lins such as haptoglobin and a,-globulin and has a rapid
renal clearance to maintain a low plasma concentration
of 3 ug/l [33]. Radioimmunoassays or imunolatex, imuno-
turbidimetric methods can detect myoglobin in plasma or
urine. Normal serum levels are 30 to 80 pg/l and normal
urine levels are 3 to 20 pg/l [3]. After the development of
RM, free serum myoglobin increases due to exceeding the
binding capacity of plasma globulins and then kidney
filtrate appears in the urine which contributes to the
brownish (tea) urine color. Furthermore, urine myoglobin
concentrations are normally measured to assess RM;
surprisingly, one in vitro study observed that low pH is
not by itself a cause of urine myoglobin instability. The
extent of instability depended not only on urine pH and
temperature but also on unidentified urinary factors and
initial urinary myoglobin concentrations [34]. Another
way to diagnose myoglobinuria is a positive test for the
presence of blood in urine without finding erythrocytes.

Serum levels of CK correlate with the severity of RM
but less so with myoglobinuric AKI. Normal serum
levels are 0.15 to 3.24 pkat/l or 9 to 194 U/l in men and
0.15 to 2.85 pkat/l or 9 to 171 U/l in women. To predict
AKI following RM, the clinician needs a better marker
than serum CK, which is routinely used as a marker in
the assessment of these disorders. Very important findings
about the use of myoglobin as a marker and predictor in
AKI were described by Premru and colleagues [35]. The
authors investigated and restrospectively analyzed the
incidence of myoglobin-induced AKI (serum creatinine
>200 pmol/l) and the need for hemodialysis in 484 pa-
tients with suspected RM. The median peak myoglobin
was 7,163 pg/l. The incidence of myoglobin-induced AKI
was significantly higher (64.9%) in patients with a peak
serum myoglobin >15,000 pg/l (P <0.01). Most of these
patients needed treatment with hemodialysis (28%).
Myoglobin levels >15,000 pg/l were most significantly
related to the development of AKI and the need for
hemodialysis. Based on these results, serum myoglobin
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was recommended as a valuable early predictor and
marker of RM and myoglobinuric AKI [35].

In another retrospective observational cohort study,
El-Abdellati and colleagues studied CK, serum myoglo-
bin and urinary myoglobin as markers of RM and AKI
in 1,769 adult patients. The results for the best cutoff
values for prediction of AKI were CK >773 U/, serum
myoglobin >368 pg/l and urine myoglobin >38 pg/l,
respectively [36].

Conservative measures in rhabdomyolysis to
prevent acute kidney injury

The first step in medical intervention is usually treatment
of underlying disease. In the case of preserved diuresis in
the setting of RM, we must initiate conservative measures,
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which usually include massive hydration, use of mannitol,
urine alkalization and forced diuresis [25,37-39] (Figure 2).

Early and aggressive fluid resuscitation to restore renal
perfusion and increase the urine flow rate is agreed on
as the main intervention for preventing and treating
AKI [6]. Fluid resuscitation with crystalloid solutions is
the ubiquitous intervention in critical care medicine
[40]. One caveat, however, is that these therapeutic
measures are not useful in the context of severe oliguria
or anuria and may lead to interstitial and pulmonary
edema. Clinicians have to be careful about oliguria
which is a normal response to hypovolemia and should
not be used solely as a trigger or end point for fluid re-
suscitation, particularly in the post-resuscitation period
[41]. Further, while aggressive volume resuscitation may
preserve cardiac output and renal perfusion pressure, in
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Figure 2 Therapeutic approaches in rhabdomyolysis for prevention and treatment of acute kidney injury. AKI, acute kidney injury; KDIGO,
Kidney Disease Improving Global Outcomes; RM, rhabdomyolysis; RRT, renal replacement therapy; S, serum creatinine; UO, urine output.
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the presence of oliguria it is an independent predictor
for developing secondary abdominal compartment syn-
drome with decreased renal perfusion pressure or can
lead to acute respiratory distress syndrome [42].

Diuretic agent — mannitol

Mannitol is an osmotic agent that attracts the fluid of
the interstitial space and so may reduce muscular swell-
ing. As a diuretic agent, mannitol prevents intrarenal
heme pigment trapping, decreasing cast formation.
Mannitol can increase renal blood flow and glomerular
filtration. Several studies have highlighted its hydroxyl
anion-scavenging effect, although in an experimental
study Zager and colleagues concluded that its protective
influence is probably more due to a diuretic than to anti-
oxidant effect [43]. Bragadottir and colleagues [44] stud-
ied the effects of mannitol on renal blood flow, the
glomerular filtration rate, renal oxygen consumption and
extraction in 11 postoperative cardiac patients with AKI.
In all patients, a bolus dose of mannitol 225 mg/kg was
given, followed by an infusion at a rate of 75 mg/kg/hour
for two 30-minute periods. The authors reported that
mannitol treatment in these cases increased urine flow
by 61% (P <0.001), induced renal vasodilation and redis-
tributed systemic blood flow to the kidney. In addition,
mannitol does not affect the filtration fraction or renal
oxygenation [44].

There are some controversial views on post-traumatic
RM, where the recommendation is to re-evaluate the
standards of therapy with bicarbonate and mannitol
because this combination does not prevent renal failure,
dialysis or mortality in patients with CK levels >5,000 U/l
[45]. Knowledge of the timing of adequate hydration in
severe post-traumatic patients would be valuable.

Antioxidant therapy

Based on the pathophysiology of myoglobinuric AKI, we
can predict protective effects of antioxidative therapy by
inhibition of lipid peroxidation of the proximal tubular
cells and redox cycling between ferric and ferryl myoglo-
bin [28]. Acetaminophen, which inhibits hemoprotein-
catalyzed lipid peroxidation, is one of several investigated
drugs that attenuate RM-induced AKI. Acetaminophen
inhibits prostaglandin hydrogen synthase by reducing the
protoporphyrin radical cation and blocking formation of
the catalytic tyrosyl radical [46,47]. However, one experi-
mental in vitro study showed that its administration is
necessary after RM to achieve the desired outcome in
blocking lipid peroxidation [28].

Renal replacement therapy

The first factor we need to recognize is that the greatest
filter for removing myoglobin is the kidney, and in
critical care nephrology there is no preventive kidney
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replacement therapy. However, the kidneys need a perfu-
sion pressure and fluid volume to help them eliminate
the toxin. The initiation of renal replacement therapy in
clinical practice should not be managed by the myoglo-
bin or CK serum concentration but by the status of renal
impairment, with complications such as life-threatening
hyperkalemia, hypercalcemia, hyperazotemia, anuria or
hyperhydration without response to diuretic therapy. For
better orientation to the requirements of renal replace-
ment therapy initialization in AKI on critical care, we
can use the Kidney Disease Improving Global Outcomes
guidelines. These guidelines include a comprehensive
therapeutic approach for management of AKI (Figure 2)
[39,48]. Renal replacement therapies are mostly efficient
in cases of RM-induced AKI, but they are extracorporeal
circuits with many potential complications. However, in
clinical practice it is very important to take into account
all coincident factors in the patient’s illness and to
individualize treatment if necessary.

The possibility of using a method of renal replacement
therapy, either intermittent hemodialysis or continuous
kidney replacement methods in the case of RM, has
been investigated in several studies [49-51]. Plasmapher-
esis has also been used with described success. When we
proceed to treat patients with these procedures, we must
take into account that myoglobin has a molecular mass
of 17 kDa and is poorly removed from circulation using
conventional extracorporeal techniques. Intermittent
hemodialysis is mostly mandated by renal or metabolic
indications and preventive extracorporeal elimination is
not recommended. Sorrentino and colleagues [52] re-
ported the effective removal of myoglobin by extended
dialysis performed using a single-pass batch dialysis
system and a polysulphone high-flux dialyzer (surface
area 1.8 m?®), allowing elimination of substances with a
molecular weight of up to 30 kDa. In six patients with
myoglobinuric AKI, a median myoglobin clearance of
90.5 ml/minute (range 52.4 to 126.3 ml/minute) was
achieved, resulting in a median myoglobin removal per
treatment hour of 0.54 g (range 0.15 to 2.21 g) [52].

Myoglobin clearance by super high-flux hemofiltration
in a 53-year-old female suffering from RM and AKI was
investigated by Naka and colleagues [53]. Continuous
venovenous hemofiltration was performed with a high-
permeability membrane (cutoff point 100 kDa) at 2 to
4 1/hour ultrafiltration in an attempt to clear myoglobin.
The sieving coefficient was 68 to 72%, myoglobin clear-
ance was up to 56.4 1/day and the amount of myoglobin
removed was 4.4 to 5.1 g/day [53]. The effect of high
cutoff membrane hemodiafiltration on myoglobin re-
moval was investigated in six patients with myoglobinu-
ric AKI using a 45 kDa cutoff hemofilter with a surface
area 2.1 m”. Postdilutional fluid substitution was 2 to
3 1/hour, resulting in a mean myoglobin clearance of
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81 ml/minute (range 42 to 131 ml/minute). The reduction
ratio ranged from 62 to 89% [54].

The use of plasmapheresis to remove serum myoglo-
bin sounds controversial but successful therapy of RM
induced by statins was reported by Swaroop and colleagues
[55]. The plasmapheresis was performed in addition to
hemodialysis daily for 5 days. The effect of hemodialysis
alone is questionable, and the authors did not describe
the type of hemodialysis or membrane used [55]. The un-
deniable fact is the obligation to treat underlying disease
that led to RM. If we do not eliminate the cause of the
RM - especially in trauma, infectious disorders and
septic disorders — the removal of myoglobin is only a
supportive measure for increasing its clearance in the
case of AKI. However, inefficient removal of myoglobin
also results in a persistent high circulating level of the
molecule with kidney damage and delay in renal function
recovery [56]. From all these data, the effect of high-
permeability membranes on eliminating circulating myo-
globin has been demonstrated but care must be taken
to prevent unwanted albumin loss. It is questionable
whether a percentage of myoglobin clearance is not
hepatic because of a decrease in serum myoglobin in
patients with oligoanuric AKI. The recommended
most useful mode of renal replacement therapy used
to be hemofiltration, but in recent years we use high-
permeability membranes in daily clinical practice for
continuous venovenous hemodialysis without undesir-
able decrease in albumin levels. The molecular weight
of albumin is 67 kDa and high-permeability membranes
with a cutoff value <67 kDa in a predominantly diffusion
type of elimination can be a prospective measure for the
supplementary treatment of RM if necessary.

Conclusions

This review provides a comprehensive view on AKI
induced by RM. Thorough knowledge of the pathophysi-
ology will lead to new approaches for diagnosis and
treatment, leading to the preservation of the kidney.
Renal replacement methods have a supportive role but
they are not the first line of treatment for AKI-induced
RM, especially in cases of preserved diuresis. The kidney
is a miraculous organ but it can be overwhelmed if
the threshold is exceeded. We should try to preserve
kidney function where possible by looking at the whole
picture.
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